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Abstract: Prior to the establishment of QCD as the correct theory describing hadronic physics, it was
realized that the essential ingredients of the hadronic world at low energies are chiral symmetry and
its spontaneous breaking. Spontaneous symmetry breaking is a non-perturbative phenomenon, and,
thanks to massive QCD simulations on the lattice, we have at present a good understanding of the
vacuum realization of the non-abelian chiral symmetry as a function of the physical temperature.
As far as the UA(1) anomaly is concerned, and especially in the high temperature phase, the current
situation is however far from satisfactory. The first part of this article is devoted to reviewing the
present status of lattice calculations, in the high temperature phase of QCD, of quantities directly
related to the UA(1) axial anomaly. In the second part, some recently suggested interesting physical
implications of the UA(1) anomaly in systems where the non-abelian axial symmetry is fulfilled
in the vacuum are analyzed. More precisely it is argued that, if the UA(1) symmetry remains
effectively broken, the topological properties of the theory can be the basis of a mechanism, other
than Goldstone’s theorem, to generate a rich spectrum of massless bosons at the chiral limit.

Keywords: chiral transition; lattice QCD; U(1) anomaly; topology; massless bosons

1. Introduction

Nowadays, we know that symmetries play an important role in determining the
Lagrangian of a quantum field theory. There are essentially two types of symmetry, local
ones, or gauge symmetries, and global ones. The gauge symmetries are characterized by
transformations which depend on the space-time coordinates, while, in global symmetries,
the transformations are space-time independent. In addition, gauge symmetries serve to
fix the couplings of the Lagrangian and global symmetries allow us to to assign quantum
numbers to the particles and to predict the existence of massless bosons when a continuous
global symmetry is spontaneously broken.

In what concerns QCD, the theory of the strong interaction, and prior to the estab-
lishment of this theory as the correct theory describing hadronic physics, it was realized
that the essential ingredients of the hadronic world at low energies are chiral symmetry
and its spontaneous breaking. Indeed, these two properties of the strong interaction have
important phenomenological implications and allow us to understand some puzzling
phenomena such as why pions have much smaller masses than the proton mass and why
we do not see degenerate masses for chiral partners in the boson sector and parity partners
in the baryon sector.

Chiral symmetry breaking by the vacuum state of QCD is a non-perturbative phe-
nomenon, which results from the interaction of many microscopic degrees of freedom and
can be investigated mainly through lattice QCD simulations. As a matter of fact, lattice
QCD is the most powerful technique for investigating non-perturbative effects from first
principles. However, putting chiral symmetry onto the lattice turned out to be a difficult
task. The underlying reason is that a naive lattice regularization suffers from the doubling
problem. The addition of the Wilson term to the naive action solves the doubling problem
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but breaks chiral symmetry explicitly, even for massless quarks. This is usually not con-
sidered to be a fundamental problem because we expect that the symmetry is restored in
the continuum limit. However, at finite lattice spacing, chiral symmetry may still be rather
strongly violated by lattice effects.

On the other hand, staggered fermions cope to the doubling problem reducing the
number of species from sixteen to four, and to reduce the number of fermion species
from four to one, a rooting procedure has been used. Even if controversial, the rooting
procedure has allowed obtaining very accurate results in lattice QCD simulations with two
and three flavors.

The doubling problem cannot be simply overcome because there is a fundamental
theorem by Nielsen and Ninomiya which states that, on the lattice, one cannot imple-
ment chiral symmetry as in the continuum formulation, and at the same time have a
theory free of doublers. However, despite this difficulty, the problem of chiral symmetry
on the lattice was solved at the end of the past century with a generalization of chiral
symmetry, through the so-called Ginsparg–Wilson equation for the lattice Dirac opera-
tor, which replaces the standard anticommutation relation of the continuum formulation
Dγ5 + γ5D = 0 by Dγ5 + γ5D = aDγ5D. With this new concept, a clean implementation
of chiral symmetry on the lattice has been achieved. The axial transformations reduce to
the continuum transformations in the naive continuum limit, but at finite lattice spacing, a,
an axial transformation involves also the gauge fields, and this is how the Ginsparg–Wilson
formulation evades the Nielsen–Ninomiya theorem.

All these features are well established in the lattice community, and the interested
reader can find in [1], for instance, a very good guide.

Returning to the topic of QCD phenomenology, there is also another puzzling phe-
nomenon which is known as the U(1) problem. The QCD Lagrangian for massless quarks is in-
variant under the chiral group UV(N f )×UA(N f ) = SUV(N f )× SUA(N f )×UV(1)×UA(1),
with V and A denoting vector and axial vector transformations respectively. Below 1GeV,
the flavor index f runs from 1 to 3 (up, down, and strange quarks), and the chiral symmetry
group is UV(3)×UA(3). The lightweight pseudoscalars found in Nature suggest, as stated
above, that the UA(3) axial symmetry is spontaneously broken in the chiral limit, but in
such a case we would have nine Goldstone bosons. The pions, K-meson, and η-meson are
eight of them but the candidate for the ninth Goldstone boson, the η′-meson, has too great
a mass to be a quasi-Goldstone boson. This is the axial U(1) problem that ’t Hooft solved
by realizing that the UA(1) axial symmetry is anomalous at the quantum level. ’t Hooft’s
resolution of the U(1) problem suggests in a natural way the introduction of a CP violating
term in the QCD Lagrangian, the θ-term, thus generating another long standing problem,
the strong CP problem.

Thanks to massive QCD simulations on the lattice, we have at present a good qualita-
tive and quantitative understanding on the vacuum realization of the non-abelian SUA(N f )
chiral symmetry, as a function of the physical temperature, but as far as UA(1) anomaly
and its associated θ parameter are concerned, and especially in the high temperature phase,
the current situation is far from satisfactory, and this makes understanding the role of the θ
parameter in QCD, as well as its connection with the strong CP problem, one of the biggest
challenges for high energy theorists [2].

The aim to elucidate the existence of new low-mass weakly interacting particles from a
theoretical, phenomenological, and experimental point of view is intimately related to this
issue. The light particle that has gathered the most attention has been the axion, predicted
by Weinberg [3] and Wilczek [4], in the Peccei and Quinn mechanism [5], to explain the
absence of parity and temporal invariance violations induced by the QCD vacuum. The
axion is one of the more interesting candidates to make the dark matter of the universe, and
the axion potential, which determines the dynamics of the axion field, plays a fundamental
role in this context.

The calculation of the topological susceptibility in QCD is already a challenge, but cal-
culating the complete potential requires a strategy to deal with the so called sign problem,
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that is, the presence of a highly oscillating term in the path integral. Indeed, Euclidean lat-
tice gauge theory has not been able to help us much because of the imaginary contribution
to the action, coming from the θ-term, which prevents the applicability of the importance
sampling method [6].

The QCD axion model relates the topological susceptibility χT at θ = 0 with the
axion mass ma and decay constant fa through the relation χT = m2

a f 2
a . The axion mass

is, on the other hand, an essential ingredient in the calculation of the axion abundance
in the Universe. Therefore, a precise computation of the temperature dependence of the
topological susceptibility in QCD becomes of primordial interest in this context.

This article focuses on the current status of the lattice calculations, in the high temper-
ature chirally symmetric phase of QCD, of quantities directly related to the UA(1) axial
anomaly, as the topological and axial UA(1) susceptibilities, and screening masses, as
well as discusses on some interesting physical implications of the UA(1) axial anomaly
in systems where the non-abelian axial symmetry is fulfilled in the vacuum. In Section 2,
some theoretical prejudices about the effects of the axial anomaly in the high temperature
phase of QCD are briefly reviewed, and what the results of the numerical simulations
on the lattice suggest on the effectiveness of the axial anomaly in this phase is analyzed.
In Section 3, it is argued that the topological properties of a quantum field theory, with
UA(1) anomaly and exact non-abelian axial symmetry, as for instance QCD in the high
temperature phase, can be the basis of a mechanism, other than Goldstone’s theorem, to
generate a rich spectrum of massless bosons at the chiral limit. The two-flavor Schwinger
model, which was analyzed by Coleman [7] many years ago, is an excellent test bed for
verifying the predictions of Section 3, and Section 4 contains the results of this test. The last
section contains a discussion of the results reported in this article.

2. Theoretical Biases Versus Numerical Results

The large mass of the η′ meson should come from the effects of the UA(1) axial
anomaly and its related gauge field topology, both present in QCD. Despite the difficulty
of computing the contribution of disconnected diagrams to the η′ correlator in lattice
simulations, these obstacles have been overcome and lattice calculations [8–10] give a mass
for the η′ meson compatible with its experimental value, and this can be seen as an indirect
confirmation that the effects of the anomaly are present in the low temperature phase
of QCD.

Conversely, the current situation regarding the fate of the axial anomaly in the high
temperature phase of QCD, where the non-abelian axial symmetry is not spontaneously
broken, is unclear, and this is quite unsatisfactory. The nature of the chiral phase transition
in two-flavor QCD, for instance, is affected by the way in which the effects of the UA(1)
axial anomaly manifest themselves around the critical temperature [11]. Indeed, if the
UA(1) axial symmetry remains effectively broken, we expect a continuous chiral transition
belonging to the three-dimensional O(4) vector universality class, which shows a critical
exponent δ = 4.789(6) [12], while, if UA(1) is effectively restored, the chiral transition is first
order or second order with critical exponents belonging to the UV(2)×UA(2) → UV(2)
universality class (δ = 4.3(1)) [13].

The first investigations on the fate of the UA(1) axial anomaly in the chiral symme-
try restored phase of QCD started a long time ago. The idea that the chiral symmetry
restored phase of two-flavor QCD could be symmetric under UV(2)×UA(2) rather than
SUV(2)× SUA(2) was raised by Shuryak in 1994 [14], based on an instanton liquid-model
study. In 1996, Cohen [15] showed, using the continuum formulation of two-flavor QCD,
and assuming the absence of the zero mode’s contribution, that all the disconnected con-
tributions to the two-point correlation functions in the SUA(2) symmetric phase at high
temperature vanish in the chiral limit. The main conclusion of this work is that the eight
scalar and pseudoscalar mesons should have the same mass in the chiral limit, the typical
effects of the UA(1) axial anomaly being absent in this phase. In addition, Cohen argued
in [16] that the analyticity of the free energy density in the quark mass m, around m = 0,
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in the high temperature phase, imposes constraints on the spectral density of the Dirac
operator around the origin which are enough to guarantee the previous results.

Later on, Aoki et al. [17] obtained constraints on the Dirac spectrum of overlap
fermions, strong enough for all of the U(1)A breaking effects among correlation functions
of scalar and pseudoscalar operators to vanish, and they concluded that there is no rem-
nant of the U(1)A anomaly above the critical temperature in two-flavor QCD, at least
in these correlation functions. Their results were obtained under the assumptions that
m-independent observables are analytic functions of the square quark-mass m2, at m = 0,
and that the Dirac spectral density can be expanded in Taylor series near the origin, with a
non-vanishing radius of convergence.

The range of applicability of the assumptions made by [17] is however unclear. As
stated by the authors, their result strongly relies on their assumption that the vacuum
expectation values of quark-mass independent observables, as the topological susceptibility,
are analytic functions of the square quark-mass, m2, if the non-abelian chiral symmetry is
restored. The two-flavor Schwinger model has a non-spontaneously broken SUA(2) chiral
symmetry and UA(1) axial anomaly, and Coleman’s result for the topological susceptibility
in this model [7]

χT ∝ m
4
3 e

2
3

shows explicitly a non-analytic quark-mass dependence, and thus casts doubt on the
general validity of the assumptions made in [17].

In [18] a Ginsparg–Wilson fermion lattice regularization is used, and it is argued
that, if the vacuum energy density is an analytical function of the quark mass in the high
temperature phase of two-flavor QCD, all effects of the axial anomaly should disappear.
The main conclusion of [18] was that either the typical effects of the axial UA(1) anomaly
disappear in the symmetric high temperature phase or the vacuum energy density shows a
singular behavior in the quark mass at the chiral limit.

On the other hand, an analysis of chiral and UA(1) symmetry restoration based on
Ward identities and U(3) chiral perturbation theory is carried out in [19,20]. The authors
showed in their work that, in the limit of exact O(4) restoration, understood in terms of
δ− η partner degeneration, the Ward identities analyzed yield also O(4)×UA(1) restora-
tion in terms of π− η degeneration, and the pseudo-critical temperatures for restoration of
O(4) and O(4)×UA(1) tend to coincide in the chiral limit.

The first lattice simulations to investigate the fate of the UA(1) axial anomaly [21,22]
also started in the 1990s. In Ref. [21] the authors report results of a numerical simulation
of the two-flavor model with staggered quarks. They computed two order parameters,
χπ − χσ for the SUA(2) chiral symmetry and χπ − χδ for the UA(1) axial symmetry, where
χπ , χσ, and χδ are the pion, σ, and δ-meson susceptibilities, respectively, and they showed
evidence for a restoration of the SUV(2)× SUA(2) chiral symmetry, just above the crossover,
but not of the axial UA(1) symmetry. Ref. [22] contains the results of a similar calculation
in two-flavor QCD using also a staggered fermion lattice regularization. As stated by the
authors, the relatively coarse lattice spacing in their simulations, a ∼ 1

3 Fermi, does not
allow for conclusive results on the effectiveness of the U(1)A anomaly.

After these pioneering works, this issue has been extensively investigated using
numerical simulations on the lattice, and the works in [23–43] are representative of that.
We focus below on the most recently obtained results.

In [29], (2 + 1)-flavor QCD is simulated, using chiral domain wall fermions, for
temperatures between 139 and 196 MeV. The light-quark mass is chosen so that the pion
mass is held fixed at a heavier-than-physical 200 MeV value, while the strange quark
mass is set to its physical value. The authors reported results for the chiral condensates,
connected and disconnected susceptibilities, and the Dirac eigenvalue spectrum and find a
pseudocritical temperature Tc ∼ 165 MeV and clear evidence for UA(1) symmetry breaking
above Tc.

Ref. [31] also provided a study of QCD with (2 + 1)-flavors of highly improved stag-
gered quarks. The authors investigated the temperature dependence of the anomalous UA(1)
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symmetry breaking in the high temperature phase, and to this end they employed the overlap
Dirac operator, exploiting its property of preserving the index theorem even at non-vanishing
lattice spacing. The pion mass is fixed to 160 MeV, and, by quantifying the contribution of the
near-zero eigenmodes to χπ − χδ, the authors concluded that the anomalous breaking of the
axial symmetry in QCD is still visible in the range Tc 6 T 6 1.5Tc.

The thermal transition of QCD with two degenerate light flavors is analyzed in [34]
by lattice simulations, using O(a)-improved Wilson quarks and the unimproved Wilson
plaquette action. In this work, the authors investigated the strength of the anomalous
breaking of the UA(1) symmetry in the chiral limit by computing the symmetry restoration
pattern of screening masses in various isovector channels, and, to quantify the strength of
the UA(1)-anomaly, they used the difference between scalar and pseudoscalar screening
masses. They concluded that their results suggest that the UA(1)-breaking is strongly
reduced at the transition temperature, and that this disfavors a chiral transition in the O(4)
universality class.

Results for mesonic screening masses in the temperature range 140 MeV 6 T 6 2500 MeV
in (2+ 1)-flavor QCD, using the highly improved staggered quark action, are also reported
by the HotQCD Collaboration in [41], with a physical value for the strange quark mass, and
two values of the light quark mass corresponding to pion masses of 160 and 140 MeV. Com-
paring screening masses for chiral partners, related through the chiral SUL(2)× SUR(2)
and the axial UA(1) transformations, respectively, the authors found, in the case of light–
light mesons, evidence for the degeneracy of screening masses related through the chiral
SUL(2)× SUR(2) at or very close to the pseudocritical temperature, Tpc, while screening
masses related through an axial UA(1) transformation start becoming degenerate only at
about 1.3Tpc.

A recent calculation in (2 + 1)-flavor QCD [42], using also the highly improved
staggered quark action, shows, after continuum and chiral extrapolations, that the axial
anomaly remains manifested in two-point correlation functions of scalar and pseudoscalar
mesons in the chiral limit, at a temperature of about 1.6 times the chiral phase transition
temperature. The analysis is based on novel relations between the nth-order light quark
mass derivatives of the Dirac eigenvalue spectrum, ρ(λ, ml), and the (n + 1)-point corre-
lations among the eigenvalues of the massless Dirac operator, and the calculations were
carried out at the physical value of the strange quark mass, three lattice spacings, and light
quark masses corresponding to pion masses in the range 55–160 MeV.

Ref. [43] provided the latest results of the JLQCD collaboration. In this work, the
authors investigated the fate of the UA(1) axial anomaly in two-flavor QCD at temperatures
190–330 MeV using domain wall fermions, reweighted to overlap fermions, at a lattice
spacing of 0.07 fm. They measured the axial UA(1) susceptibility, χπ − χδ, and examined
the degeneracy of UA(1) partners in meson and baryon correlators. Their conclusion is
that all the data above the critical temperature indicate that the axial UA(1) violation is
consistent with zero within statistical errors.

All the results discussed thus far mainly refer to the temperature dependence of
the axial susceptibility UA(1), screening masses, and related quantities. The topological
susceptibility, χT , is another observable that can be useful in investigating the fate of the
axial anomaly in the high-temperature phase of QCD, and its dependence on temperature
has also been extensively investigated [35–37,39,43].

The authors of Ref. [35] explored N f = 2 + 1 QCD in a range of temperatures, from
Tc to around 4Tc, and their results for the topological susceptibility differ strongly, both
in the size and in the temperature dependence, from the dilute instanton gas prediction,
giving rise to a shift of the axion dark-matter window of almost one order of magnitude
with respect to the instanton computation.

The authors of Ref. [36], however, observed in the same model very distinct tempera-
ture dependences of the topological susceptibility in the ranges above and below 250 MeV;
while, for temperatures above 250 MeV, the dependence is found to be consistent with
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the dilute instanton gas approximation, at lower temperatures, the falloff of topological
susceptibility is milder.

On the other hand, a novel approach is proposed in [37], i.e., the fixed Q integration,
based on the computation of the mean value of the gauge action and chiral condensate at
fixed topological charge Q; the authors found a topological susceptibility many orders of
magnitude smaller than that of Ref. [35] in the cosmologically relevant temperature region.

A more recent lattice calculation [39] of the topological properties of N f = 2 + 1 QCD
with physical quark masses and temperatures around 500 MeV gives as a result a small but
non-vanishing topological susceptibility, although with large error bars in the continuum
limit extrapolations, pointing that the effects of the UA(1) axial anomaly still persist at
these temperatures.

The JLQCD collaboration [43] also reported results for the topological susceptibility
in two-flavor QCD, in the temperature range 195–330 MeV, for several quark masses, and
their data show a suppression of χT(m) near the chiral limit. The authors claimed that
their results are not accurate enough to determine whether χT(m) vanishes at a finite
quark mass.

In short, we see how, despite the great effort devoted to investigating the fate of the
axial anomaly in the chirally symmetric phase of QCD, the current situation on this issue
is far from satisfactory.

3. Physical Effects of the UA(1) Anomaly in Models with Exact SUA(N f )
Chiral Symmetry

We devote the rest of this article mainly to analyze the physical effects of the UA(1)
anomaly in a fermion-gauge theory with two or more flavors, which exhibits an exact
SUA(N f ) chiral symmetry in the chiral limit. However, we also give a quick look to the one-
flavor model and to the multi-flavor model with spontaneous non-abelian chiral symmetry
breaking. Although many of the results presented here can be found in [18,44,45], we make
the rest of this article self-contained for ease of reading.

We show in this section that a gauge-fermion quantum field theory, with UA(1) axial
anomaly, and in which the scalar condensate vanishes in the chiral limit because of an exact
non-abelian SUA(2) chiral symmetry, should exhibit a singular quark-mass dependence of
the vacuum energy density and a divergent correlation length in the correlation function
of the scalar condensate, if the UA(1) symmetry is effectively broken. On the contrary,
if we assume that all correlation lengths are finite, and hence the vacuum energy density
is an analytical function of the quark mass, we show that the vacuum energy density
becomes, at least up to second order in the quark masses, θ-independent. In the former
case, the non-anomalous Ward–Takahashi (W-T) identities tell us that several pseudoscalar
correlation functions, those of the SUA(2) chiral partners of the flavor singlet scalar meson,
should exhibit a divergent correlation length too. We also argue that this result can be
generalized for any number of flavors N f > 2.

3.1. Some Background

To begin, let us write the continuum Euclidean action for a vector-like gauge theory
with global UA(1) anomaly in the presence of a θ-vacuum term

S =
∫

ddx


N f

∑
f

ψ̄ f (x)
(

γµDµ(x) + m f

)
ψ f (x) +

1
4

Fa
µν(x)Fa

µν(x) + iθQ(x)

 (1)

where d is the space-time dimensionality, Dµ(x) is the covariant derivative, N f is the
number of flavors, and Q(x) is the density of topological charge of the gauge configuration.
The topological charge Q is the integral of the density of topological charge Q(x) over the
space-time volume, and it is an integer number which in the case of QCD reads as follows
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Q =
g2

64π2

∫
d4xεµνρσFa

µν(x)Fa
ρσ(x). (2)

To keep mathematical rigor, we avoid ultraviolet divergences with the help of a lattice
regularization and use Ginsparg-Wilson (G-W) fermions [46], the overlap fermions [47,48]
being an explicit realization of them. The motivation to use G-W fermions is that they share
with the continuum formulation all essential ingredients. Indeed, G-W fermions show an
explicit UA(1) anomalous symmetry [49], good chiral properties, a quantized topological
charge, and allow us to establish and exact index theorem on the lattice [50].

The lattice fermionic action for a massless G-W fermion can be written in a compact
form as

SF = adψ̄Dψ = ad ∑
v,w

ψ̄(v)D(v, w)ψ(w) (3)

where v and w contain site, Dirac, and color indices, and D, the Dirac–Ginsparg–Wilson
operator, obeys the essential anticommutation equation

Dγ5 + γ5D = aDγ5D (4)

a being the lattice spacing.
Action (3) is invariant under the following lattice UA(1) chiral rotation

ψ→ eiαγ5(I− 1
2 aD)ψ, ψ̄→ ψ̄eiα(I− 1

2 aD)γ5 (5)

which for a→ 0 reduces to the standard continuum chiral transformation. However, the
integration measure of Grassmann variables is not invariant, and the change of variables (5)
induces a Jacobian

e−i2α a
2 tr(γ5D) (6)

where a
2

tr(γ5D) = n− − n+ = Q (7)

is an integer number, the difference between left-handed and right-handed zero modes, which can
be identified with the topological charge Q of the gauge configuration. Equations (6) and (7) show
us how Ginsparg–Wilson fermions reproduce the UA(1) axial anomaly.

We can also add a symmetry breaking mass term, mψ̄
(
1− a

2 D
)
ψ to action (3), so G-W

fermions with mass are described by the fermion action

SF = adψ̄Dψ + admψ̄
(

1− a
2

D
)

ψ (8)

and it can also be shown that the scalar and pseudoscalar condensates

S = ψ̄
(

1− a
2

D
)

ψ P = iψ̄γ5

(
1− a

2
D
)

ψ (9)

transform, under the chiral UA(1) rotations (5), as a vector, just in the same way as ψ̄ψ and
iψ̄γ5ψ do in the continuum formulation.

In what follows, we use dimensionless fermion fields and a dimensionless Dirac–
Ginsparg–Wilson operator. In such a case, the fermion action for the N f -flavor model is

SF =

N f

∑
f

{
ψ̄ f Dψ f + m f ψ̄

(
1− 1

2
D
)

ψ f

}
(10)

where m f is the mass of flavor f in lattice units. The partition function of this model, in the
presence of a θ-vacuum term, can be written as the sum over all topological sectors, Q, of
the partition function in each topological sector times a θ-phase factor,
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Z = ∑
Q

ZQeiθQ (11)

where Q, which takes integer values, is bounded at finite volume by the number of degrees
of freedom. At large lattice volume, the partition function should behave as

Z
(

β, m f , θ
)
= e−VE(β,m f ,θ) (12)

where E
(

β, m f , θ
)

is the vacuum energy density, β is the inverse gauge coupling, m f is the
f -flavor mass, and V = Vs × Lt is the lattice volume in units of the lattice spacing.

3.2. Q = 0 Topological Sector. The One-Flavor Model and the Multi-Flavor Model with
Spontaneous Chiral Symmetry Breaking

In our analysis of the physical phenomena induced by the topological properties of
the theory, the Q = 0 topological sector plays an essential role, and because of that we
devote this subsection to review some results concerning the relation between vacuum
expectation values of local and non-local operators computed in the Q = 0 sector, with
their corresponding values in the full theory, which takes into account the contribution
of all topological sectors. In particular, we show that the vacuum energy density, as well
as the vacuum expectation value of any finite operator, as for instance local or intensive
operators, computed in the Q = 0 topological sector, is equal, in the infinite volume limit,
to its corresponding value in the full theory. We also show that this property is in general
not true for non-local operators, the flavor-singlet pseudoscalar susceptibility being a
paradigmatic example of this. However, there are non-local operators, for instance the
second-order fermion-mass derivatives of the vacuum energy density, the values of which
in the Q = 0 sector match their corresponding values in the full theory, in the infinite lattice
volume limit.

We also analyze in this subsection the one-flavor case, as well as the multi-flavor case
with spontaneous chiral symmetry breaking, and show how, although the aforementioned
properties imply that the UA(1) symmetry is spontaneously broken in the Q = 0 topological
sector, the Goldstone theorem is not realized because the divergence of the flavor-singlet
pseudoscalar susceptibility, in this sector, does not originate from a divergent correlation
length [18].

The partition function and the mean value of any operator O, for instance the scalar
and pseudoscalar condensates, or any correlation function, in the Q = 0 topological sector,
can be computed, respectively, as

ZQ=0 =
1

2π

∫
dθZ(β, m f , θ) (13)

〈O〉Q=0 =

∫
dθ〈O〉θZ(β, m f , θ)∫

dθZ(β, m f , θ)
(14)

where 〈O〉θ , which is the mean value of O computed with the lattice regularized integration
measure (1), is a function of the inverse gauge coupling β, flavor masses m f , and θ, and we
restrict ourselves to the case in which it takes a finite value in the infinite lattice volume
limit. Since the vacuum energy density (12), as a function of θ, has its absolute minimum
at θ = 0 for non-vanishing fermion masses, the following relations hold in the infinite
volume limit

EQ=0

(
β, m f

)
= E

(
β, m f , θ

)
θ=0

(15)

〈O〉Q=0 = 〈O〉θ=0 (16)
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where EQ=0

(
β, m f

)
is the vacuum energy density of the Q = 0 topological sector.

Taking in mind these results, let us start with the analysis of the one-flavor model at
zero temperature. The results that follow apply, for instance, to one-flavor QCD in four
dimensions or to the one-flavor Schwinger model.

In the one flavor model, the only axial symmetry is an anomalous UA(1) symmetry.
The standard wisdom on the vacuum structure of this model in the chiral limit is that it
is unique at each given value of θ, the θ-vacuum. Indeed, the only plausible reason to
have a degenerate vacuum in the chiral limit would be the spontaneous breakdown of
chiral symmetry, but, since it is anomalous, actually there is no symmetry. Furthermore,
due to the chiral anomaly, the model shows a mass gap in the chiral limit, and therefore
all correlation lengths are finite in physical units. Since the model is free from infrared
divergences, the vacuum energy density can be expanded in powers of the fermion mass
mu, treating the quark mass term as a perturbation [51]. This expansion is then an ordinary
Taylor series

E(β, mu, θ) = E0(β)− Σ(β)mu cos θ + O(m2
u), (17)

giving rise to the following expansions for the scalar and pseudoscalar condensates

〈Su〉 = −Σ(β) cos θ + O(mu) (18)

〈Pu〉 = −Σ(β) sin θ + O(mu) (19)

where Su and Pu are the scalar and pseudoscalar condensates (9) normalized by the
lattice volume

Su =
1
V

ψ̄

(
1− 1

2
D
)

ψ Pu =
i
V

ψ̄γ5

(
1− 1

2
D
)

ψ (20)

The topological susceptibility χT is given, on the other hand, by the following expansion

χT = Σ(β)mu cos θ + O(m2
u) (21)

The resolution of the UA(1) problem is obvious if we set down the W-T identity which
relates the pseudoscalar susceptibility χη = ∑x〈Pu(x)Pu(0)〉, the scalar condensate 〈Su〉,
and the topological susceptibility χT

χη = −〈Su〉
mu
− χT

m2
u

. (22)

Indeed, the divergence in the chiral limit of the first term in the right-hand side of (22)
is canceled by the divergence of the second term in this equation, giving rise to a finite
pseudoscalar susceptibility, and a finite non-vanishing mass for the pseudoscalar η boson.

In what concerns the Q = 0 topological sector, we want to notice two relevant features:

1. The global UA(1) axial symmetry is not anomalous in the Q = 0 topological sector.
2. If we apply Equation (16) to the computation of the vacuum expectation value of

the scalar condensate, we get that the UA(1) symmetry is spontaneously broken in
the Q = 0 sector because the chiral limit of the infinite volume limit of the scalar
condensate, the limits taken in this order, does not vanish.

Equation (14) allows us to write for the infinite volume limit of the two-point pseu-
doscalar correlation function, 〈Pu(x)Pu(0)〉, the following relation

〈Pu(x)Pu(0)〉Q=0 = 〈Pu(x)Pu(0)〉θ=0. (23)

This equation implies that the mass of the pseudoscalar boson, mη , which can be
extracted from the long distance behavior of the two-point correlation function, computed
in the Q = 0 sector, is equal to the value we should get in the full theory, taking into account
the contribution of all topological sectors. On the other hand, the topological susceptibility,
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χT , vanishes in the Q = 0 sector, and hence the W-T identity (22 ) in this sector reads
as follows

χQ=0
η = −〈Su〉Q=0

mu
. (24)

This identity tells us that, due to the spontaneous breaking of the UA(1) symmetry in
the Q = 0 sector, the pseudoscalar susceptibility diverges in the chiral limit, mu → 0, in this
topological sector. This is a very surprising result because it suggests that the pseudoscalar boson
would be a Goldstone boson, and therefore its mass, mη, would vanish in the mu → 0 limit.

The loophole to this paradoxical result is that the divergence of the susceptibility does
not necessarily implies a divergent correlation length. The susceptibility is the infinite
volume limit of the integral of the correlation function over all distances, in this order, and
the infinite volume limit and the space-time integral of the correlation function do not
necessarily commute [18]. The infinite range interaction Ising model is a paradigmatic
example of the non-commutativity of the two limits.

Let us see with some detail what actually happens. The 〈Pu(x)Pu(0)〉Q=0 correlation
function at any finite space-time volume V verifies the following equation

〈Pu(x)Pu(0)〉Q=0 =

∫
dθ〈Pu(x)Pu(0)〉c,θe−VE(β,m,θ)∫

dθe−VE(β,m,θ)
+

∫
dθ〈Pu(0)〉2θe−VE(β,m,θ)∫

dθe−VE(β,m,θ)
(25)

where 〈Pu(x)Pu(0)〉c,θ is the connected pseudoscalar correlation function at a given θ. The
first term in the right-hand side of Equation (25) converges in the infinite lattice volume
limit to 〈Pu(x)Pu(0)〉θ=0, the pseudoscalar correlation function at θ = 0. To compute the
large lattice volume behavior of the second term on the right-hand side of (25), we can
expand 〈Pu(0)〉2θ , and the vacuum energy density in powers of the θ angle as follows

〈Pu(0)〉2θ =
(
muχη + 〈Su〉

)2
θ2 + O(θ4). (26)

E(β, mu, θ) = E0(β, mu)−
1
2

χT(β, mu)θ
2 + O(θ4) (27)

and making an expansion around the saddle point solution we get, for the dominant contri-
bution to the second term of the right hand side of (25) in the large lattice volume limit,∫

dθ〈Pu(0)〉2θe−VE(β,m,θ)∫
dθe−VE(β,m,θ)

=
1
V

(
muχη + 〈Su〉

)2

χT
. (28)

Since the topological susceptibility χT is linear in mu, for small fermion mass (21), and the
scalar condensate 〈Su〉 is finite in the chiral limit, this contribution is singular at mu = 0.

Equations (25) and (28) show that indeed the pseudoscalar correlation function in the
zero-charge topological sector converges, in the infinite volume limit, to the pseudoscalar
correlation function in the full theory at θ = 0. These equations also show what we can call
a cluster violation at finite volume for the pseudoscalar correlation function, in the Q = 0
topological sector, which disappears in the infinite volume limit. This cluster violation
at finite volume is therefore irrelevant in what concerns the pseudoscalar correlation
function, but, conversely, it plays a fundamental role when computing the pseudoscalar
susceptibility in the Q = 0 topological sector. In fact, if we sum up in Equation (25)
over all lattice points, and take the infinite volume limit, just in this order, we get for the
pseudoscalar susceptibility in the Q = 0 topological sector

χQ=0
η = χη +

(
muχη + 〈Su〉

)2

χT
. (29)

This equation shows that the pseudoscalar susceptibility, in the Q = 0 sector, diverges
in the chiral limit due to the finite contribution of (28) to this susceptibility. Hence, it is
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shown that, although the Q = 0 topological sector breaks spontaneously the UA(1) axial
symmetry to give account of the anomaly, the Goldstone theorem is not fulfilled because the
divergence of the pseudoscalar susceptibility in this sector does not come from a divergent
correlation length.

The multi-flavor model with spontaneous non-abelian chiral symmetry breaking, as
for instance QCD in the low temperature phase, shows some important differences with
respect to the one-flavor case. The model also suffers from the chiral anomaly and has a
spontaneously broken SUA(N f ) chiral symmetry. Because of the Goldstone theorem, there
are N2

f − 1 massless pseudoscalar bosons in the chiral limit, and, in contrast to the one-
flavor case, the infinite-volume limit and the chiral limit do not commute. However, in what
concerns the flavor-singlet pseudoscalar susceptibility, the essential features previously
described for the one-flavor model still work in the several-flavors case.

Let us consider the simplest case of two degenerate flavors, mu = md = m. The
anomalous W-T identity (22) for the flavor-singlet pseudoscalar susceptibility reads now

χη = −〈S〉
m
− 4χT

m2 (30)

while the non-anomalous identity for the pion susceptibility is

χπ̄ = −〈S〉
m

(31)

where S = Su + Sd. The Q = 0 sector breaks spontaneously the UA(2) symmetry, and the
W-T identities for this sector are

χQ=0
η = χQ=0

π̄ = −〈S〉
Q=0

m
− (32)

The analysis done in this subsection allows to conclude that, although χπ̄ is a non-local
operator, it takes, in the infinite lattice volume limit, the same value in the Q = 0 sector as in
the full theory. Conversely, that is not true for the flavor-singlet pseudoscalar susceptibility,
which diverges in the chiral limit in the Q = 0 sector, while remaining finite in the full
theory. A straightforward analysis, as the one done for the one-flavor case, shows that,
again, the divergence of χQ=0

η does not come from a divergent correlation length.
The case in which the SU(N f ) chiral symmetry is fulfilled in the vacuum is discussed

in detail in the next subsections.

3.3. Two Flavors and Exact SUA(2) Chiral Symmetry

There are several relevant physical theories, as for instance the two-flavor Schwinger
model or QCD in the high temperature phase, that suffer from the UA(1) axial anomaly,
and in which the non-abelian chiral symmetry is fulfilled in the vacuum. We discuss in
what follows what are the physical expectations in these theories. It is argued that a theory
which verifies the aforementioned properties should show, in the chiral limit, a divergent
correlation length, and a rich spectrum of massless chiral bosons. To this end, we start with
the assumption that all correlation lengths are finite and show that, in such a case, the axial
UA(1) symmetry is effectively restored.

We consider a fermion-gauge model with two flavors, up and down, with masses mu
and md, exact SUA(2) chiral symmetry, and global UA(1) axial anomaly. The Euclidean
fermion-gauge action (10) is

SF = muψ̄u

(
1− 1

2
D
)

ψu + mdψ̄d

(
1− 1

2
D
)

ψd + ψ̄uDψu + ψ̄dDψd (33)

where D is the Dirac–Ginsparg–Wilson operator.
If we assume, as in the one-flavor model, that all correlation lengths are finite, and

the model shows a mass gap in the chiral limit, the vacuum energy density can also be
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expanded, as in the one-flavor case, in powers of the fermion masses mu, md, as an ordinary
Taylor series

E(β, mu, md) = E(β, 0, 0)− 1
2

m2
uχsu,u(β)− 1

2
m2

dχsd,d(β)−mumdχsu,d(β) + . . . (34)

The linear terms in (34) vanish because the SUA(2) symmetry is fulfilled in the vacuum,
and χsu,u , χsd,d , and χsu,d are the scalar up, down, and up–down susceptibilities, respectively,

χsu,u(β) = V
〈

S2
u

〉
mu=md=0

χsd,d(β) = V
〈

S2
d

〉
mu=md=0

χsu,d(β) = V〈SuSd〉mu=md=0 (35)

where Su and Sd are the scalar up and down condensates (20), normalized by the lattice
volume. The disconnected contributions are absent in (35) because the SUA(2) chiral symmetry
constrains 〈Su〉mu=md=0 and 〈Sd〉mu=md=0 to vanish, and χsu,u(β) = χsd,d(β) because of flavor
symmetry. Moreover, we know that the vacuum energy density of the Q = 0 topological sector,
in the infinite volume limit, is also be given by (34). (In [45], it is implicitly assumed that the
vacuum energy density of the Q = 0 sector is also a C2 function of mu and md. We show here
that this assumption is justified.)

In the presence of a θ-vacuum term, expansion (34) becomes

E(β, mu, md) = E(β, 0, 0)− 1
2

m2
uχsu,u(β)− 1

2
m2

dχsd,d(β)−mumd cos θχsu,d(β) + . . . (36)

The scalar up and down susceptibilities for massless fermions get all their contribution
from the Q = 0 topological sector, and therefore we can write

χsu,u(β) = χsd,d(β) = χQ=0
su,u (β) = χQ=0

sd,d (β)

Since the SUA(2) chiral symmetry is fulfilled in the vacuum, the vacuum expectation
value of any local order parameter for this symmetry vanishes in the chiral limit. It is
also shown that any local operator takes, in the thermodynamic limit, the same vacuum
expectation value in the Q = 0 topological sector as in the full theory. Therefore, the
SU(2)A chiral symmetry of the Q = 0 sector should also be fulfilled in the vacuum of
this sector.

The scalar up and down susceptibilities, in the Q = 0 sector, for non-vanishing quark
masses, also agree with their corresponding values in the full theory, in the infinite volume
limit (the simplest way to see that is true is to take into account that these susceptibilities
can be obtained as second-order mass derivatives of the free energy density, and the free
energy density of the Q = 0 sector and of the full theory agree if both quark masses are of
the same sign)

χQ=0
su,u (β, mu, md) = χsu,u(β, mu, md) χQ=0

sd,d (β, mu, md) = χsd,d(β, mu, md).

Therefore, these quantities can be obtained from (34)

χQ=0
su,u (β, mu, md) = χsu,u(β) + . . .

χQ=0
sd,d (β, mu, md) = χsd,d(β) + . . .

where the dots indicate terms that vanish in the chiral limit.
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The pseudoscalar up and down susceptibilities, in the Q = 0 sector, χQ=0
pu,u (β, mu, md) =

V
〈

P2
u
〉Q=0, χQ=0

pd,d (β, mu, md) = V
〈

P2
d
〉Q=0, can be obtained from the W-T identities in this

sector (24) beside (34)

χQ=0
pu,u (β, mu, md) = χsu,u(β) +

| md |
| mu |

χsu,d(β) + . . .

χQ=0
pd,d (β, mu, md) = χsd,d(β) +

| mu |
| md |

χsu,d(β) + . . . (37)

where the absolute value of the quark masses is due to the fact that these susceptibilities
are even functions of the quark masses, and again the dots indicate terms that vanish in
the chiral limit.

The difference of the scalar and pseudoscalar susceptibilities for the up or down
quarks, χsu,u − χpu,u , χsd,d − χpd,d , is an order parameter for both the UA(1) axial symmetry
and the SUA(2) chiral symmetry. We can compute this quantity, in the full theory, making
use of (34), the W-T identities (22), and the topological susceptibility

χT(β, mu, md) = mumdχsu,d(β) + . . .

the last obtained from (36), and we get

χpu,u(β, mu, md) = −
〈Su〉
mu
− χT

m2
u
= χsu,u(β) + . . .

χpd,d(β, mu, md) = −
〈Sd〉
md
− χT

m2
d
= χsd,d(β) + . . . (38)

where, also in this case, the dots indicate terms that vanish in the chiral limit. We see from
Equation (38) that, indeed, and despite the UA(1) anomaly, χsu,u − χpu,u and χsd,d − χpd,d ,
which are also order parameters for the SUA(2) chiral symmetry, vanish in the chiral limit,
as it should be. (A non-local order parameter for a given symmetry, which is fulfilled
in the vacuum, can diverge if the correlation length diverges, for instance the non-linear

susceptibility χnl(h) =
∂2m(h)

∂h2 in the Ising model at the critical temperature. However, we
assume here that all correlation lengths are finite, and hence the non-local order parameter
should vanish.)

Conversely, if we compute this order parameter in the Q = 0 topological sector, we get

χQ=0
su,u (β, mu, md)− χQ=0

pu,u (β, mu, md) = −
| md |
| mu |

χsu,d(β) + . . .

χQ=0
sd,d (β, mu, md)− χQ=0

pd,d (β, mu, md) = −
| mu |
| md |

χsu,d(β) + . . .

and therefore this order parameter for the non-abelian chiral symmetry only vanishes
in the chiral limit if χsu,d(β) = 0. Thus, it is shown that, under the assumption that all
correlation lengths are finite, an exact SUA(2) chiral symmetry in the Q = 0 sector requires
a θ-independent vacuum energy density (36), which implies, among other things, that the
axial susceptibility χπ − χδ, an order parameter that has been used to test the effectiveness
of the UA(1) anomaly, vanishes in the chiral limit.

Note, on the other hand, that a non-vanishing value of χsu,d(β) implies that not only the
SUA(2) chiral symmetry of the Q = 0 sector is spontaneously broken, but also the SUV(2)
flavor symmetry, as follows from (37). Moreover, a simple calculation of the sum of the flavor
singlet scalar χσ and pseudoscalar χη susceptibilities for massless quarks give us

χQ=0
σmu=md=0 + χQ=0

ηmu=md=0 = 2χsu,u(β) + 2χsd,d(β) = 4χsu,u(β) (39)
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while if, according to standard Statistical Mechanics, we decompose our degenerate vac-
uum, or Gibbs state, into the sum of pure states [52], and calculate χσ + χη in each one of
these pure states, we get

χQ=0
σmu=md=0 + χQ=0

ηmu=md=0 = 4χsu,u(β) +
1 + λ2

2λ
χsu,d(β) (40)

with λ = |md |
|mu | . We see that the consistency between Equations (39) and (40) requires again

that χsu,d(β) = 0.
Therefore, even if one accepts that the Q = 0 sector spontaneously breaks the SUA(2)

axial and SUV(2) flavor symmetries, even though all local order parameters for these
symmetries vanish, we find that the consistency of the vacuum structure with the theoretical
prejudices about the Gibbs state of a statistical system requires, once more, that χsu,u(β) = 0,
and hence a θ-independent vacuum energy density in the full theory.

In the one-flavor model, we do not find inconsistencies between the assumption that
the correlation length is finite, and the physics of the Q = 0 topological sector. The chiral
condensate takes a non vanishing value in the chiral limit, and hence the UA(1) axial
symmetry is spontaneously broken in the Q = 0 sector, giving account in this way of
the UA(1) axial anomaly of the full theory. In the two-flavor model, and under the same
assumption of finiteness of the correlation length, we would need a non-vanishing value
of χsu,d(β) to have an effective UA(1) axial symmetry breaking which, also in this case,
would imply the spontaneous breaking of the global UA(1) symmetry in the Q = 0 sector.
However, in such a case, we find strong inconsistencies that lead us to conclude that,
either χsu,d(β) = 0, and hence the UA(1) symmetry is effectively restored, or a divergent
correlation length is imperative if the UA(1) symmetry is not effectively restored.

3.4. Landau Approach

We argue that the two-flavor theory with exact SUA(2) chiral symmetry and axial
UA(1) symmetry violation should exhibit a divergent correlation length in the scalar sector,
in the chiral limit. In this subsection, we give a qualitative but powerful argument which
strongly supports this result. To this end, we explore the expected phase diagram of the
model in the Q = 0 topological sector [44] and apply the Landau theory of phase transitions
to it.

Since the SUA(2) chiral symmetry is assumed to be fulfilled in the vacuum, and
the flavor singlet scalar condensate is an order parameter for this symmetry, its vacuum
expectation value 〈S〉 = 〈Su〉+ 〈Sd〉 = 0 vanishes in the limit in which the fermion mass
m→ 0. However, if we consider two non-degenerate fermion flavors, up and down, with
masses mu and md, respectively, and take the limit mu → 0 keeping md 6= 0 fixed, the up
condensate Su reaches a non-vanishing value

lim
mu→0

〈Su〉 = su(md) 6= 0 (41)

because the U(1)u axial symmetry, which exhibits our model when mu = 0, is anomalous,
and the SUA(2) chiral symmetry, which would enforce the up condensate to be zero, is
explicitly broken if md 6= 0.

Obviously, the same argument applies if we interchange mu and md, and we can
therefore write

lim
md→0

〈Sd〉 = sd(mu) 6= 0 (42)

and since the SUA(2) chiral symmetry is recovered and fulfilled in the vacuum when
mu, md → 0, we get

lim
md→0

su(md) = lim
mu→0

sd(mu) = 0 (43)

Let us consider now our model, with two non-degenerate fermion flavors, restricted to
the Q = 0 topological sector. As discussed above, the mean value of any local or intensive
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operator in the Q = 0 topological sector is equal, if we restrict ourselves to the region in
which both mu > 0, and md > 0, to its mean value in the full theory, in the infinite volume
limit (since the two flavor model with mu < 0 and md < 0 at θ = 0 is equivalent to the
same model with mu > 0 and md > 0, this result is also true if both mu < 0 and md < 0).
We can hence apply this result to 〈Su〉 and 〈Sd〉 and write the following equations

lim
mu→0

〈Su〉Q=0 = su(md) 6= 0

lim
md→0

〈Sd〉Q=0 = sd(mu) 6= 0 (44)

The global U(1)u axial symmetry of our model at mu = 0, and the U(1)d symmetry
at md = 0, are not anomalous in the Q = 0 sector, and Equation (44) tells us that both
the U(1)u symmetry at mu = 0, md 6= 0 and the U(1)d symmetry at mu 6= 0, md = 0 are
spontaneously broken in this sector. This is not surprising at all since the present situation
is similar to what happens in the one-flavor model discussed above.

Figure 1 is a schematic representation of the phase diagram of the two-flavor model, in
the Q = 0 topological sector, and in the (mu, md) plane, which emerges from the previous
discussion. The two coordinate axis show first-order phase transition lines. If we cross
perpendicularly the md = 0 axis, the mean value of the down condensate jumps from
sd(mu) to −sd(mu), and the same is true if we interchange up and down. All first-order
transition lines end however at a common point, the origin of coordinates mu = md = 0,
where all condensates vanish because at this point we recover the SUA(2) chiral symmetry,
which is assumed to also be a symmetry of the vacuum. Notice that, if the SUA(2) chiral
symmetry is spontaneously broken, as happens for instance in the low temperature phase
of QCD, the phase diagram in the (mu, md) plane would be the same as that of Figure 1
with the only exception that the origin of coordinates is not an end point.

critical point

md

mu

Figure 1. Phase diagram of the two-flavor model in the Q = 0 topological sector. The coordinate axis
in the (mu, md) plane are first-order phase transition lines. The origin of coordinates is the end point
of all first-order transition lines. The vacuum energy density, its derivatives, and expectation values
of local operators of the two-flavor model at θ = 0 only agree with those of the Q = 0 sector in the
first (mu > 0, md > 0) and third (mu < 0, md < 0) quadrants (the darkened areas).
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Landau’s theory of phase transitions predicts that the end point placed at the origin
of coordinates in the (mu, md) plane is a critical point, the scalar condensate should show
a non-analytic dependence on the fermion masses mu and md as we approach the critical
point, and hence the scalar susceptibility should diverge. However, since the vacuum
energy density in the Q = 0 topological sector, as well as its fermion mass derivatives,
matches the vacuum energy density and fermion mass derivatives in the full theory, and
the same is true for the critical equation of state, Landau’s theory of phase transitions
predicts a non-analytic dependence of the flavor singlet scalar condensate on the fermion
mass, and a divergent correlation length in the chiral limit of our full theory, in which we
take into account the contribution of all topological sectors.

More precisely, we can apply the Landau approach to analyze the critical behavior
around the two first-order transition lines in Figure 1 near the end point, or critical point.
In the analysis of the md = 0 transition line, we consider md as an external “magnetic field”
and mu as the “temperature”, and vice versa for the analysis of the mu = 0 line. Then,
the standard Landau approach tells us that the up and down condensates verify the two
following equations of state

−mu〈Su〉−3 = −2C1md〈Su〉−2 + 4C2

−md〈Sd〉−3 = −2C1mu〈Sd〉−2 + 4C2 (45)

where C1 and C2 are two positive constants. If we fix the ratio of the up and down masses
mu
md

= λ, the equations of state (45) allow us to write the following expansions for de up
and down condensates

〈Su〉 = −m
1
3
u

( 1
4C2

) 1
3
+

C1

3
(
2C2

2
) 1

3 λ
m

1
3
u + . . .



〈Sd〉 = −m
1
3
d

( 1
4C2

) 1
3
+

C1λ

3
(
2C2

2
) 1

3
m

1
3
d + . . .

 (46)

Equation (46) shows explicitly the non analytical behavior of the up and down con-
densates. In the degenerate flavor case, mu = md = m, the scalar condensate and the
flavor-singlet scalar susceptibility near the critical point scale as

〈S〉 = 〈Su〉+ 〈Sd〉 = −
(

2
C2

) 1
3
m

1
3 + . . .

χσ(m) =
1
3

(
2

C2

) 1
3
m−

2
3 + . . . (47)

showing up explicitly the divergence of the flavor singlet scalar susceptibility in the chiral
limit.

We see that the critical behavior of the chiral condensate in the Landau approach (47)
is described by the mean field critical exponent δ = 3. Mean field critical exponents
are expected to be correct in high dimensions, while, in low dimensions, the effect of
fluctuations can change their mean field values. This means that, in the latter case, the
Landau approach give us a good qualitative description of the phase diagram but fails in
its quantitative predictions of critical exponents.

To finish the Landau approach analysis, we want to point out that all these results can
be generalized in a straightforward way to a number of flavors N f > 2.
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3.5. Critical Behavior of the Two-Flavor Model with an Isospin Breaking Term

Beyond the Landau approach, we can parameterize the critical behavior of the flavor
singlet scalar condensate and of the mass-dependent contribution to the vacuum energy
density, in the two degenerate flavor model, with a critical exponent δ > 1

〈S〉m→0 ' −Cm
1
δ . (48)

E(β, m)− E(β, 0) ' − Cδ

δ + 1
m

δ+1
δ . (49)

where C is a dimensionless positive constant that depends on the inverse gauge coupling
β. Equation (48) gives us a divergent scalar susceptibility, χσ(m) ∼ C

δ m
1−δ

δ , and hence a
massless scalar boson as m→ 0.

If, on the other hand, we write the W-T identity for the isotriplet of “pions” which
follows from the SUA(2) non-anomalous chiral symmetry

χπ̄(m) = −〈S〉
m

, (50)

we get that also χπ̄(m) diverges when m → 0 as Cm
1−δ

δ , and a rich spectrum of massless
bosons (σ, π̄) emerges in the chiral limit. The susceptibility of the flavor singlet pseudoscalar
condensate fulfills the anomalous W-T identity (30), and, because of the UA(1) axial anomaly,
the η-boson mass is expected to remain finite (non-vanishing) in the chiral limit.

The hyperscaling hypothesis, which arises as a natural consequence of the block-spin
renormalization group approach, says that the only relevant length near the critical point
of a magnetic system, in what concerns the singular part Es(β, m) of the free or vacuum
energy density, is the correlation length ξ. Since Equation (49) contains only the singular
contribution to the vacuum energy density, we can write

Es(β, m) ' − Cδ

δ + 1
m

δ+1
δ ∼ ξ−d (51)

and the following relationship between the correlation length and the fermion mass

ξ ∼ m−
δ+1
dδ (52)

which implies that the pion and sigma-meson masses scale with the fermion mass as follows

mπ̄ , mσ ∼ m
δ+1
dδ (53)

In the presence of an isospin breaking term, the fermion action can be written in a
compact form as

SF =

(
mu + md

2

)
ψ̄

(
1− 1

2
D
)

ψ−
(

md −mu

2

)
ψ̄

(
1− 1

2
D
)

τ3ψ + ψ̄Dψ (54)

where ψ is a Grassmann field carrying site, Dirac, color, and flavor indices and τ3 is the
third Pauli matrix acting in flavor space.

If we also include a θ-vacuum term in the action, this θ-term can be removed through
a chiral UA(1) transformation, which leaves the ψ̄Dψ interaction term invariant. If next we
also perform a suitable non-anomalous chiral transformation, we get the effective fermion
action that follows

SF = M(mu, md, θ)ψ̄

(
1− 1

2
D
)

ψ + A(mu, md, θ)iψ̄γ5

(
1− 1

2
D
)

ψ
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+ B(mu, md, θ)ψ̄

(
1− 1

2
D
)

τ3ψ + ψ̄Dψ (55)

where M(mu, md, θ), A(mu, md, θ) and B(mu, md, θ) are given by

M(mu, md, θ) =
1
2

(
m2

u + m2
d + 2mumd cos θ

) 1
2 (56)

A(mu, md, θ) =
2mumd sin θ

2

(mu + md)

(
1 + m2

u+m2
d−2mumd

m2
u+m2

d+2mumd
tan2 θ

2

) 1
2

(57)

B(mu, md, θ) = − md −mu

2 cos θ
2

(
1 + m2

u+m2
d−2mumd

m2
u+m2

d+2mumd
tan2 θ

2

) 1
2

(58)

Since we do not expect singularities at non-vanishing fermion masses, the vacuum
energy density E(β, M, A, B) can be expanded in powers of A and B as an ordinary Taylor
series, and, taking into account the symmetries of the effective action (55), we can write the
following equation for this expansion up to second order

E(β, mu, md, θ) ≡ E(β, M, A, B) = E(β, M, 0, 0)+
1
2

A2χη(β, M)+
1
2

B2χδ(β, M)+ . . . (59)

where χη(β, M) and χδ(β, M) are the flavor singlet pseudoscalar susceptibility and the
δ-meson susceptibility in the theory with two degenerate flavors of mass M(mu, md, θ),
respectively. Note that this expansion should have a good convergence if θ and md −mu
are small.

The vacuum energy density, to the lowest order of the expansion (59), is that of the model
with two degenerate flavors of mass M(mu, md, θ), in the absence of a θ-vacuum term. We
show above that this model should show a critical behavior (48) and (49), around the chiral
limit, and hence we get, to the lowest order of this expansion,

E(β, mu, md, θ)− E(β, 0, 0, 0) = − C

2
δ+1

δ

δ

δ + 1

(
m2

u + m2
d + 2mumd cos θ

) δ+1
2δ

+ . . . (60)

The free energy density depends on mu, md and θ through
(
m2

u + m2
d + 2mumd cos θ

) 1
2 ,

and its dominant contribution in the chiral limit is given by the power-law behavior of
Equation (60) (note that if we apply this expansion of the vacuum energy density to two-
flavor QCD at T = 0, where chiral symmetry is spontaneously broken, and hence δ = ∞
in (48) and (49), we get the vacuum energy density of the low energy chiral effective
Lagrangian model [51]).

The flavor-singlet pseudoscalar susceptibility, χη(β, M), fulfills the anomalous W-T
identity (30), and hence it is expected to remain finite in the chiral limit. Since the SUA(2)
chiral symmetry is exact in this limit, the same holds true for χδ(β, M). In such conditions,
the relevance of the second-order correction to the zero-order contribution to the vacuum
energy density (59), for two degenerate flavors, turns out to be

A2(m, θ)

E(β, M, 0)− E(β, 0, 0)
∼ m1− 1

δ
sin2 θ

2(
cos θ

2

)1+ 1
δ

(61)

while, in the isospin breaking case, and for small θ values, we have

A2(mu, md, θ)

E(β, M, 0, 0)− E(β, 0, 0, 0)
∼

m2
um2

dθ2

(mu + md)
3+ 1

δ
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B2(mu, md, θ)

E(β, M, 0, 0)− E(β, 0, 0, 0)
∼ (md −mu)

2

(mu + md)
1+ 1

δ

(62)

Since δ > 1 (δ = 3 in the mean field model), we see that the critical behavior of the
model, which describes the low energy theory, is fully controlled in both cases by the zero-
order contribution to the vacuum energy density (63), and the second-order contribution
can be neglected in what concerns the chiral limit of the theory.

Let us now look at some interesting physical consequences that can be obtained from
Equation (60). In the degenerate flavor case, mu = md = m, Equations (52), (53), and (60) become

E(β, m, θ)− E(β, 0, 0) = − Cδ

δ + 1

(
m cos

θ

2

) δ+1
δ

+ . . . (63)

ξ ∼
(

m cos
θ

2

)− δ+1
dδ

(64)

mπ̄ , mσ ∼
(

m cos
θ

2

) δ+1
dδ

(65)

For non-degenerate flavors, the vacuum energy density (60) at θ = 0 is a function of
mu + md; hence, the vacuum expectation values of the up and down condensates are equal,
and the same holds true for their susceptibilities:

〈Su〉 = 〈Su〉 = −
C

2
δ+1

δ

(mu + md)
1
δ

∑
x
(〈Su(x)Su(0)〉 − 〈Su(x)〉〈Su(0)〉) = ∑

x
(〈Sd(x)Sd(0)〉 − 〈Sd(x)〉〈Sd(0)〉) =

∑
x
(〈Su(x)Sd(0)〉 − 〈Su(x)〉〈Sd(0)〉) =

C

2
δ+1

δ

1
δ
(mu + md)

1−δ
δ . (66)

We do not see any dependency on md −mu, and isospin breaking effects are therefore
absent in these quantities, which on the other hand show a singular behavior in the chiral
limit. The normalized flavor singlet scalar susceptibility, χσ,

χσ =
C

2
1
δ

1
δ
(mu + md)

1−δ
δ . (67)

diverges in the chiral limit, while the δ-meson susceptibility, χδ, vanishes in the zero-order
approximation to the vacuum energy density, indicating that it is a good approximation
when the ratio of the σ and δ meson masses is small, mσ

mδ
� 1.

The topological susceptibility is given by

χT =
C

2
δ+1

δ

(mu + md)
1−δ

δ mumd (68)

showing that this quantity is sensitive to the isospin breakdown.
The W-T identity for the charged pions, π±, reads

χπ± = −〈Su〉+ 〈Sd〉
mu + md

(69)

and hence we get

χπ± =
C

2
1
δ

(mu + md)
1−δ

δ . (70)

Similar to the σ-susceptibility, the charged pions susceptibility diverges in the chiral limit.
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To calculate the susceptibility of the neutral pion, we use the following W−T identities

∑
x
〈Pu(x)Pu(0)〉 = −

〈Su〉
mu
− χT

m2
u

∑
x
〈Pd(x)Pd(0)〉 = −

〈Sd〉
md
− χT

m2
d

∑
x
〈Pu(x)Pd(0)〉 = −

χT
mumd

(71)

which give us

∑
x
〈Pu(x)Pu(0)〉 = ∑

x
〈Pd(x)Pd(0)〉 = −∑

x
〈Pu(x)Pd(0)〉 =

C

2
δ+1

δ

(mu + md)
1−δ

δ (72)

and, for the normalized neutral pion susceptibility, we get

χπ0 =
C

2
1
δ

(mu + md)
1−δ

δ . (73)

Equations (70) and (73) show that the π± and π0susceptibilities are equal and inde-
pendent of md −mu. Again, isospin breaking effects are absent in these quantities, and,
even though md − mu 6= 0, the three pions have the same mass. In what concerns the
flavor-singlet pseudoscalar susceptibility, χη , Equation (72) shows that it vanishes.

Finally, if for simplicity we consider two degenerate flavors, Equations (53) and (68) imply
that the pion mass mπ̄ (or the σ-meson mass) and the topological susceptibility χT verify the
following relation

mπ̄

(χT)
1
d
= k(β, Lt) (74)

where k is a dimensionless quantity that depends on the inverse gauge coupling β, and
eventually, at finite temperature T, on the lattice temporal extent Lt, but that is independent
of the fermion mass m.

In summary, it is shown that, in the zero-order approximation to the vacuum energy
density, which accounts for the chiral critical behavior of the theory, isospin breaking effects
only manifest in the topological susceptibility. The three pions have the same mass, the
ratio of the pion (73) and σ-meson (67) susceptibilities is equal to the critical exponent δ,
and the pion (or σ-meson) mass is related with the topological susceptibility, as shown in
Equation (74).

4. Two-Flavor Schwinger Model as a Test Bed

Quantum Electrodynamics in (1 + 1)-dimensions is a good laboratory to test the
results reported in the previous section. The model is confining [53], exactly solvable
at zero fermion mass, has non-trivial topology, and shows explicitly the UA(1) axial
anomaly [54]. Besides that, the Schwinger model does not require infinite renormalization,
and this means that, if we use a lattice regularization, the bare parameters remain finite in
the continuum limit.

On the other hand, the SUA(N f ) non-anomalous axial symmetry in the chiral limit
of the multi-flavor Schwinger model is fulfilled in the vacuum, and this property makes
this model a perfect candidate to check our predictions on the existence of quasi-massless
scalar and pseudoscalar bosons in the spectrum of the model, the mass of which vanishes
in the chiral limit.

The Euclidean continuum action for the two-flavor theory is

S =
∫

d2x{ψ̄u(x)γµ

(
∂µ + iAµ(x)

)
ψu(x) + ψ̄d(x)γµ

(
∂µ + iAµ(x)

)
ψd(x)}+
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∫
d2x{muψ̄u(x)ψu(x) + mdψ̄d(x)ψd(x) +

1
4e2 F2

µν(x) + iθQ(x)} (75)

where mu and md are the fermion masses and e is the electric charge or gauge coupling,
which has mass dimensions. Fµν(x) = ∂µ Aν(x) − ∂ν Aµ(x), and γµ are 2 × 2 matrices
satisfying the algebra

{γµ, γν} = 2gµν (76)

At the classic level this theory has an internal SUV(2) × SUA(2) ×UV(1) ×UA(1)
symmetry in the chiral limit. However, the UA(1)-axial symmetry is broken at the quantum
level because of the axial anomaly. The divergence of the axial current is

∂µ JA
µ (x) =

1
2π

εµνFµν(x), (77)

where εµν is the antisymmetric tensor, and hence does not vanish. The axial anomaly
induces the topological θ-term iθQ = iθ

∫
d2xQ(x) in the action, where

Q(x) =
1

4π
εµνFµν(x) (78)

is the density of topological charge, the topological charge Q being an integer number.
The Schwinger model was analyzed years ago by Coleman [7], computing some

quantitative properties of the theory in the continuum for both, weak coupling e
m � 1, and

strong coupling or chiral limit e
m � 1.

For the one-flavor case, Coleman computed the particle spectrum of the model, which
shows a mass gap in the chiral limit, and conjectured the existence of a phase transition at
θ = π and some intermediate fermion mass m separating a weak coupling phase ( e

m � 1),
where the Z2 symmetry of the model at θ = π is spontaneously broken, from a strong
coupling phase ( e

m � 1), in which the Z2 symmetry is fulfilled in the vacuum. This
qualitative result has recently been confirmed by numerical simulations of the Euclidean-
lattice version of the model [55].

What is however more interesting for the content of this article is the Coleman anal-
ysis of the two-flavor model. As stated above, the theory (75) has an internal SUV(2)×
SUA(2)×UV(1)×UA(1) symmetry in the chiral limit, and the UA(1) axial symmetry is
anomalous. Since continuous internal symmetries cannot be spontaneously broken in a
local field theory in two dimensions [56], the SUA(2) symmetry has to be fulfilled in the
vacuum, and the scalar condensate, which is an order parameter for this symmetry, van-
ishes in the chiral limit. Hence, the two-flavor Schwinger model verifies all the conditions
assumed in Section 3.

We summarize here the main Coleman’s findings for the two-flavor model with
degenerate masses mu = md = m:

1. For weak coupling, e
m � 1, the results on the particle spectrum are almost the same

as for the massive Schwinger model.
2. For strong coupling, e

m � 1, the low-energy effective theory depends only on one

mass parameter, m
2
3 e

1
3 cos

2
3 θ

2 ; the vacuum energy density is then proportional to

E(m, e, θ) ∝ e
2
3

(
m cos

θ

2

) 4
3
; (79)

and the chiral condensate, at θ = 0, is therefore

〈ψ̄ψ〉 ∝ m
1
3 e

2
3 (80)

3. The lightest particle in the theory is an isotriplet, and the next lightest is an isosinglet.
The isosinglet/isotriplet mass ratio is

√
3. If there are other stable particles in the
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model, they must be O
([ e

m
] 2

3

)
times heavier than these. The light boson mass, M,

has a fractional power dependence on the fermion mass m:

M ∝ e
1
3

(
m cos

θ

2

) 2
3

(81)

Many of these results have been corroborated by several authors both in the
continuum [57–61] and using the lattice approach [62,63]. Coleman concluded his paper
[7] by asking some questions concerning things he did not understand, and we cite here two
of them:

1. Why are the lightest particles in the theory a degenerate isotriplet, even if one quark
is 10 times heavier than the other?

2. Why does the next-lightest particle has IPG = 0++, rather than 0−−?

The results of Section 3 allow us to qualitatively understand the main Coleman’s
findings for the two-flavor model with degenerate masses in the strong coupling limit, as
well as to give a reliable answer to the previous questions.

In Section 3.5, we predict, from the interplay between the UA(1) anomaly and the exact
SUA(2) chiral symmetry, a singular behavior of the vacuum energy density (49) and (63) in

the chiral limit limit as E ∼ C
(

m cos θ
2

) δ+1
δ . In the Schwinger model, a simple dimensional

analysis tell us that C must be proportional to e
δ−1

δ . Therefore, our result matches perfectly
Coleman’s result (79) if we choose δ = 3.

In what concerns the masses of the light bosons, our prediction (65), mπ̄ , mσ ∼(
m cos θ

2

) δ+1
dδ matches, for δ = 3, Colemans’s result (81) too.

In Section 3.5, we also predict that the flavor-singlet scalar susceptibility (67) and
the “pion” susceptibility (70) and (73), should diverge in the chiral limit as K

δ m
1−δ

δ e
δ−1

δ

and Km
1−δ

δ e
δ−1

δ , respectively (the factor e
δ−1

δ comes again from dimensional analysis in the
Schwinger model), and for δ = 3 we have

χσm→0 =
K
3

m−
2
3 e

2
3 ∼ | 〈0 | Ôσ | σ〉 |2

mσ
χπ0 m→0 = Km−

2
3 e

2
3 ∼ | 〈0 | Ôπ0 | π0〉 |2

mπ0
(82)

where K is a dimensionless constant.
We also show that the σ and π̄ meson masses, in the strong-coupling limit, scale with

the quark mass as
mπ̄ , mσ ∼ m

2
3 e

1
3 . (83)

Taking into account that the SUA(2) symmetry is exact in the chiral limit, Equations (82)
and (83) imply that

lim
m→0
| 〈0 | Ôσ | σ〉 |2= lim

m→0
| 〈0 | Ôπ0 | π0〉 |2∼ e (84)

and therefore we have

lim
m→0

χπ0(m, e)
χσ(m, e)

= lim
m→0

mσ(m, e)
mπ0(m, e)

= 3 (85)

These results show that indeed the lightest particle in the theory is an isotriplet, and
the next lightest is an isosinglet IPG = 0++. However, our result for the ratio mσ

mπ̄
= 3 [45]

is in disagreement with Coleman’s result mσ
mπ̄

=
√

3 [7].
In what concerns the first Coleman’s question, we argue in Section 3.5 that the strong

coupling limit performed by Coleman corresponds to the zero-order contribution to the
vacuum energy density expansion (59). This zero-order contribution depends on the
quark masses only through the combination mu + md, and we show that in such a case



Symmetry 2021, 13, 209 23 of 27

only the topological susceptibility is sensitive to isospin breaking effects. The three pion
susceptibilities (70) and (73) and masses are equal, and to see isospin breaking effects we
should go to the second-order contribution. The relevance of the second-order correction
to the zero-order contribution to the vacuum energy density is also estimated (62), and

for θ = 0 turns out to be of the order of (md−mu)
2

(mu+md)
4
3 e

2
3

, a result that justifies the validity

of the zero-order approximation in the strong-coupling ( e
mu,d
� 1) limit (Georgi recently

argued [64] that isospin breaking effects are exponentially suppressed in the two-flavor
Schwinger model as a consequence of conformal coalescence).

The analysis done in this section strongly suggests that the existence of quasi-massless
chiral bosons in the spectrum of the two-flavor Schwinger model, near the chiral limit,
does not originates in some uninteresting peculiarities of two-dimensional models, but it
should be a consequence of the interplay between exact non-abelian chiral symmetry, and
an effectively broken UA(1) anomalous symmetry. What is a two-dimensional peculiarity
is the fact that, in the chiral limit, when all fermion masses vanish, these quasi-massless
bosons become unstable, and the low-energy spectrum of the model reduces to a massless
non-interacting boson, in accordance with Coleman’s theorem [56] which forbids the
existence of massless interacting bosons in two dimensions.

5. Conclusions and Discussion

Thanks to massive QCD simulations on the lattice, we have at present a good qualita-
tive and quantitative understanding of the vacuum realization of the non-abelian SUA(N f )
chiral symmetry, as a function of the physical temperature. As far as the UA(1) anomaly
and its associated θ parameter are concerned, and especially in the high temperature phase,
the current situation is however far from satisfactory. With the aim of clarifying the current
status concerning this issue, we devote the first part of this article to analyzing the present
status of the investigations on the effectiveness of the UA(1) axial anomaly in QCD, at tem-
peratures around and above the non-abelian chiral transition critical temperature. We show
that theoretical predictions require assumptions whose validity is not always proven, and
lattice simulations using different discretization schemes lead to apparently contradictory
conclusions in several cases. Hence, despite the great effort devoted to investigating the
fate of the axial anomaly in the chirally symmetric phase of QCD, we still do not have a
clear answer to this question.

In the second part of the article we analyze some recently suggested [45] interesting
physical implications of the UA(1) anomaly, in systems where the non-abelian axial sym-
metry is fulfilled in the vacuum. The standard wisdom on the origin of massless bosons in
the spectrum of a Quantum Field Theory, describing the interaction of gauge fields coupled
to matter fields, is based on two well known features: gauge symmetry and spontaneous
symmetry breaking of continuous symmetries. We show that the topological properties of
the theory can be the basis of an alternative mechanism, other than Goldstone’s theorem,
to generate massless bosons in the chiral limit, if the UA(1) symmetry remains effectively
broken, and the non-abelian SUA(N f ) chiral symmetry is fulfilled in the vacuum.

The two-flavor Schwinger model, or Quantum Electrodynamics in two space-time
dimensions, is a good test-bed for our predictions. Indeed, the Schwinger model shows a
non-trivial topology, which induces the UA(1) axial anomaly. Moreover, in the two-flavor
case, the non-abelian SUA(2) chiral symmetry is fulfilled in the vacuum, as required by
Coleman’s theorem [56] on the impossibility to break spontaneously continuous symme-
tries in two dimensions. This model was analyzed by Coleman long ago in [7], where
he computed some quantitative properties of the theory in the continuum for both weak
coupling, e

m � 1, and strong coupling e
m � 1. In what concerns the strong-coupling

results, the main Coleman findings are qualitatively in agreement with our predictions.
The vacuum energy density, and the chiral condensate shows a singular dependence on
the fermion mass, m, in the chiral limit, and the flavor singlet scalar susceptibility diverges
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when m → 0. In addition, our results provide a reliable answer to some questions that
Coleman asked himself.

It is worth wondering if the reason for the rich spectrum of light chiral bosons near the
chiral limit, found in the Schwinger [7] and U(N) [65] models, lies in some uninteresting
peculiarities of two-dimensional models, or if there is a deeper and general explanation for
this phenomenon. We want to remark, concerning this, that the analysis done in Section 4
strongly suggests that the existence of quasi-massless chiral bosons in the spectrum of the
two-flavor Schwinger model, near the chiral limit, does not originates in some uninteresting
peculiarities of two-dimensional models but it should be a consequence of the interplay
between exact non-abelian chiral symmetry, and an effectively broken UA(1) anomalous
symmetry. What is a two-dimensional peculiarity is the fact that, in the chiral limit, when all
fermion masses vanish, these quasi-massless bosons become unstable, and the low-energy
spectrum of the model reduces to a massless non-interacting boson [66,67], in accordance
with Coleman’s theorem [56] which forbids the existence of massless interacting bosons in
two dimensions.

In what concerns QCD, the analysis of the effects of the UA(1) axial anomaly in
its high temperature phase, in which the non-abelian chiral symmetry is restored in the
ground state, has aroused much interest in recent time because of its relevance in axion
phenomenology. Moreover, the way in which the UA(1) anomaly manifests itself in the
chiral symmetry restored phase of QCD at high temperature could be tested when probing
the QCD phase transition in relativistic heavy ion collisions.

We argue in Section 3 that a quantum field theory, with an exact non-abelian SUA(2)
symmetry, and in which the UA(1) axial symmetry is effectively broken, should exhibit a
singular quark-mass dependence in the vacuum energy density and a divergent correlation
length in the correlation function of the scalar condensate, in the chiral limit. On the
contrary, if all correlation lengths are finite, and hence the vacuum energy density is an
analytical function of the quark mass, we show that the vacuum energy density becomes, at
least up to second order in the quark masses, θ-independent. The topological susceptibility
either vanish or is at least of fourth order in the quark masses and, in such a case, all typical
effects of the UA(1) anomaly are lost. QCD in the chirally symmetric phase, T ' Tc, shows
an exact non-abelian axial symmetry, and, hence, either the vacuum energy density is an
analytical function of the quark masses and QCD becomes θ-independent or the screening
mass spectrum of the model shows several quasi-massless chiral bosons, whose masses
vanish in the chiral limit. Which of the two aforementioned possibilities actually happens
in the high temperature phase of QCD is a difficult question, as follows from the current
status of lattice simulations reported in this article.

A recent lattice calculation [39] of the topological properties of three-flavor QCD with
physical quark masses and temperatures around 500 MeV gives as a result a small but
non-vanishing topological susceptibility, although with large error bars in the continuum
limit extrapolations, suggesting that the effects of the UA(1) axial anomaly still persist at
these temperatures. If we assume this to be true, and hence that there is a temperature
interval in the high temperature phase where the UA(1) anomalous symmetry remains
effectively broken, we can apply to this temperature interval the main conclusions of
Section 3.

Taking into account lattice determination of the light quark masses [68] (mu ' 2 MeV,
md ' 5 MeV, ms ' 94 MeV), we can consider QCD with two quasi-massless quarks
as a good approach. The results of Section 3 predict then a spectrum of light σ and π̄
mesons at T ' Tc. The presence of these light scalar and pseudoscalar mesons in the
chirally symmetric high temperature phase of QCD could, on the other hand, significantly
influence the dilepton and photon production observed in the particle spectrum [69] at
heavy-ion collision experiments.

Lattice calculations of mesonic screening masses in two- [34] and three-flavor [41]
QCD, around and above the critical temperature, give results that are unfortunately not
enough to allow a good check of our spectrum prediction. However, the results of [41]
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show a small change of the pion screening-mass when crossing the critical temperature
and a decreasing screening mass, at T ' Tc, when going from the ūs to the ūd channel.
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