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Abstract: Based on quantum origin of the universe, in this article we find that the universal wave
function can be far richer than the superposition of many classical worlds studied by Everett. By
analyzing the more general universal wave function and its unitary evolutions, we find that on small
scale we can obtain Newton’s law of universal gravity, while on the scale of galaxies we naturally
derive gravitational effects corresponding to dark matter, without modifying any physical principles
or hypothesizing the existence of new elementary particles. We find that an auxiliary function having
formal symmetry is very useful to predict the evolution of the classical information in the universal
wave function.
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1. Introduction

The principal methodology of quantum physics is to find appropriate wave functions
for complicated quantum systems and manifest their fundamental properties. Finding
appropriate single-particle wave functions can greatly enrich our understanding of compli-
cated systems, such as the eigenfunctions of infinite potential well and periodic potential
for studies of crystal. Moreover, finding appropriate multi-body wave functions proved
to be helpful for our understanding and design of complicated quantum material; for
examples, the BCS wave function in superconductor [1] and Laughlin wave function [2] in
fractional quantum hall effect. The most complicated wave function we can imagine ought
to be the universal wave function. Everett analyzed formal solutions for the universal
wave function [3] and presented predictions which changed our understanding of the
universe, such as the predictions that there are many classical worlds in the universe and
those classical worlds are constantly branching. Unfortunately, the formal solution given
by Everett does not have observational and falsifiable predictions and thus it failed to
become a realistic physical theory at the present stage.

In this article, we think that the universal wave function can be much richer than
Everett’s formal solution, by taking adequate consideration of quantum origin [4] of the
universe. We discover that the diffusion particle wave packets due to quantum origin of the
universe can have gravitational interactions with our classical world. We propose a general
method to extract quantum information in the universal wave function; by using it we can
recover Newton’s law of universal gravity on small scale, while on the scale of galaxies
we obtain the gravitational effects corresponding to dark matter, without modifying any
physical principles or hypothesizing the existence of new elementary particles. We also
discover the usual Newtonian gravitational constant can be different from the gravitational
constant between elementary particles. Our work clearly shows that the universal wave
function is not only realistic, but we can also obtain wave packets distribution information
of the universal wave function through gravitational effects.
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2. The Unitary Evolutions of Universal Wave Function

Mathematically, if we apply quantum mechanics to the entire universe, then at least
under non-relativistic framework, we can assume the existence of a universal wave func-
tion Ψu(~r1, · · · ,~rN , t) [3]. Since we are working under non-relativistic framework, we
do not consider those zero-mass particles, nor do we consider the creation and annihi-
lation of particles. The universal wave function satisfies the linear unitary evolution of
quantum mechanics:

ih̄
∂Ψu

∂t
(~r1, · · · ,~rN , t) = (Ĥ0 + Ĥesw + Ĥg)Ψu(~r1, · · · ,~rN , t), (1)

where Ĥ0 denotes the kinetic energy operator of all the particles, Ĥesw denotes interactions
except gravitational interactions. Ĥg denotes gravitational interactions.

Ĥg = −1
2

G
N

∑
l 6=n=1

mlmn

|~rl −~rn|
, (2)

where G denotes the gravitational constant between elementary particles, ml is mass of the
lth particle. Another equivalent way to consider the above Schrödinger equation is the
Feynman path integrals for the universal wave function [5].

Even if we ignore the internal freedom of elementary particles, the universal wave
function will still be extremely complicated. Therefore we need to use suitable mathematical
tools to analyze the universal wave function. Mathematically, we can define the single-
particle wave packet distribution function as

ρj(~rj, t) =
∫

∏
i( 6=j)

d3~ri|Ψu(~r1, · · · ,~rN , t)|2. (3)

ρj(~rj, t) reflects the wave packet distribution of the jth particle in the universe. Larger
ρj(~rj, t) implies that more wave packets are distributed at that location. Naturally we can
generalize the above definition to two-particle joint wave packet distribution function as

ρl,h(~rl ,~rh, t) =
∫

∏
i( 6=l,h)

d3~ri|Ψu(~r1, · · · ,~rN , t)|2. (4)

One may also generalize the definition to general n-particle joint wave packet distri-
bution function ρ1,··· ,n(~r1, · · · ,~rn, t).

3. Classical World Wave Function, Classical Information and the Universal
Wave Function

To analyze precisely universal wave functions containing the classical world, we
must first understand the fundamental properties of wave functions behind the classical
world. In our classical world most particles are formed by quantum correlation with nearby
particles. Here quantum correlation means that the wave function of two or more particles
cannot be written in a product form. For example, in hydrogen atom, ψ(~rp,~re, t) cannot
be expressed as ψ(~rp,~re, t) = φp(~rp, t)φe(~re, t), this implies there is quantum correlation
between the electron and proton within a hydrogen atom; the same holds for the three
quarks within a proton, which is why we regard hydrogen atoms and protons as composite
particles. Given that the quantum correlation between the three quarks of a proton is
extremely robust, we know the rest mass of every proton is the same and can be regarded
as a fundamental physical constant.

There should be a wave function to describe a given classical world in which par-
ticles are distributed in localized regions. We call such a wave function the classical
world wave function Ψc(~r1, · · · ,~rN , t), to distinguish it from the universal wave function
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Ψu(~r1, · · · ,~rN , t). From our understanding of the classical world, the classical world wave
function should satisfy the following necessary conditions.

1. The first necessary condition satisfied by Ψc(~r1, · · · ,~rN , t) is: almost every particle
in Ψc(~r1, · · · ,~rN , t) has some sort of quantum correlation with one or more other
particles. Such quantum correlations distribute over the entire universe in a network
form in our classical world.

2. The second necessary condition for Ψc(~r1, · · · ,~rN , t) goes like this: in our classical
world, almost every particle is localized and distributed in a small region Σj(t).
For classical world, we require that the volume of Σj(t) be on microscopic scale for
most particles. Under this condition, the sets {Σj(t), j ∈ {1, · · · , N}} and {~rj(t), j ∈
{1, · · · , N}} represent the classical information in the classical world within the
universal wave function, here~rj(t) is about the center of region Σj(t) and defines
the classical location of a particle. The gravitational effects we observe in reality
correspond to evolution of the set {~rj(t), j ∈ {1, · · · , N}} over time.

3. Finally, the third condition for Ψc(~r1, · · · ,~rN , t) is as follows: when ~rl and ~rn are
separated by macroscopic distance, the quantum correlation between those two
particles can be neglected. More precisely, we have the decomposition ρl,n ' ρlρn.

From the above three necessary conditions, we can see that the classical world wave
function can only reflect partial information of the universal wave function, since in the
localized particle regions Ψc(~r1, · · · ,~rN , t) = Ψu(~r1 ∈ Σ1(t), · · · ,~rj ∈ Σj(t), · · · ,~rN ∈
ΣN(t), t), whereas in other regions Ψc(~r1, · · · ,~rN , t) = 0 based on our request of the
classical world. This shows clearly that Ψc(~r1, · · · ,~rN , t) 6= Ψu(~r1, · · · ,~rN , t). It is clear that
Ψu is more fundamental than Ψc.

Generally speaking, the universe wave function is much more complex than the
classical world wave function, considering the quantum origin [4] of our universe. Hence,
we need a general way to get the classical world wave function and the corresponding
classical information if we know the exact universal wave function. Here we present a
general method to search for classical worlds of a given universal wave function.

Choose two arbitrary particles i and j, compute ρi(~ri, t) and ρj(~rj, t) from
Ψu(~r1, · · · ,~rN , t), where we assume ρi(~ri, t) and ρj(~rj, t) each has P(t) peaks. Now we
can construct P2(t) different functions as follows:

Ψ(Σκ
i Σι

j)
(~r1, · · · ,~rN , t) =

{
cκι(t)Ψu(~r1, · · · ,~rN , t) i f ~ri ∈ Σκ

i (t) and~rj ∈ Σι
j(t)

0 i f ~ri /∈ Σκ
i (t) or~rj /∈ Σι

j(t)
(5)

Here cκι(t) are normalization constants. From the above equation we have con-
structed a set of functions with P2(t) elements: {Ψ(Σκ

i Σι
j)
(~r1, · · · ,~rN , t), κ ∈ {1, · · · , P(t)},

ι ∈ {1, · · · , P(t)}}.
For a given (κ, ι), if Ψ(Σκ

i Σι
j)
(~r1, · · · ,~rN , t) has about N peaks in {Σj(t), j ∈ {1, · · · , N}},

and satisfies the three necessary conditions for the existence of classical worlds when all~rj
are confined to the domains Σj(t), then it is possible that we have found a classical world.
Additional conditions may be imposed to check if that is indeed a stable classical world
wave function. After we get a classical world wave function, the classical information
{Σ1(t), · · · , ΣN(t)} will be obtained simultaneously.

Of course, the above extraction of the classical world wave function and the corre-
sponding classical information based on two particles can be generalized to n particles if
two particles are not enough to get the definite classical world wave function.

After the definition of the classical information based on the universal wave function,
the question is how we determine the evolutions of the classical information. At first sight,
we would adopt the following “type-I” program.

1. At t0, we get the classical information of the classical world from the universal wave
function Ψu(t0) with the above method to extract the classical information.
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2. To predict the evolution of the classical information, we use Newtonian mechanics to
calculate the evolution of the classical information {~rj(t), j ∈ {1, · · · , N}}.
Since there is no external observer to interact with particles in the universe and record

their classical information, we should always analyze the universal wave function from
unitary evolutions. When the universal wave function is applied to the whole universe,
we should not use the concept of instantaneous wave packet collapse. It is clear that to
consider in the most accurate way the evolution of the classical information, we should first
solve the unitary evolution of the universal wave function, and then search the classical
world from the universal wave function at different times. Hence, the improved “type-II”
program should be:

1. At t0, we get the classical information {~rj(t0), j ∈ {1, · · · , N}} of the universal wave
function Ψu(t0) by searching the classical world.

2. From the solution of the Schrödinger equation, we get the universal wave function
Ψu(t) at a later time.

3. From Ψu(t), we get the classical information {~rj(t), j ∈ {1, · · · , N}} by another search
of the classical world.

4. Summarize the classical law from the relation between {~rj(t0), j ∈ {1, · · · , N}} and
{~rj(t), j ∈ {1, · · · , N}}.
Of course, the “type-II” program will provide more accurate evolution of the classical

information, compared with the “type-I” program. However, at first sight, it seems that
there should not be significant difference between the “type-I” program and “type-II”
programs. Nevertheless, we will show that our universe provides a natural example to
demonstrate the difference between the “type-I” and “type-II” programs.

Since we do not know what the universal wave function looks like and how it evolves,
the “type-II” program is not as useful in practice without special mathematical technique.
In the following, we will attempt to construct a function Ψχ(t), which we call the χ function,
which unlike Ψc(t), takes into account the evolutions of the universal wave function itself
and provides better approximation to predict the evolution of the classical information
we observe in reality, compared with evolutions of the classical world wave function by
Schrödinger equation alone. This Ψχ(t) function has the merit that it can naturally take
into account the observational data to predict the details of the future evolution.

4. An Analytical Approach to the Universal Wave Function

In the 1950s, Everett [3] analyzed the following formal solution for the universal wave
function:

Ψu(~r1, · · · ,~rN , t) =
P(t)

∑
κ=1

ακ(t)Ψκ
c (~r1, · · · ,~rN , t). (6)

Here every Ψκ
c (t) represents the classical world wave function and Equation (6) ex-

presses that there are P(t) different classical worlds. Normally, people think the super-
position of classical worlds constitutes the whole universal wave function. However, we
consider that to be a big mistake. The viable formal solutions of the universal wave function
can be much richer than Equation (6). We will introduce a general method to give more
general universal wave function in due course.

For the formal solutions given by Equation (6), it is sufficient to consider the evolutions
of Ψc(t) alone in Schrödinger equation, and we will prove in Section 5 that the “type-I” and
“type-II” programs will give the same evolution of the classical information. However, in
the following we give a simple and realistic example to show that in general this is not the
case. For simplicity, we consider the case of a single classical world wave function. Figure 1
illustrates ρj of the universal wave function for several particles. There is a common
misunderstanding that Ψu = 0 for any~rj /∈ Σj(t). Everett’s formal solution (6) clearly
satisfies this property. However, considering quantum origin of the universe, we cannot
exclude the possibility that ρj also has small background distribution. In this case, it is
possible that Ψu 6= 0 for~rj ∈ Σj(t) and all other~rk /∈ Σk(t). So in this case, we should
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consider to extend the domain of Ψc to the entire universe to consider the long-range
gravitational effect in a more accurate way.

Figure 1. As an example to illustrate the universal wave function and its classical world, we show the single-particle wave
packet distribution for five particles. The quantum correlation between adjacent particles is also shown. We emphasize the
possibility that there is a nonzero background distribution outside the region of the classical world; we can imagine this by
thinking that at first the universal wave function is the product of the diffusion wave packets of those particles. Then we
turn on interactions to form the classical world. It is clear that without an external observer, there must be a significant
amount of diffusion wave packets in the universal wave function. The main result presented in this work is that those
diffusion wave packets will influence the classical world through gravitational forces.

As an example, we first consider the domain extension of the jth particle and define the
function Ψj

χ(~r1, · · · ,~rN , t) so that~rl ∈ Σl(t) for all l 6= j, whereas there is no confinement

on~rj. In this case, we may rewrite the normalized Ψj
χ(t) as Ψj

χ(t) = Ψ̄j
c(t)φ̃j(~rj, t).

Here Ψ̄j
c(t) is defined as follows: if~rj is inside localized region Σj(t), then Ψ̄j

c(~r1, · · · ,~rN , t)

= Ψc(~r1, · · · ,~rN , t), whereas if it is outside region Σj(t), then Ψ̄j
c(~r1, · · · ,~rj−1,~rj, · · · ,~rN , t) =

Ψc(~r1, ...,~rj(t), ...,~rN , t)/
√

ρj(~rj(t), t). For~rj /∈ Σj(t), note that~rj(t) denotes center of region

Σj(t) rather than the independent variable~rj. For~rj /∈ Σj(t), the number of independent

variables in Ψ̄j
c(~r1, · · · ,~rj−1,~rj, · · · ,~rN , t) is 3(N − 1) + 1. ρj(~rj(t), t) is the single-particle

wave packet distribution function of Ψc(t) at location~rj(t).
φ̃j(~rj, t) has the following properties: (i) when |~rj −~rj(t)| < Rj, |φ̃j(~rj, t)|2 = γj(t); (ii)

when |~rj −~rj(t)| > Rj, φ̃j(~rj, t) =
√

ζ j(t)φj(~rj, t), where φj(~rj, t) is normalized and diffuses

across the entire universe. In the latter case, |φj(~rj, t)|2 is very small, so we can freely choose
Rj on macroscopic scale, for example one meter, as long as it is greater than the radius
of the localized wave packet distribution region Σj(t). Moreover, since |φj(~rj, t)|2 is very
small and Rj is of macroscopic scale, |φj(~rj, t)|2 is not very sensitive to the exact location of
~rj(t). The normalization condition requires that γj(t) + ζ j(t) = 1.
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We may consider the domain extension of other particles in the same way. It is clear
that there is no quantum correlation between φj(~rj, t) for different particles. Proceeding in
this way, we obtain the following form for Ψχ(t) by the domain extension of all~rj based
on Ψc(t):

Ψχ(~r1, · · · ,~rN , t) = Ψc(t)φ̃1(~r1, t)φ̃2(~r2, t)...φ̃j(~rj, t)...φ̃N(~rN , t), (7)

where all the φ̃j(~rj, t) are defined in the same way as above. For Ψc(t) in this case, however,
we need to consider for each particle whether it is in its localized region Σj(t). That is, we
need to define Ψc(t) as follows: if all the particles are inside their localized regions Σj(t),
then Ψc(~r1, · · · ,~rN , t) = Ψc(~r1, · · · ,~rN , t); if a subset A (say A = {1, 2, ..., n}) of particles
are outside their localized regions Σj(t), while all others are inside their localized regions,
then Ψc(~rn+1, ...,~rN , t) = Ψc(~r1(t), ...,~rn(t),~rn+1, ...,~rN , t)/

√
ρ1,...,n(~r1(t), ...,~rn(t), t), where

ρ1,...,n(t) is the joint wave packet distribution function of Ψc(t) for those n particles. We can
obtain similar formulas for each subset of particles and together they constitute complete
definition of Ψc(t).

It may seem that the χ function Ψχ(t) was transformed from Ψc(t) and Ψu(t) by a
rather artificial mathematical operation, in the following we elucidate why the χ function
we introduce here has physical origin. In the early universe the wave packet of each particle
completely spread out across the universe and there was no definite stable structure formed,
no classical world existed at that point. Then as the universe expands, wave packets
continue to spread and from the unitary evolutions of universe, we know those wave
packets cannot “collapse” based on unitary evolution, which means that the diffusion wave
packets always exist in the universe. So how did the classical world take its form? Because
of the short and long range interactions between those particles, quantum correlation will
stimulate structures to be formed among the diffusion wave packets and the network
structure of quantum correlation between nearby particles represents the classical world.
In general ρj(~rj, t) for each particle looks like a series of spikes with a diffusion background,
each spike represents a distinct classical world. So as long as the diffusion background is
not equal to 0, we can imagine the existence of Ψχ(t) by extending the domain of Ψc(t) to
the entire universe.

From Equation (7), we see that information about Ψc(t) is contained within Ψχ(t) with
no changes. However, Ψχ(t) contains more information through {γj(t), ζ j(t), φj(~rj, t), j ∈
{1, · · · , N}}. In this work we consider a random model in which all ζ j(t) are random
numbers (noise) between 0 and 1, while {φj(~rj, t), j ∈ {1, · · · , N}} are a series of functions
with no correlation with each other as time proceeds. Considering the complexity of the
universal wave function and its quantum origin, and considering the rapid movement of
any particle in the classical world relative to the cosmos background, at each time we need
to reconstruct Ψχ from Ψu and Ψc, which makes this random model reasonable. Of course,
in this model, there is no unitary evolution relation between Ψχ at different times. Hence,
there are only continuous evolutions of a single classical world (if we do not consider the
classical world branching of Ψc by itself), even when Ψχ 6= Ψc. The correlation time of
γj(t) can be estimated by considering that when there is no overlapping between Σl(t) and
Σl(t+ τ) (l denotes a nearby particle), {γj(t), φj(~rj, t)} and {γj(t+ τ), φj(~rj, t+ τ)}may be
assumed to be independent. Based on this assumption, it is estimated that τ ∼ 10−15 for a
particle in the Milky Way. In this estimation, we assume that the velocity of the Milky Way
relative to cosmos background is about 200 km/s, while the size of Σl(t) is about 10−10 m.

If at time t, Ψχ(t) = Ψu(t), then it is not the random model we consider. However,
we believe that the universal wave function is much richer than this simple case so that
Ψχ may be significantly different from Ψc and Ψu at any time. Of course, only observation
will determine which model is correct, because it is impossible to solve the Schrödinger
equation for the universal wave function to prove this. We will show in due course the
observational evidence of our model.

Notice that, in our model Ψχ is not a real wave function at all; it only provides a
mathematical method to consider the correlation between our classical world and other
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parts of the universal wave function, which enables us to study its gravitational effects
later. It is nonsense to calculate the long-time unitary evolutions of Ψχ(t). Only the unitary
evolution of Ψu(t) is always correct, while the unitary evolution of Ψc(t) may provide
approximation to true evolutions of the classical information. We will show that Ψχ(t)
gives better predictions to the gravitational acceleration of the particles at time t in the
classical world than those obtained from the unitary evolution of Ψc(t).

Here, we show two more properties of Ψχ(t). From the general expression of Ψχ(t)
given by Equation (7), we have

(1) For normalized Ψχ(t), ρj(~rj, t) = γj(t)ρc
j (~rj, t) + ζ j(t)ρd

j (~rj, t) for the jth particle.
Here the normalized ρc

j (~rj, t) denotes the localized part distributing over region Σj(t),

whereas ρd
j (~rj, t) is the diffusion part.

(2) For the original Ψc(t), when two particles are separated by macroscopic distance,
ρl,m(~rl ,~rm, t) = ρc

l (~rl , t)ρc
m(~rm, t). For Ψχ(t), there can be no quantum correlation between

diffusion wave packets of different particles, so we can assume that the decomposition
formula still holds, namely

ρl,n(~rl ,~rn, t) = (γl(t)ρc
l (~rl , t) + ζl(t)ρd

l (~rl , t))(γn(t)ρc
n(~rn, t) + ζn(t)ρd

n(~rn, t)). (8)

Before considering gravitational interaction, we first think about whether the existence
of Ψχ ( 6= Ψc) will influence evolutions of the classical information in Ψc(t) through
Ĥesw. In the classical approximation, evolutions of the classical information of a particle
is manifested by acceleration r̈j(t). The most useful and efficient way is to calculate
< Ψχ|Ĥesw|Ψχ > first. Since the diffusion wave packets diffuse very sparingly over the
universe, they will not cause short range interactions such as weak and strong interactions,
and because the diffusion wave packets as a whole is electrically neutral, they will not cause
electromagnetic interactions either. That is, < Ψχ(t)|Ĥesw|Ψχ(t) > will not contain the
information {φj(~rj, t), j ∈ {1, · · · , N}} in Ψχ(t). This leads to the result that the diffusion
wave packets will not influence evolutions of the classical information in Ψc(t) through
Ĥesw. We will show in the following section that gravitational force is different.

5. Gravitational Acceleration of Particle Wave Packets in the Classical World

To obtain the acceleration of a particle by inter-particle interactions in the classical
approximation, the most useful and efficient way is to calculate the interaction energy first.
Quantum mechanics tells us that, for a given state Ψ(t), the total gravitational interaction
energy is determined by the joint wave packet distribution functions as follows:

Eg(t) =
〈
Ψ(t)|Ĥg|Ψ(t)

〉
= −1

2
G ∑

l 6=n
mlmn

∫
d3~rld3~rn

ρl,n(~rl ,~rn, t)
|~rl −~rn|

. (9)

From the above formula, it is straightforward to obtain gravitational effects in the
classical approximation. Here ρl,n(~rl ,~rn, t) is the two-particle joint wave packet distribution
function of Ψ(t), while Ĥg is given by Equation (2).

If we calculate Eg(t) of Ψχ(t), it is clear that Eg(t) will contain all the information
{γj(t), ζ j(t), φj(~rj, t), j ∈ {1, · · · , N}} in Ψχ(t), because the gravitational interaction is
universal between any two particles. Hence, it is expected that gravitational acceleration
r̈j(t) in the classical world will be influenced by the diffusion wave packets contained in
Ψχ(t). We will use the usual method to calculate the gravitational acceleration. For the
wave packet of the jth particle in Σj(t), we consider an infinitesimal displacement ∆~rj
of this wave packet with a group acceleration~aj(t) during an infinitesimal time interval
∆t. Based on the fact that the increase of the average kinetic energy is the decrease of the
gravitational interaction energy, we can get the expression of the group acceleration~aj(t).
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First we consider the simplest case: suppose the universal wave function consists of a
single classical world and there are no diffusion parts, i.e., Ψu(t) = Ψc(t) = Ψχ(t). In this
situation, when two particles are separated by macroscopic distance, we have

ρl,n(~rl ,~rn, t) = ρl(~rl , t)ρn(~rn, t). (10)

Substituting into Equation (9), we get

Eg(t) ≈ −
1
2 ∑

i 6=j
G

mimj

|~ri(t)−~rj(t)|
. (11)

Now we analyze the gravitational force for the jth particle. We assume that during an
infinitesimal time interval ∆t all of the momentum changes for this particle are caused by
gravity. Assuming that the wave packet of this particle moved from~rj(t) to~rj(t+∆t), while
its group velocity changed from ~vj(t) to ~vj(t + ∆t). Then, based on energy conservation,
we have

1
2

mj

(∣∣~vj(t + ∆t)
∣∣2 − ∣∣~vj(t)

∣∣2) = Eg(~rj(t), · · · )− Eg(~rj(t + ∆t), · · · ). (12)

First we consider the x-components vx
j and rx

j , the left hand side of the above equa-
tion becomes:

1
2

mj

(
(vx

j (t + ∆t))2 − (vx
j (t))

2
)
= mjvx

j

dvx
j

dt
∆t. (13)

Whereas the right hand side is:

Eg(~rj(t), · · · )− Eg(~rj(t + ∆t), · · · ) = −
∂Eg

∂rx
j

∆rx
j , (14)

where ∆rx
j = rx

j (t + ∆t)− rx
j (t). Since vx

j = ∆rx
j /∆t, we have the group acceleration

ax
j =

dvx
j

dt
= − 1

mj

∂Eg

∂rx
j

. (15)

Using Equation (11), we obtain the following acceleration formula in the classical
approximation:

~aj = ∑
i( 6=j)

G
mi

|~ri(t)−~rj(t)|3
(~ri(t)−~rj(t)). (16)

This is the equation of Newton’s law of universal gravity.
Now we analyze the formal solution (6) given by Everett. In this formal solution, every

Ψκ
c represents a classical world and there are still no diffusion terms, i.e., if we perform

the domain extension for any Ψκ
c (t), we have Ψκ

c (t) = Ψκ
χ(t). The two-particle joint wave

packet distribution function of Ψu(t) becomes:

ρl,n(~rl ,~rn, t) =
P(t)

∑
κ=1
|ακ(t)|2ρκ

l (~rl , t)ρκ
n(~rn, t), (17)

where normalized ρκ
l (~rl , t) represents the single-particle wave packet distribution func-

tion for the lth particle in the κth classical world within region Σκ
j (t). Thus, the total

gravitational interaction energy of Ψu(t) is

Eg(t) ≈ −
1
2

P(t)

∑
κ=1
|ακ(t)|2

(
∑
i 6=j

G
mimj

|~rκ
i (t)−~rκ

j (t)|

)
. (18)
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Note that there are no gravitational interactions between different classical worlds
in this case, because there is no gravitational interaction energy between different classi-
cal worlds.

For this universal wave function, we can obtain the gravitational acceleration formula
for the jth particle in the κth classical world from the following relation:

1
2
|ακ(t)|2mj

(∣∣∣~vκ
j (t + ∆t)

∣∣∣2 − ∣∣∣~vκ
j (t)

∣∣∣2) = Eg(~rκ
j (t), · · · )− Eg(~rκ

j (t + ∆t), · · · ). (19)

|ακ(t)|2 on the left and right hand sides cancel out, so we have

~aκ
j = ∑

i( 6=j)
G

mi
|~rκ

i (t)−~rκ
j (t)|3

(~rκ
i (t)−~rκ

j (t)). (20)

This implies each classical world evolves independently according to Newton’s law
of universal gravity and such evolutions do not depend on |ακ(t)|2. Based on Everett’s
universal wave function (6), at macroscopic scale, we can not notice different gravitational
effect, compared with Newton’s universal law of gravity.

For the following uncorrelated diffusion universal wave function,

Ψu(t) =
P(t)

∑
κ=1

ακ(t)Ψκ
c (~r1, · · · ,~rN , t) + β(t)

N

∏
j=1

φd
j (~rj, t), (21)

similar calculations show that the gravitational accelerations are still given by Equation (20),
since the gravitational interaction between each classical world and β(t)∏N

j=1 φd
j (~rj, t) is 0.

In the above expression, we assume that all φd
j are diffused in the entire universe.

In Everett’s universal wave function given by Equation (6), for each Ψκ
c (~r1, · · · ,~rN , t),

the domain is highly localized. We have emphasized previously that this is a very special-
ized universal wave function. When diffusion wave packets are fully taken into account,
we should use Ψχ(t) to calculate the gravitational acceleration at t. For a given Ψχ(t), based
on the formula given in this article, for two particles separated by macroscopic distance,
we have the two particle joint wave packet distribution function given by Equation (8).

For the case of a single classical world, we may always decompose Ψu(t) as

Ψu(t) = αχ(t)Ψχ(t) + β(t)Ψr(t). (22)

Here the term β(t)Ψr(t) is due to the general consideration that Ψu(t) 6= Ψχ(t). For
any Ψu and Ψχ, we can always make this decomposition. We may assume further that

< Ψχ(t)|Ψr(t) >= 0. (23)

It is clear that the superposition principle of quantum mechanics can always make the
appropriate decomposition (22) to satisfy this request.

The total gravitational interaction energy of Ψu(t) is therefore:

Eg(t) ≈ |αχ(t)|2Eχ
g (t) + |β(t)|2Er

g(t). (24)

Here Eχ
g (t) is the total gravitational interaction energy of Ψχ(t), while Er

g(t) is the
total gravitational interaction energy of Ψr(t). It is clear that the term < Ψχ(t)|Ĥg|Ψr(t) >
is negligible. The above expression of Eg(t) is the motivation of the introduction of the
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χ function Ψχ to calculate the gravitational effect in the universal wave function. From
Equations (8) and (9), we get

Eχ
g (t) ≈−

1
2 ∑

i 6=j
Gγi(t)γj(t)

mimj

|~ri(t)−~rj(t)|

−∑
i 6=j

Gγi(t)ζ j(t)
∫

d3~rj
mimjρ

d
j (~rj, t)

|~ri(t)−~rj|

− 1
2 ∑

i 6=j
Gζi(t)ζ j(t)

∫
d3~ri

∫
d3~rj

miρ
d
i (~ri, t)mjρ

d
j (~rj, t)

|~ri −~rj|
,

(25)

where~rj(t) denotes the classical position of the jth particle within region Σj(t), whereas~rj
denotes position variable to be integrated.

Now we consider the gravitational force for the wave packet of the jth particle in
the classical world, i.e., in the region Σj(t). Again, we assume during infinitesimal time
interval ∆t, all momentum changes for this wave packet are caused by gravity, we have

γj(t)
1
2

mj

(∣∣~vj(t + ∆t)
∣∣2 − ∣∣~vj(t)

∣∣2) = Eχ
g (~rj(t), · · · )− Eχ

g (~rj(t + ∆t), · · · ). (26)

For vx
j and rx

j , we have

γj(t)
1
2

mj

(
(vx

j (t + ∆t))2 − (vx
j (t))

2
)
= γj(t)mjvx

j

dvx
j

dt
∆t, (27)

and

Eχ
g (~rj(t), · · · )− Eχ

g (~rj(t + ∆t), · · · ) = −
∂Eχ

g

∂rx
j

∆rx
j . (28)

In this case, we have

ax
j =

dvx
j

dt
= − 1

γj(t)mj

∂Eχ
g

∂rx
j

. (29)

Therefore,

~aj = ∑
i( 6=j)

G
γi(t)mi

|~ri(t)−~rj(t)|3
(~ri(t)−~rj(t)) + ∑

i( 6=j)
G
∫

d3~ri
ζi(t)miρ

d
i (~ri, t)

|~ri −~rj(t)|3
(~ri −~rj(t)). (30)

It is worth pointing out that the value of γj(t) does not appear in the gravitational
acceleration~aj(t) of the jth particle. Hence, the fluctuation of the gravitational acceleration
of a particle is due to the fluctuations of γl(t) of other particles.

We assume that the probability distribution of the value of γi(t) at different times is
the same for every particle. Hence, we may use the time average values γ and ζ to replace
γi(t) and ζi(t) in the above equation. γ and ζ can also be regarded as the averages for
relevant particles. When gravitational effects due to the fluctuations of γi(t) and ζi(t) are
omitted, we have

~aj = ∑
i( 6=j)

GN
mi

|~ri(t)−~rj(t)|3
(~ri(t)−~rj(t)) + ∑

i( 6=j)
GN

∫
d3~ri

dmiρ
d
i (~ri, t)

|~ri −~rj(t)|3
(~ri −~rj(t))

(31)

where the second term denotes the gravitational acceleration due to diffusion wave packets
in Ψχ(t). In the above equation,

GN = Gγ =
G

(d + 1)
. (32)
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The parameter d = ζ/γ characterizes the gravitational interaction due to the diffusion
wave packets in Ψχ(t).

For particles in the classical world, from a gravitational viewpoint, the second term in
Equation (31) suggests that the equivalent mass of the diffusion part is thus Md = dMu,
where Mu = ∑j mj is the sum of the actual masses of all the N particles in the universe.
Since the only way in which the diffusion wave packets can affect the classical world is
through gravitational interactions, we call Md "fictitious" gravitational matter.

When we observe gravitational effects in a small region, the contribution from dif-
fusion part can be neglected and the gravitational constant we obtain through such ob-
servation is GN , which we call Newtonian gravitational constant. On the other hand, the
constant G is a constant related to elementary particles and is different from GN , we call G
the gravitational constant of elementary particles. After we obtain GN , we can derive G
through G = (d + 1)GN .

6. Applications to the Gravitational Effect of Dark Matter

The mathematical model of Ψχ provides a way to determine the size of d. Therefore,
d becomes a parameter originating from many-body evolutions of quantum mechanics,
like lattice constant of a crystal. We cannot derive d from first principles, but we can
experimentally measure the size of d.

The method for measuring d is as follows: first based on Equation (31), we can omit
the second term and measure the value of GN from earth-based small macroscopic scale
experiments. Next we analyze the motion of objects on a larger scale, such as the motion of
objects on the edge of galaxy. Therefore we can obtain d and Md from the difference between
the observed~aj and the theoretical result of the first term in Equation (31). Fortunately,
the remarkable advances on the astronomical observations make this scheme completely
feasible. From the value of GN and d by observations, we get the true gravitational constant
G for elementary particles.

As we all know, gravitational effects for objects on the edge of galaxy are not deter-
mined by the first term in Equation (31) alone [6]. In fact,~aj calculated from the first term
in Equation (31) is several times smaller than the observed~aj. Up to now, people still could
not explain this difference and they hypothesized so called dark matter. Now we naturally
discover the possibility that, the “gravitational matter” discussed here can be fit into the
dark matter model.

If we define the classical world mass density distribution function by

ρm(~r, t) = ∑
j

mjρ
c
j (~r, t) (33)

and gravitational matter mass density distribution function by

ρd(~r, t) = d ∑
j

mjρ
d
j (~r, t), (34)

then based on all the observational and theoretical researches of dark matter [6], we can
reasonably hypothesize that ρd(~r, t) may have large scale structure. In addition, it seems
that we may regard ρd(~r, t)/d as the mass density distribution of Ψu(t). This means that
from the observed “dark matter” distribution ρd(~r, t) and the numerical simulation of
the evolution of the universal wave function, we have the chance to know the initial
wave function of the universe, which plays a special role in the initial state [7] of inflation
theory [8]. Of course, to give an accurate deduction of the initial condition at the inflation
stage, we need to improve our theory to the relativistic version of quantum gravity, such
as the possible application of the Wheeler–DeWitt equation [9]. It is worth pointing out
that the universe wave function considered in this paper is different from that of the wave
function of the universe in [10], where the formal solution of the Wheeler–DeWitt equation
is considered to reveal quantum gravity. In our work, however, we do not consider the
quantization of gravity; what we consider is the gravitational effect due to the diffusion



Symmetry 2021, 13, 193 12 of 17

wave packets after the quantum origin of our universe. Hence, in Equation (31), the
right hand side does not contain a term comprising h̄ term, while we expect that further
improvement by including the quantization of gravity will lead to a correction of h̄ term.

From the present observational results, we have d ≈ 5.5 [6], this means the diffusion
part can be rather significant. Under non-relativistic framework, the total particle number
N of the universe is conserved. Thus in a given classical world, no matter how we count the
number of total particles with a detector, the detectable total particle number is always N.
Therefore, for observers in the classical world, the total mass of the universe they obtain by
counting the particle number is always M = ∑j mj. Hence, the observer should not think
that the gravitational matter are some extra particles, although the observer will notice
its gravitational effect. It is obvious that our conclusions still hold when we consider the
creation and annihilation of particles in the classical world. Because we use non-relativistic
Schrödinger equation in this work to consider the classical approximation of gravitational
effect, the application of Equation (31) should be confined to the scale of galaxies, which is
sufficient for the present application. For larger scale of the universe, we should improve
our model to consider the curved spacetime of general relativity.

The fact that there are no unitary relations between Ψχ at different times is not
surprising. If we consider classical world branching, there are no unitary relations between
Ψc at different times even if there are no diffusion wave packets. Suppose we do not
consider diffusion wave packets, then the only requirement for the existence of classical
world at a given time t is < Ψc(t)|Û(t, t0)|Ψu(t0) > 6= 0, here Ψu(t0) is the universal wave
function at an initial time t0. For Ψχ(t) this is similar, it is hard for us to answer why at time
t we can construct such Ψχ(t) from Ψc(t) and Ψu(t) and how to get the exact Ψχ(t), since
we do not know the exact form of Ψu(t) at time t in the first place. However, so long as
< Ψχ(t)|Û(t, t0)|Ψu(t0) > 6= 0 is satisfied, in principle we can regard Ψχ(t) as a function of
some significance. These analysis show that the sensible question to ask for future studies
is what kind of initial universal wave function can cause Ψχ(t) to be unorthogonal to Ψu(t),
where Ψχ(t) contains Ψc(t).

In the formal solution given by Everett [3], there are no longer any diffusion wave
packets after some phase transitions occurred in the early universe in which particle wave
packets are completely spread out. From the point of view of unitary evolutions, there
is no such so called wave packet collapse, so the more natural hypothesis is that after
phase transitions occurred there are mixtures of diffusion parts and correlated localized
distribution of wave packets. The parameter d reflects the ratio of such mixtures. This
inspires us that the process by which the universe formed its structures is a kind of phase
transition in which diffusion and localized distributions coexist. After the phase transition
takes place, during long periods of evolution of the universe the information about d is
retained and it has two general characteristics: (i) since different classical worlds are formed
from the same universal wave function, we expect that the values of d of Ψχ corresponding
to other classical worlds should be about the same as our world; (ii) suppose at a time t1
we have d(t1) 6= 0, then we think at a later time t2 we have d(t2) = d(t1). Of course, this is
not a proof, but an assumption of the universal value of the parameter d. It is similar to the
formation of crystal that, the lattice constant of the crystal is always the same, although the
initial condition to form the crystal can be significantly different, and we can not prove it
by a calculation of the real evolutions.

7. An Improved Schrödinger Equation for Classical World Wave Function

The central purpose of the present work is to calculate evolutions of the classical
information {Σ1(t), · · · , ΣN(t)} from unitary evolutions of Ψu(t), because only the clas-
sical information can be recorded by observers. The ideal way for this is to first solve
the evolution of Ψu(t), and search for the classical world at different times from Ψu(t).
From the classical world wave function Ψc(t) obtained from Ψu(t), we can know the
evolution of the classical information {Σ1(t), · · · , ΣN(t)}. In the case of Ψc = Ψχ = Ψu,
we may get the classical approximation of the gravitational acceleration without using
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the method in this work. In the case of Ψc 6= Ψχ, Ψχ 6= Ψu and Ψχ(t1) 6= Û(t1, t)Ψχ(t),
however, special method should be used to consider the evolution of classical information
{Σ1(t), · · · , ΣN(t)}. Among these three kinds of wave functions, only the universal wave
function satisfies unitary evolutions of quantum mechanics. Ψc and Ψχ are only functions
derived from Ψu. The final result we get should focus on Ψc and its corresponding classical
information. It is nonsense to calculate the long time unitary evolution of Ψχ.

In Figure 2 we summarize relationships between these three kinds of functions. There
are unitary evolutions between the universal wave function at different times, we indicated
this in the top of the figure for the set of universal wave functions {Ψu(t0), Ψu(t1), Ψu(t2)}
at times {t0, t1, t2}. From the universal wave function we can always search for classical
worlds, here {Cκ(t0), Cκ(t1), Cκ(t2)} represents the set of classical information related by
temporal causal relationships, while {Ψκ

c (t0), Ψκ
c (t1), Ψκ

c (t2)} represents the set of classical
world wave functions corresponding to {Cκ(t0), Cκ(t1), Cκ(t2)}. The so called classical
theorem (here denoted by Ĉ) represents physical laws to predict how to evolve from Cκ(t0)
to Cκ(t1) and then to Cκ(t2). Our analysis shows that, if we consider gravitational effects,
then in general we cannot deduce good classical theorem from the unitary evolution of
Ψκ

c , since the best way is to derive {Cκ(t0), Cκ(t1), Cκ(t2)} directly from the set of universal
wave functions {Ψu(t0), Ψu(t1), Ψu(t2)}. However, that is not a realistic approach so we
introduced the set of functions {Ψχ(t0), Ψχ(t1), Ψχ(t2)} to improve the classical theorem
by considering more carefully the gravitational interaction, compared with the classical
theorem obtained from the unitary evolution of Ψκ

c .

Figure 2. The relation between Ψu, Ψc, Ψχ and classical information.

Observe that if we do not consider gravity, the solution of Ψκ
c from Schrödinger

equation is a natural mathematical method to describe evolutions of the classical world, we
only need to take proper account of classical world branching. Thus, we naturally consider
the question of whether corrections from the χ function would result in an improved
Schrödinger equation. We define a new function Ψκ

o and let Ψκ
o(t0) = Ψκ

c (t0). Then we
think the following modified Schrödinger equation for Ψκ

o(t) reflects evolutions of the
classical world in a reasonably accurate manner:

ih̄
∂Ψκ

o
∂t

=

(
Ĥ0 + Ĥesw + ĤGN − GN ∑

j
mj

∫
d3~x

ρd(~x, t)
|~rj −~x|

)
Ψκ

o . (35)
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Here

ĤGN = −1
2

GN

N

∑
l 6=n=1

mlmn

|~rl −~rn|
, (36)

while the last term on the right hand side of Equation (35) should be determined by
astronomical observations.

It is easy to show that the classical theorem derived from the above Schrödinger
equation is the same as the classical theorem derived from combined consideration of
Ψc and Ψχ. We call Ψκ

o gravity-rectified classical world wave function. GN can also be
regarded as a gravitational constant resulting from rectifying of gravitational constant
of elementary particles. In the above equivalent Schrödinger equation, we do not have
to restrict domains of variables~rj in Ψκ

o . The merit of the above improved Schrödinger
equation lies in that almost all the physical phenomenon are fully considered, such as the
classical world branching, all gravitational effects including the gravitational force due to
diffusion wave packets, and quantum process in our laboratory. In a sense, we may regard
this equation as the final result of our work.

So far we have introduced four kinds of functions: the universal wave function Ψu(t),
the classical world wave function Ψc(t), gravity-rectified classical world wave function
Ψo(t) and χ function Ψχ(t). Among them only the universal wave function is ultimate
realistic entity and satisfies unitary evolutions of quantum mechanics. Ψc(t) is also realistic
in some sense, since we can learn classical information of each particle in the classical
world from Ψc(t). In that sense Ψo(t) is similar to Ψc(t), the difference being that when
we solve Schrödinger equation restricted in the classical world domain ∪Σj(t), Ψo(t) gives
better prediction of the evolution of the classical information than Ψc(t). From the point of
view of perturbations, this is because Ψo(t) takes better account of influences the universal
wave function has on evolutions of the classical world. Without gravitational interaction,
Ψo(t) and Ψc(t) are the same, and it is not necessary to consider Ψχ(t) even when we still
have Ψχ 6= Ψc and Ψχ 6= Ψu. As for Ψχ(t), in some sense it is just a function without any
realistic value, which is why we do not call it wave function; it is just a helper function to
deal with gravitational effects using perturbation method and the diffusion part in Ψχ(t)
can change almost instantly. Hence, the classical world can not have memories of the
information of {ζ j(t), φj(~rj, t)} for each particle.

Based on the above analysis, we see that evolutions of ρd(~r, t) in Equation (35) may
not be calculated from unitary evolutions of Ψχ(t). ρd(~r, t) may only be calculated from
evolutions of the universal wave function. In practice, we need to observe the distribu-
tion of ρd(~r, t) through gravitational effects. Considering that Ψχ(t) needs to be recon-
structed at every instant, what we observe is actually the temporal and spatial average of
ρd(~r, t), namely

ρ̄d(~r, t) =

∫ t+∆t/2
t−∆t/2 dt

∫
Ω d3~yρd(~y, t)

VΩ∆t
, (37)

where Ω in
∫

Ω denotes the sphere with center~r, VΩ denotes volume of the sphere.
Thus the form of Equation (35) can be improved as:

ih̄
∂Ψκ

o(t)
∂t

=

(
Ĥ0 + Ĥesw + ĤGN − GN ∑

j
mj

∫
d3~x

ρ̄d(~x, t)
|~rj −~x|

)
Ψκ

o(t)

Ψu(t) = Û(t, t0)Ψu(t0)

{Ψκ
o(t), Ψu(t)} → ρ̄d(~x, t)

(38)

In the above equation the evolution of ρ̄d(~x, t) over time is not determined by unitary
evolutions of Ψχ(t) (we have explained that Ψχ(t) at different times cannot be related by
unitary evolutions, not even short duration of time), but it is caused by the fact that the
classical world with quantum correlation between nearby particles is contained within the
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universal wave function with diffusion wave packets all over the places. It seems plausible
to assume that ρ̄d(~x, t)/d is the mass density distribution calculated from Ψu(t).

8. Conclusions

As a summary, we discover that the universal wave function can be far richer than
Everett’s many-world universal wave function. By analyzing the multi-body Schrödinger
equation and structure of the universal wave function, we found that the universal wave
function can have special and observable gravitational effects, and that makes the universal
wave function a realistic entity. Everett’s formal solution is only the special model of our
theory with d = 0. In this case, Ψc = Ψχ = Ψu for a single classical world. As a comparison,
most studies based on Everett’s idea are about the mechanism of classical world branching
and decoherence based on the formal solution [3], rather than the gravitational effect.

Here we wish to emphasize that even though we provided a plausible solution to
explain the gravitational effects of dark matter, our model does not exclude the possibility of
existence of new elementary particles [6] which also create extra gravitational contributions,
such as axion model [11–13]. Based on quantum origin of the universe, we believe that
the χ function presented in this article are inevitable consequences of evolutions of the
universe. Once those large scale diffusion wave packets and their gravitational effects in
the universal wave function are verified, the existence of many worlds becomes a universal
truth. Our researches provide new directions for future astronomical observation of the
universe; that is, obtaining wave packets distribution information in the universal wave
function through the observation of the gravitational effect of ρd(~r, t).

Finally, we discuss several possible falsifiable predictions based on our theory.

1. In the application of our theory to dark matter, we do not consider deviations of
gravitational force due to fluctuations of γj and ζ j, and different γj and ζ j for different
particles. Because the gravitational constant is very small, all observed gravitational
effects are for systems consisting of a huge number of particles. In this case, it is
extremely hard to notice differences in gravitational effects caused by fluctuations of
γj and ζ j. It would be interesting to notice that after many years of the earth-based
measurements [14] of Newtonian gravitational constant, there is an unexplained
uncertainty in the measurement result of G [14]. One of the relevant experimental
groups is asking for possible new physical principle [14] to explain the uncertainty.
Whether this kind of fluctuations of γj and ζ j has chances to interpret the uncertainty
of Newtonian gravitational constant is a question worthwhile of researching in the
future. In future work, we will consider dedicated experimental scheme to detect this
fluctuating gravitational effect, which has the chance to reveal the gravitational force
due to diffusion wave packets, aside from astronomical observations. If the unex-
plained uncertainty in the earth-based measurements [14] of Newtonian gravitational
constant can be found to have relevance to the fluctuation of γj and ζ j, it would be a
strong support to our theory.

2. In future work, we may consider the numerical calculations of Equation (38) to
simulate the large scale structure of our universe, so that to give a reliable test of our
theory. Of course, this needs the adjustment of the initial condition of the universal
wave function, and has the chance to provides further clue for the initial condition of
the cosmic inflation.

3. Our work not only shows that we need to change our understanding of gravitational
effects in the classical world, but it also reveals that the Newtonian gravitational
constant can be very different from the gravitational constant between elementary
particles. Therefore, we also need to redefine magnitude of the gravitational constant
between elementary particles, which provides the chance to test our theory in future.
From the new gravitational constant G = (d + 1)GN , we should reconsider the grand
unified theory and may provide indirect method to test our theory.

4. We may consider an indirect test of our theory by simulating the model with ultracold
atomic gases [15]. First we prepare a completely isolated quantum gas in which
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all particle wave packets are diffusion wave packets. At the beginning we can even
assume that there are no interactions between particles. Then, we artificially adjust the
interaction energy to make phase transitions in this quantum gas. We use appropriate
interaction energy to control the ratio of diffusion and localized parts after phase tran-
sitions took place. Under this condition, unitary evolutions can make the coexistence
of different Ψχ(t) and Ψc(t) with definite structures. With rapid developments of
techniques for ultra-cold atoms gas such as Feshbach resonance [15,16] to control the
interaction between atoms, we believe in the future there are prospects to simulate
evolutions of the universe revealed in this article.

When the temperature is extremely low, we may prepare the wave packets of ultra
cold atoms gas with long range interactions contained within a potential [15] diffuse over a
macroscopic distance. We can superpose a periodic potential on this system and position
all the atoms at bottom of the periodic potential [15,17]. Now we can employ interactions
such as Feshbach resonance [15,16] to form some correlated definite structures (such as
artificial crystal). Under this condition, the crystal structure is correlated with the diffusion
parts. The interaction energy for this system becomes E = Ec + Ed + Ecd, where Ecd is the
interaction energy between correlated crystal and diffusion part, Ec is internal interaction
energy for the crystal and Ed stands for internal interaction energy of diffusion parts.
Experimentally, people can measure the total interaction energy to determine if Ecd really
exists. Therefore this experimental scheme provides a way to simulate classical world
wave functions presented in this article and the formation of classical world structures.
Finally, even if we abandon motivations to simulate the universe, this problem per se is
worthwhile of researching in the field of quantum multi-body manipulations.

Note added: After the submission of our manuscript, the referee noticed a rele-
vant paper [18] which argues that the solution of the Schrödinger equation including the
gravitational potential may provide the possibility to explain dark matter. However, the
mechanism to explain dark matter is completely different from our manuscript. In [18], the
single-particle Schrödinger equation is used to explain the dark matter gravitational effect;
while in our work the diffusion wave packet for the many-body universe wave function is
shown to explain the gravitational effect of dark matter.

Author Contributions: Conceptualization, H.X. and Y.X.; methodology, H.X. and Y.X.; formal analy-
sis, H.X. and Y.X.; investigation, H.X. and Y.X.; writing—original draft preparation, H.X. and Y.X.;
writing—review and editing, H.X. and Y.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
grants number 11334001, and 11175246.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to X. S. Chen and X. Q. Lin for suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bardeen. J.; Cooper, L.N.; Schrieffer, J.R. Microscopic Theory of Superconductivity. Phys. Rev. 1957, 106, 162–164. [CrossRef]
2. Laughlin, R.B. Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Phys.

Rev. Lett. 1983, 50, 1395–1398. [CrossRef]
3. Everett, H. Relative state formulation of quantum mechanics. Rev. Mod. Phys. 1957, 29, 454–462. [CrossRef]
4. Weinberg, S. Cosmology; Oxford (New York): New York, NY, USA, 2008.
5. Bar, D. The Feynman Path Integrals and Everett’s Universal Wave Function. Found. Phys. 1998, 28, 1383–1391. [CrossRef]
6. Bertone, G.; Hooper, D.; Silk, J. Particle Dark Matter: Evidence, Candidates and Constraints. Phys. Rep. 2005, 405, 279. [CrossRef]
7. Gorobey, N.N.; Lukyanenko, A.S. On the initial state of the Universe in quantum cosmology. St. Petersburg Polytech. Univ. J. Phys.

Math. 2015, 1, 207–211. [CrossRef]

http://doi.org/10.1103/PhysRev.106.162
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/RevModPhys.29.454
http://dx.doi.org/10.1023/A:1018883028094
http://dx.doi.org/10.1016/j.physrep.2004.08.031
http://dx.doi.org/10.1016/j.spjpm.2015.04.003


Symmetry 2021, 13, 193 17 of 17

8. Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356.
[CrossRef]

9. DeWitt, B. Quantum theory of gravity. I. The canonical theory. Phys. Rev. 1967, 160, 1113–1148. [CrossRef]
10. Hartle, J.; Hawking, S. Wavefunction of the universe. Phys. Rev. D 1983, 28, 2960–2975. [CrossRef]
11. Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Pseudoparticles. Phys. Rev. Lett. 1977, 38, 1440. [CrossRef]
12. Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223. [CrossRef]
13. Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279. [CrossRef]
14. Xue, C.; Liu, J.P.; Li, Q.; Wu, J.F.; Yang, S.Q.; Liu, Q.; Shao, C.G.; Tu, L.C.; Hu, Z.K.; Luo, J. Precision Measurement of the

Newtonian Gravitational Constant. Natl. Sci. Rev. 2020, 7, nwaa165. [CrossRef]
15. Pitaevskii, L.; Stringari, S. Bose-Einstein Condensation and Superfluidity; Oxford University: Oxford, UK, 2016.
16. Xiong, H.W.; Liu, S.J.; Zhang, W.P.; Zhan, M.S. Ultracold two-component fermionic gases with a magnetic field gradient near a

Feshbach resonance. Phys. Rev. Lett. 2005, 95, 120401. [CrossRef] [PubMed]
17. Wang, B.; Zhu, Q.; Zhou, H.L.; Xiong, D.Z.; Xiong, H.W.; Lu, B.L. Measurement of phase fluctuations of Bose-Einstein condensates

in an optical lattice. Phys. Rev. A 2012, 86, 053609. [CrossRef]
18. Ernest, A.D. A quantum approach to dark matter. arXiv 2004, arXiv:0406139.

http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1103/PhysRev.160.1113
http://dx.doi.org/10.1103/PhysRevD.28.2960
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1093/nsr/nwaa165
http://dx.doi.org/10.1103/PhysRevLett.95.120401
http://www.ncbi.nlm.nih.gov/pubmed/16197053
http://dx.doi.org/10.1103/PhysRevA.86.053609

	Introduction
	The Unitary Evolutions of Universal Wave Function
	Classical World Wave Function, Classical Information and the Universal Wave  Function
	An Analytical Approach to the Universal Wave Function
	Gravitational Acceleration of Particle Wave Packets in the Classical World
	Applications to the Gravitational Effect of Dark Matter
	An Improved Schrödinger Equation for Classical World Wave Function
	Conclusions
	References

