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Abstract: (1) Background: The literature discusses the inverse Maxwell distribution theoretically
without application. Control charting is promising, but needs development for inverse Maxwell
processes. (2) Methods: Thus, we develop the VIM control chart for monitoring the inverse Maxwell
scale parameter and studied its statistical properties. The chart’s performance is evaluated using
power curves and run length properties. (3) Results: Further, we use simulated data to compare the
shift detection capability of our chart with Weibull, gamma, and lognormal charts. (4) Conclusion:
The analysis demonstrates our chart’s efficiency for monitoring skewed processes. Finally, we apply
our chart for monitoring real world lifetimes of car brake pads.

Keywords: average run length; brake pad; inverse Maxwell distribution; lognormal s-chart; statistical
process control

1. Introduction

In real-life, non-normal datasets are generated from various applied fields such as
engineering, agricultural, and industrial sectors [1]. There are different but usual types
of distributions available in statistics to model these non-normal datasets, but in real life,
different kinds of situations arise where these types of popular distributions are not suitable.
For this, we have to use other statistical distributions, including the inverse of usual distri-
butions to fit the data. As a candidate of non-normal distribution, [2] proposed Maxwell
distribution in life time modelling and studied its important distributional properties. This
distribution is also used in chemistry, physics, as well as statistical mechanics [3–5]. More-
over, discrete Maxwell and Mixture Maxwell distributions are members of the Maxwell
family of densities [6–8]. According to [9], the inverse of a distribution is less parsimo-
nious than the real distribution. Hence, [10] derived inverse Maxwell distribution from
the Maxwell distribution for enhancing its application fields and studied different statis-
tical properties including moments, survival function, and parameter estimation. Later,
they provided general and Bayesian estimators of a size-biased inverse Maxwell scale
parameter [11,12]. Similarly, [10,13] studied the Bayes estimator of inverse Maxwell scale
parameter by considering weighted quadratic loss function. However, none of the research
mentioned offered any application of this distribution. The unavailability of some impor-
tant statistical properties of this distribution as well as absence of its application motivate
us to conduct the current study.

To determine whether or not a process is in control, a method called Statistical Process
Control (SPC) conceived in 1920 by Walter A. Shewhart is applied [14]. SPC has various
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tools for evaluating a process and control chart is one of them [15]. Within these tools,
control chart is more popular because it is a sophisticated technique to monitor variation
or shift in a manufacturing process. It is extensively employed to detect the stability of
process parameters and determine process capabilities in the agricultural, health, and
industrial sectors [16]. The conventional control charts include the memory-less control
charts and memory type charts. The Shewhart type control chart is usually considered as a
memory-less control chart and is mostly used to detect transient cause variations which
indicate large shifts in process parameters. It is based on the last sample information of any
scheme, while the memory type charts accumulate total information in the entire series of
sample observations to identify persistent cause variations. For a scheme based on either
normal or non-normal distribution, the main parameters of the Shewhart chart are lower
control limit (LCL), central line (CL), and upper control limit (UCL). The popularly applied
kinds of memory control charts include exponentially weighted moving average (EWMA)
and cumulative sum (CUSUM) control charts designed by Roberts [17] and Page [18],
respectively. Most of these methods originate from large sample theory, which relies on
asymptotic normality.

However, especially when sample sizes are not large, distribution specific control
charts are more popular, reliable, and effective than the robust control charts for monitoring
skewed processes among the scholars. Due to this, Hossain et al. [19,20] developed control
charts named V chart and Maxwell CUSUM chart to monitor a Maxwell distribution’s
parameter. Maxwell and Mixture Maxwell Cumulative Quantity control charts are also
available in the literature for mixture Maxwell parameters [8]. Ref. [21] proposed a control
chart for gamma distribution. Refs. [22,23] introduced Shewhart and EWMA type control
charts using Rayleigh distribution for censored samples. Ref. [24] derived a control chart
under lognormal distribution, namely the Lognormal S-chart. They suggested that their
proposed chart outperforms existing charts for monitoring positively skewed process.
However, the inverse Maxwell is another positively skewed non-normal distribution
without any control chart application so far, and has a Galton skewness measure of 0.2578.
(Galton index is a skewness measure that does not utilize the third moment and has a range
of (−1, 1) with 0 signifying symmetry and a positive value indicating a longer right tail).

Ref. [25] studied the survival times for some breast cancer patients and reported that
the survival times follow an inverse Maxwell distribution. The data set in [25] contains
121 patients with abnormal growth of breast cells beyond their usual boundaries. Since
this is the most frequent type of cancer among women, fast detection of cancer cells is
important. Thus, [25] also developed a EWMA chart to ensure fast detection of breast
cancer cells for timely treatment of patients. Although [25] developed a EWMA control
chart for the inverse Maxwell process, we have yet to find in the literature a Shewhart
control chart to monitor the inverse Maxwell parameter where its suitability for monitoring
positively skewed process is discussed.

In this article, we develop a control chart for the inverse Maxwell parameter and study
its distributional properties. The outline of this article is as follows. Section 2.1 contains
the densities of inverse Maxwell distribution as well as some unpublished characteristics
such as entropy and fisher information. In Section 2.2, we develop a theoretical process to
monitor the inverse Maxwell scale parameter, which we name as VIM control chart. We
use various performance measurement tools to inspect the suitability of the VIM control
chart for monitoring the inverse Maxwell parameter in Section 3.1. Then, to illustrate,
the control chart has been implemented with a simulation study and real-life example in
Sections 3.2 and 3.4, respectively. In particular, the comparison of the proposed chart with
existing control charts under simulated data and run length properties are presented in
these sections and Section 3.3. Finally, Section 4 concludes this article and provides some
general recommendations.
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2. Material and Method

To investigate the properties and performance of the proposed chart, we discuss the
method and supporting material for development of the chart here.

2.1. Inverse Maxwell Distribution and Its Properties

Assume a random variable X is continuous and holds the assumptions of Maxwell
distribution with a single scale parameter σ. According to this consideration, the probability
density function (PDF) and cumulative distribution function (CDF) of Maxwell distribution
can respectively be expressed as

f (x, σ) =

√
2
π

σ−3x2e−x2/2σ2
; x > 0 (1)

and F(x) =
2√
π

γ

(
3
2

,
x2

2σ2

)
, (2)

where ∫ u

0
xv−1e−µxdx = µ−vγ(v, µu). (3)

As in [10], if we consider R = X−1 where X is a Maxwell random variable, then the
generated random variable R can be declared as an inverse Maxwell random variable.
By adopting inverse transformation, we can derive the PDF of this distribution from
Maxwell distribution with scale parameter σ as

f (r, σ) =

√
2
π

σ−3r−4e−
1

2r2σ2 ; r > 0. (4)

Note that [26] uses another version of the inverse Maxwell distribution. The version
in [26] can be obtained from this version by applying the transformation X =

√
2σ√
θ

R. From
(4) above, the CDF of the inverse Maxwell distribution can be obtained as

F(r) =
2√
π

[
1− γ

(
3
2

,
1

2r2σ2

)]
; r > 0. (5)

Note that the integration of Equation (4) over the entire range is one. That is,∫ ∞
0 f (r, σ) = 1. Since Equation (4) is simultaneously nonnegative valued, it is verified

as a PDF. From Figures 1 and 2, we can state that PDF and CDF of the inverse Maxwell
distribution are, respectively, positively skewed and monotonically increasing.

From the literature, several properties of inverse Maxwell distribution have been
studied, but some important properties like entropy and Fisher information have yet to
be provided. Moreover, as can be found in later application sections of this paper, it is
important to discuss raw moments, as they provide the basis for theoretical development
of control charts. So, in Appendix A, these properties are provided.

2.2. Derivation of the VIM Control Chart

Shewhart control chart is one sophisticated tool to detect the variation of scale pa-
rameter σ in process monitoring. Although the Shewhart control chart is originally used
to monitor normally distributed process, we propose a new control chart for evaluating
non-normally distributed processes. In this study, the inverse Maxwell distribution is con-
sidered, and the suggested chart is VIM control chart. For this, we will introduce a pivotal
quantity Q and define an estimate of σ2 named VIM. The VIM control chart is developed
under the probability limits and L-sigma limits. In case of probability limits, the lower
probability limits and upper probability limits are denoted by LPL and UPL. Similarly
for the second case, the lower control limit, the center line and the upper control limit are
denoted by LCL, CL, and UCL. To define LPL and UPL or LCL and UCL, we need to
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estimate the α− th quantile or mean and variance of VIM, respectively. The procedure is
described in the following paragraphs.
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From the PDF that is given in Equation (4), we let, p = 1
2r2σ2 , and by simplification we

get r =
√

1
2σ2 p . Then the Jacobian of transformation becomes J = dr

dp = 1

2
√

2σp
3
2

. Now, the

distribution of P can be written as

fP(p) =
2√
π

p
1
2 e−p.
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Finally, we can write this in a more familiar form as follows:

fP(p) =
1

Γ
( 3

2
) p

3
2−1e−p. (6)

The above expressed equation is a gamma density where the shape and scale parame-
ters are 3/2 and 1, respectively. Symbolically, we can write

(
2R2σ2)−1 ∼ gamma

( 3
2 , 1
)
.

Now, according to the additive property of the gamma distribution, we can write
the sum of independent and identically distributed function of inverse Maxwell variates,
∑n

i=1 Pi ∼ gamma
( 3n

2 , 1
)
. In addition, remember the MLE of scale parameter derived

in Equation (A4) in Appendix A and let σ̂2 = VIM. As σ̂2 is estimated from the sample
observations in different time points, the values of σ̂2 are not the same across time, it is
thus as random variable. So, we can write VIM = (3n)−1 ∑n

i=1
1
r2

i
⇒ 3nVIM

2σ2 = ∑n
i=1 Pi.

Finally, we can consider Q as a pivotal quantity, and the PDF of Q follows a gamma
distribution with parameters 3n/2 and 1. Here, Q is a gamma distributed random variable, so its
mean is E[Q] = E

[
3nVIM

2σ2

]
= 3n

2 . Thus, we can write E
[

VIM
σ2

]
= 1 ⇒ E[VIM] = σ2 . Therefore,

E[VIM] = σ2. (7)

Equation (7) states that VIM is an unbiased estimator of σ2. Following the above
procedure, first we find the variance of Q, and from this we can calculate the variance
of VIM.

The variance of Q is Var(Q) = Var
[

3nVIM
2σ2

]
= 3n

2 . This means that
[

3n
2σ4

]
Var(VIM) = 1.

Hence,

Var(VIM) =
2σ4

3n
. (8)

The CDF of the pivotal quantity, Q follows gamma distribution with parameters 3n/2
and 1, i.e., F(q) = 1

Γ( 3n
2 )

γ
( 3n

2 , q
)
, where γ(., .) denote the incomplete gamma function. So,

the α− th quantile can be derived as

VIMα =

(
2σ2

3n

)
F−1(α). (9)

Now, the probability limits for VIM can be written as

LPL : VIM α
2
=

[
2σ2

3n

]
F−1

(α

2

)
, and UPL : VIM1− α

2
=

[
2σ2

3n

]
F−1

(
1− α

2

)
.

These can also be presented as

LPL : VIM α
2
= L1σ2, and UPL : VIM1− α

2
= L2σ2

where L1 =
[ 2

3n
]
F−1( α

2
)

and L2 =
[ 2

3n
]
F−1(1− α

2
)
. In Table 1, we provide several esti-

mated values of these coefficients from the gamma distribution for various combinations
of false alarm rate α and sample size n.
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Table 1. Gamma quantiles for various values of n and α.

Sample Size
(n)

False Alarm Rate α

0.005 0.0027 0.002

L1 L2 L1 L2 L1 L2

1 0.0150 4.7734 0.0099 5.0294 0.0081 5.4221
2 0.0878 3.3749 0.0706 3.6228 0.0635 3.7430
3 0.1611 2.8292 0.1380 3.0101 0.1280 3.0975
4 0.2218 2.5265 0.1959 2.6722 0.1845 2.7425
5 0.2713 2.3300 0.2442 2.4536 0.2322 2.5132
6 0.3124 2.1901 0.2848 2.2987 0.2725 2.3507
7 0.3471 2.0845 0.3194 2.1819 0.3070 2.2284
8 0.3768 2.0014 0.3493 2.0901 0.3369 2.1324
9 0.4027 1.9338 0.3753 2.0156 0.3630 2.0546

10 0.4254 1.8777 0.3984 1.9538 0.3862 1.9901

In process monitoring, we usually face two situations, and these cases are when the
desired parameter σ2 is known or unknown. When dealing with known σ2, the limits will
be defined as

LPL = L1σ2
0 ; CL = σ2

0 and UPL = L2σ2
0 . (10)

We will estimate VIM when σ2 is unknown and use the estimated value for evaluating
the process

LPL = L1V IM; CL = V IM and UPL = L2V IM (11)

where V IM is the estimated value of VIM and is calculated from the estimates of VIM
attained from each of the sample batches over time, and finally taking their average.

Adopting the two moments of VIM found in Equations (7) and (8), L-sigma limits of
VIM are presented as

LCL = E[VIM]− L× SD(VIM)=

[
1− L

√
2

3n

]
σ2 = W1σ2, (12)

CL = E[VIM] = σ2, and (13)

UCL = E[VIM] + L× SD(VIM)=

[
1 + L

√
2

3n

]
σ2 = W2σ2, (14)

where W1 =

[
1− L

√
2

3n

]
and W2 =

[
1 + L

√
2

3n

]
. Table 2 below contains the values of the

L coefficient calculated from the gamma quantiles by maintaining some desired false alarm
rate (α).

Table 2. L coefficients.

Sample Size
(n)

False Alarm Rate (α)

0.005 0.0027 0.002

L L L

2 0.3379 0.2706 0.2432
3 0.8675 0.7394 0.6851
4 1.5369 1.3517 1.2715
5 2.3004 2.0623 1.9579
6 3.1324 2.8450 2.7180
7 4.0168 3.6833 3.5351
8 4.9431 4.5661 4.3979
9 5.9038 5.4856 5.2984
10 6.8934 6.4360 6.2307
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Similar to the probability limit approach, we also observe two circumstances: One
when σ2 is known and the other when σ2 is unknown. When σ2 is known, the limits can be
expressed as

LCL = W1σ2
0 , CL = σ2

0 and UCL = W2σ2
0 .

When we don’t have any previous value of σ2, we will estimate VIM beforehand
(typically in a phase I study) and use it as follows:

LCL = W1V IM, CL = V IM and UCL = W2V IM

Table 3 illustrates the different values of factors W1 and W2. These values are calculated
by using L coefficients, which are expressed in Table 2. By using these values, we can easily
develop a control chart for the inverse Maxwell parameter.

Table 3. Factors for developing a control chart for monitoring inverse Maxwell distributed processes.

Sample Size
(n)

False Alarm Rate (α)

0.005 0.0027 0.002

W1 W2 W1 W2 W1 W2

2 0.8049 1.1951 0.8438 1.1562 0.8596 1.1404
3 0.5911 1.4089 0.6514 1.3486 0.6770 1.3229
4 0.3726 1.6274 0.4482 1.5518 0.4809 1.5191
5 0.1600 1.8400 0.2470 1.7531 0.2851 1.7149
6 0.0000 2.0441 0.0518 1.9483 0.0939 1.9060
7 0.0000 2.2396 0.0000 2.1367 0.0000 2.0909
8 0.0000 2.4270 0.0000 2.3181 0.0000 2.2696
9 0.0000 2.6068 0.0000 2.4930 0.0000 2.4420

10 0.0000 2.7799 0.0000 2.6618 0.0000 2.6087

The main purpose of constructing a control chart is to identify whether or not shift is
available in a process. Therefore, we will test the following hypothesis.

Null hypothesis H0 : σ2 = σ2
0 ; or δ = 1, (i.e., no shift is available in the process)

versus

Alternative hypothesis H1 : σ2 = σ2
1 = δσ2

0 ; or δ 6= 1, (i.e., shift is available in the process.)

Here, δ indicates that the shift is available in the process.

3. Results

This section presents the results of the performance of the proposed VIM control chart
and discusses the results.

3.1. Performance Evaluation

Performance of control charts can be evaluated using various measures: Power curves,
run length curves, or different run length summaries such as average run length (ARL),
standard deviation of run length (SDRL), median run length (MDRL), and percentiles of
run length. The performance of VIM control chart based on these tools is also provided in
the paragraphs below.

The power of a test is defined by the probability of rejecting the null hypothesis (H0)
when an alternative hypothesis (H1) is true. That is, Power = Pr(reject H0|H1). In our
study, power is the probability of correctly rejecting the null hypothesis when the value of
the plotting statistic (VIM) is either less than the lower probability limit or greater than the
upper probability limit. Mathematically, it is expressed as

Power = Pr(VIMα < LPL0|H1) + Pr(VIMα > UPL0|H1)
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which is equivalent to

Power = Pr

(
VIMα <

(
2σ2

0
3n

)
F−1

(α

2

)∣∣∣∣∣δ 6= 1

)
+ Pr

(
VIMα >

(
2σ2

0
3n

)
F−1

(
1− α

2

)∣∣∣∣∣δ 6= 1

)

where F−1(α) = 3nV
2σ2 . Therefore, power of the proposed VIM chart is derived as follows:

Power = 1 +
1

Γ
( 3n

2
)γ

(
3n
2

, δ−1F−1
(α

2

))
− 1

Γ
( 3n

2
)γ

(
3n
2

, δ−1F−1
(

1− α

2

))
. (15)

If δ = 1, that is when the shift is totally absent from the process, then Equation (15)
reduces to the false alarm rate α. Figure 3 depicts the power for various process shift and
sample sizes. When sample size increases, power also increases. So, from the figure, we
can conclude that our proposed chart also works for larger shifts, and as the shift increases,
the power also increases.
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We can also use ARL (Average Run Length) to inspect the performance of the control
chart. The traditional definition of ARL is

ARL =
1

1− β
=

1
power

. (16)

For illustration, we have estimated the ARL by Equation (16) and by Monte Carlo
simulations. The values of ARL are approximately similar for both procedures. Because of
this, we only report the simulated result in Table 4 below. In Appendix B, the computational
code used to estimate these values are provided. The SDRL and MDRL values that are
generated by the Monte-Carlo simulation approach with 10,000 iterations are also given
in the table. We use subgroup sizes of n = 1, 3, 6, and 10, and set the false alarm rate to
α = 0.0027. The performance of the VIM chart is also investigated for various shift sizes of
δ = 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3, and 5.
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Table 4. Average run length (ARL), standard deviation of run length (SDRL), and median run length (MDRL) of VIM chart
for various n at α = 0.0027.

Sample Size (n)

1 3 6 10

δ ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

1.00 370.14 371.53 258 370.55 369.10 258 369.29 368.13 257 369.85 369.25 254
1.25 146.15 145.07 101 96.07 93.96 67 60.40 60.34 42 39.37 39.16 27
1.50 62.37 61.33 44 28.76 28.25 20 14.47 14.01 10 8.16 7.70 6
1.75 32.32 31.69 23 12.73 12.13 9 6.04 5.52 4 3.31 2.69 2
2.00 19.95 19.29 14 7.37 6.79 5 3.36 2.83 2 2.02 1.45 1
2.25 13.44 13.01 9 4.71 4.12 3 2.33 1.77 2 1.48 0.84 1
2.50 9.96 9.41 7 3.47 2.94 3 1.82 1.23 1 1.26 0.58 1
2.75 7.80 7.23 6 2.77 2.17 2 1.52 0.90 1 1.14 0.39 1

3 6.39 5.99 5 2.31 1.72 2 1.35 0.68 1 1.08 0.29 1
5 2.70 2.15 2 1.26 0.57 1 1.03 0.17 1 1.00 0.02 1

In case of an out of control situation, smaller values of ARL than the in-control values
of ARL are desired for any control chart. From Table 4, we observe the following results:

1. The average run length (ARL) is always approximately 370 when the process is in
control, (i.e., δ = 1) for all considered sample sizes.

2. For an in-control process, there is no significant difference between the SDRL values
and the corresponding ARL values for any sample size, n. For example: The ARL and
SDRL values are 370.55 and 369.10, respectively, at n = 3. Similarly, when n = 10, the
ARL and SDRL values are 369.85 and 369.25 respectively.

3. The ARL and SDRL values rapidly decrease as the shift increases in the process scale
parameter. For example: At 50% increment of shift and for n = 3, the ARL and SDRL
are 28.76 and 28.25, respectively. Under the same condition and at 150% increment of
shift, the ARL and SDRL respectively become 3.47 and 2.94. From these values, we
can also conclude that the ARL and SDRL are directly proportional to each other.

4. In both the in-control and out-of-control situations and for any sample size, the
ARL values are greater than the MDRL values. This indicates that the run length
distribution of the VIM chart is positively skewed. For example: When n = 3 and
δ = 1.75, the ARL and MDRL values are 12.73 and 9, respectively. Additionally, for
n = 6 and δ = 2, the ARL and MDRL values are 3.36 and 2, correspondingly.

The various percentiles of RL, obtained by simulation, are also presented in Table 5. The
computational codes are available in Appendix B. To make easy comparisons, RL curves for
the proposed chart have been plotted for various combinations of shifts and sample sizes
in Figure 4. The curves show that the RL distribution of VIM chart is positively skewed,
which supports our above-mentioned analysis, and its CDF is monotonically increasing.
It can be visualized from the figures that the curves are getting lower as shift increases.
Based on all these tools, we can infer that our proposed chart is good enough to evaluate
an inverse Maxwell distributed process.
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Table 5. Percentiles of RL of VIM chart for various n at α = 0.0027.

Sample Size (n)

1 3 6 10

δ P10 P25 P50 P75 P95 P10 P25 P50 P75 P95 P10 P25 P50 P75 P95 P10 P25 P50 P75 P95

1.00 41 106 258 514 1089 41 107 258 513 855 39 105 257 517 841 39 106 254 514 853
1.25 17 42 101 202 433 11 28 67 134 221 7 18 42 84 138 4 12 27 54 91
1.50 7 19 44 86 184 4 9 20 39 65 2 4 10 20 33 1 3 6 11 18
1.75 4 10 23 44 95 2 4 9 17 28 1 2 4 8 13 1 1 2 4 7
2.00 2 6 14 28 58 1 2 5 10 16 1 1 2 4 7 1 1 1 3 4
2.25 2 4 9 18 39 1 2 3 6 10 1 1 2 3 5 1 1 1 2 3
2.50 2 3 7 14 29 1 1 3 5 7 1 1 1 2 3 1 1 1 1 2
2.75 1 3 6 11 23 1 1 2 4 6 1 1 1 2 3 1 1 1 1 2
3.00 1 2 5 8 18 1 1 2 3 5 1 1 1 2 2 1 1 1 1 1
5 1 1 2 3 7 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
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3.2. Simulation Study

In a simulation study, we generate a sample of random data in such a way that imitates
a real problem. Here, we generate data from inverse Maxwell distribution and the proposed
charts by the following algorithm:

• Step 1: Fix the sample size n for each random sample.
• Step 2: Generate a random sample of size n, from T ∼ gamma

(
3/2, 2σ2

0
)
.

• Step 3: By taking the square root of T, we will get a sample from Maxwell random
variable X of size n.

• Step 4: Obtain a sample from the inverse Maxwell random variable R of size n by
setting R = 1/X.

• Step 5: Estimate the plotting statistics VIM.
• Step 6: Repeat the first five steps until the expected amount of sample subgroups

are obtained.
• Step 7: Develop the control limits as proposed in the previous section.
• Step 8: Plot all the values of VIM statistics in contrast to the control limits.

According to the above steps and by using statistical software R 3.4.2, we simu-
lated data from inverse Maxwell distribution and cross checked the resulting data by
Kolmogorov–Smirnov (K–S) test based on [27] to determine whether or not the data set
follows the inverse Maxwell distribution. In this study, we assume σ0 = 100 and generate
144 sample observations. By using the K–S test, we confirmed that the data follow the
inverse Maxwell distribution. With this data confirmation, then we divide the data set into
24 samples each of size 6.

Then, from Table 1 for fixed false alarm rate α = 0.0027 and n = 6, L1 = 0.2848 and
L2 = 2.2987, and known σ0 = 100, the resulting probability limits are

LPL = 2848,CL = 10, 000 and UPL = 22, 987.

The visual representation of a VIM control chart according to these limits is provided
in Figure 5.
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control situations).

In case of L sigma limit, we assume the same false alarm rate, sample size, and σ0, the
values of W1 and W2 are 0.0518 and 1.9483, respectively. So, the L sigma limit becomes

LCL = 518,CL = 10, 000 and UCL = 19, 483.
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In Figures 5 and 6, when the process has no shift, i.e., δ = 1, no violations of the
criteria given in [15] for out of control process can be seen. Therefore, we can state that the
process is in control for both cases.
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To inspect the ability of the chart for identifying out of control signals, we intentionally
put a shift in the process scale parameter after the 18th sample in Figures 5 and 6. So, the
first 18 samples of the process remain in control where δ = 1 while the remaining samples
contain a higher shift, that is δ = 1.85. According to the probability and L sigma limits, we
develop control charts for visualizing the out of control situation by adopting α = 0.0027,
n = 6, and known σ0 = 100. Figures 5 and 6 demonstrate that both control charts detect
two from six out of control signals.

In the literature, we learn that several leading control charts are typically applied to
evaluate skewed process. To verify the necessity and suitability of VIM control chart, we
monitor the data that have been generated from inverse Maxwell distribution by these
leading Weibull, Gamma, and Lognormal control charts. That is, can inverse Maxwell
process be adequately monitored by any of these leading charts? Ref. [28] proposed the
construction procedure of these control charts by weighted variance (WV) and weighted
standard deviation (WSD) method.

Figure 7 describes this control chart, where WM is the plotting statistics using the
Weibull distribution. This X control chart for Weibull distribution suggest that the process
is out of control because one point is out of the control limits, but the data is generated from
an inverse Maxwell distribution in an in-control situation. So, we conclude that Shewhart
control chart based on WV method for Weibull distribution is unable to adequately monitor
an inverse Maxwell process. We also consider the Weibull and Gamma control charts under
both the WV and WSD method, but do not furnish these in this paper to conserve space.
Although both Weibull and Gamma distribution have scale and shape parameters and are
thus theoretically more flexible than the inverse Maxwell that has only a scale parameter,
we observe that the outcomes of Weibull and Gamma can be misleading.
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Figure 7. X control chart under Weibull distribution for inverse Maxwell parameter using weighted variance method.

We can however monitor the inverse Maxwell process through the Lognormal based
Shewhart control chart where this chart provides better results than the Weibull and
Gamma control chart. The X control chart for Lognormal distribution under WV technique
is able to monitor an inverse Maxwell process, but its shifts detection ability is worse
compared to the proposed VIM control chart. Figure 8 shows that the Lognormal control
chart can monitor an in-control inverse Maxwell process. Figure 9, however, shows that the
process is still in-control even though the process actually contains 125% larger variations
after the 18th sample. By comparing Figure 9 with Figures 5 and 6, we can state that the
VIM control chart monitors the inverse Maxwell process better than the existing Lognormal
control chart.
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3.3. Comparisons

In the previous section, we learned that the existing skewed distribution control charts
are struggling to detect variations of an inverse Maxwell process, which underscores the
necessity of VIM chart in SPC. However, that doesn’t make our proposed chart automatically
superior than the existing charts. Moreover, can we infer that our newly proposed chart for
monitoring a positively skewed process is more effective than the existing charts? As an
answer to this question, and as a way to visualize the superiority of our proposed chart,
the performance of our proposed chart is compared with the more recently improved
Lognormal distributed control chart. Lognormal distributed control charts are widely used
as candidate charts for evaluating positively skewed processes by several scholars. See
for example [24,29–31], and so on. Lognormal S-chart is recently proposed by [24] for
monitoring skewed process. They showed the suitability of this chart when the process
standard deviation is high.

Since both charts deal with skewed processes, we compare the ARL of our proposed
chart with the Lognormal S-chart to see whether our proposed chart is comparatively good
or bad for monitoring skewed processes. Table 6 expresses this comparison, where the
ARL of the Lognormal S-chart at σ = 1 is taken from Table 9 of [24]. From Table 6, we
see that for every out of control situation, the ARL values of the VIM control chart are less
than the Lognormal S-chart. For example: At 50% increment of shift in the process, the
number of samples of the Lognormal S-chart needed for shift detection is about 54 samples,
whereas for this same quantity of shift, the number of samples is only about 18 in case
of the VIM control chart. This shows the superiority of the inverse Maxwell control chart
over the Lognormal S-chart. We also use several overall performance measures for better
comparison. These include extra quadratic loss (EQL), performance comparison index (PCI),
and Relative average run length (RARL), where smaller values indicate better performance
quality. Based on [32]’s expressions for these performance measures, we observe that the
EQL of our proposed chart is 48.73, while it is 126.71 is for the Lognormal S-chart. Similarly,
the PCI and RARL of the Lognormal S-chart are 2.60 and 5.59, respectively, whereas under
VIM chart both are equal to 1. Finally, we can conclude that the proposed chart is superior
than the existing counterparts for monitoring a highly skewed process.
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Table 6. ARL values of VIM and Lognormal S-charts for different shifts at σ = 1.00 and n = 5.

Shift (δ)
Average Run Length

VIM Chart Lognormal S-Chart

1 368.39 370.34
1.50 17.72 53.92
2.00 4.12 24.34
2.50 2.11 14.15
3.00 1.52 10.71
3.50 1.28 8.79
4.00 1.16 7.99

3.4. Real Life Example

Different kinds of data, such as lifetime data, time series data, and genetic data, may
follow inverse Maxwell distribution. To highlight the pertinence of these control charts
through a real-life example, we apply our proposed method to the car brake pedal lifetime
data, which can be found in [33]. This data set is the left front brake pads’ lifetime on a
sample of 98 vehicles and measured by the car odometer readings. The values reported in
Table 7 represent measures of distance traveled by the selected vehicles before replacement
of the initial brake pads. For example: The odometer reading of 22,200 km indicates that
this particular vehicle covered a distance of 22,200 km before replacing its initial brake pads.

Table 7. Lifetime of car’s brake pad (in 1000 km).

Sample
Number

Observations

1st 2nd 3rd 4th 5th 6th 7th

1 22.2 23.0 24.0 28.6 21.8 17.0 26.0
2 23.2 18.9 21.9 27.3 13.8 24.0 20.1
3 15.7 26.8 27.9 15.3 28.8 16.0 23.6
4 53.8 21.7 28.8 17.0 16.5 15.7 28.0
5 13.3 16.5 24.2 17.6 27.8 18.3 17.7
6 20.0 13.2 16.9 14.9 15.5 7.0 15.8
7 15.0 38.3 11.2 38.2 26.7 17.1 29.0
8 18.3 18.4 18.2 15.9 16.4 23.6 19.2
9 23.3 20.4 20.9 28.5 23.2 17.9 46.1

10 39.3 11.8 17.7 30.9 22.4 45.0 18.2
11 30.2 21.8 18.2 23.0 27.2 10.9 25.5
12 12.4 39.9 17.7 26.3 14.1 21.0 11.2
13 10.8 25.7 32.4 13.6 19.1 16.1 53.3
14 57.3 36.5 19.7 20.8 30.8 20.0 39.6

To investigate whether or not the data set follows the inverse Maxwell distribution,
we use the Kolmogorov–Smirnov (K–S) test. Here, we define the null hypothesis to be that
the data set come from an inverse Maxwell distribution, while the alternative hypothesis is
that the data set does not come from an inverse Maxwell distribution. For our car brake
pads lifetime data set and under the above mentioned hypothesis, the K–S test statistic
is 0.12 where the p-value is 0.452. Here, the K–S critical value of 0.14 for 5% level of
significance is greater than the calculated statistic, and the level of significance is smaller
compared to p-value. Therefore, we do not reject the null hypothesis and tend to entertain
the idea that the inverse Maxwell distribution fits this data. From the simulation study,
we learn that the existing control charts may not monitor the inverse Maxwell process
well. However, the Maxwell V control chart could potentially be used. So, we further test
whether or not the data set follows the Maxwell distribution according to the above testing
procedure. If the data follows the Maxwell distribution, then we can instead apply the V
control chart to monitor the cars’ brake pad lifetimes. However, the K–S test generates a
p-value of 0.003 for our data set under the null hypothesis that the data follow Maxwell
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distribution. So, we reject the null hypothesis and infer that the data set does not follow the
Maxwell distribution. This result verifies our earlier assessment that the inverse Maxwell
distribution increases the application area of the Maxwell family of densities, and VIM
chart is the better choice for monitoring an inverse Maxwell distributed process.

Thus, we adopt this brake pad data to develop the control chart for monitoring the
inverse Maxwell parameter. The organization of the data set is presented in Table 7. The
lifetime in 1000 km are as follows:

Now we form the proposed VIM control chart based on probability limits and L-sigma
limits. From the data set, we get V IM = 9.08× 10−10 which is the estimated value of the
MLE. We got L1 = 0.3194 and L2 = 2.1819 from Table 1 for α = 0.0027 and n = 7. Therefore,
the probability limits become

LPL = 2.90× 10−10, CL = 9.08× 10−10 and UPL = 1.98× 10−9.

In process control, several criteria are available for identifying the deficiencies of
control charts including, among others, a point outside either the upper or lower control
limit. Interested readers are referred to [15] for more details. None of the out of control
criteria discussed by [15] are available in Figure 10. Therefore, we conclude that the process
is in control.
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Similarly, following [15], none of the out of control criteria are present in Figure 11. So,
in this case, we can also state that there is no shift in the process.

Again, from Table 3 for fixed false alarm rate α = 0.0027 and n = 7, we have W1 = 0
and W2 = 2.1367. So, the probability limits become

LCL = 0, CL = 9.08× 10−10 and UCL = 1.94× 10−9.
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4. Conclusions and Recommendations

Sometimes methods based on conventional distributions may not be adequate in
real-life cases. Hence other alternatives are needed to enhance the application area. Partly
due to this reason, several scholars have developed a variation of the Maxwell distribution
called the inverse Maxwell distribution. In this demonstration, we study several important
statistical properties of this distribution not yet recorded in the literature and provide an
application of this distribution in Statistical Process Control.

In this article, we derive various properties of inverse Maxwell variables including the
entropy, and the pdf of the sum, the difference, and the ratio of two independent variables.
We also extend the properties to include a random sample of n variables so as to estimate the
only parameter of the inverse Maxwell distribution using Maximum Likelihood Estimation
(MLE). We also provide the Fisher information for the inverse Maxwell parameter. Some of
these properties such as the pdf and the MLE are instrumental in establishing the design of
the proposed control charts in this article.

We then show how to develop control charts for the inverse Maxwell parameter
and provide several simulation results. Moreover, we compare the ability, efficiency, and
superiority of the existing control charts especially under Weibull, Gamma, Lognormal and
Maxwell distributions. We estimate several shift specific run length properties such as ARL,
SDRL, and MDRL as well as overall variations identifying tools including EQL, RARL, and
PCI of the proposed control chart for comparison. We observe that only Lognormal and
Maxwell based control charts can potentially check an inverse Maxwell process, although
their shift detection ability is far less than desired comparatively to the proposed control
chart. Moreover, in special circumstances, the proposed VIM chart is more suitable than
the existing Lognormal S-chart for identifying out of control signals in positively skewed
process. Finally, a real-life example is provided which follow inverse Maxwell distribution
where this control chart might be applicable to monitor the variability of an inverse Maxwell
distributed process.

Recently, there are extensions of the Maxwell distributions such as the length-biased
weighted Maxwell distribution discussed in [34] and more recently the Marshall–Olkin
length-biased Maxwell distribution discussed in [35]. This study does not currently exam-
ine these extensions due to space limitations, but may consider these Maxwell extensions
as possible interesting topics for future investigations in the same spirit as this paper.
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Appendix A

This appendix provides details of the mathematical proofs of results referred to in
the paper.

Entropy is a measure of unpredictability of the state, or equivalently, of its mean
information content. In other words, it contains average amount of information produced
by a stochastic source of data.

Theorem A1. For the inverse Maxwell distribution, the entropy is log
(√

π
2
)
+ 291

250 + log(σ).

Remark A1. For the inverse Maxwell distribution, the entropy is approximately 1.38979+ log(σ).

Proof. Using the formula described below and using the value of f (r) from Equation (4)
we get,

H(R) =
∫ ∞

0 f (r)(−log f (r))dr

=
∫ ∞

0 f (r)
[
−log

(√
2
π σ−3r−4e−

1
2r2σ2

)]
dr

=
∫ ∞

0 f (r)
[
− 1

2 log(2) + 1
2 log(π) + 3 log(σ) + 4 log(r) + 1

2r2σ2

]
dr

= − 1
2 log(2)

∫ ∞
0 f (r)dr + 1

2 log(π)
∫ ∞

0 f (r)dr + 3 log(σ)
∫ ∞

0 f (r)dr+
4
∫ ∞

0 log(r) f (r)dr + 1
2σ2

∫ ∞
0 r−2 f (r)dr

= − 1
2 log(2) + 1

2 log(π) + 3 log(σ) + 4
∫ ∞

0 log(r) f (r)dr + 1
2σ2

∫ ∞
0 r−2 f (r)dr

= log
(

1√
2

)
+ log

(√
π
)
+ log

(
σ3)+ 4

(
0.5 log

(
1
σ

)
− 21

250

)
+ 1

2σ2 × 4√
π

σ2 3
√

π
4

= log
(

1√
2

)
+ log

(√
π
)
+ log

(
σ3)+ log

(
1

σ2

)
+ 291

250

= log
(

1√
2

)
+ log

(√
π
)
+ 291

250 + 3 log(σ)− 2 log(σ)

= log
(√

π√
2

)
+ 291

250 + log(σ).
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Hence, the theorem is proven. �

Theorem A2. If R1 and R2 are two independent random variables having density functions

f (r1) =

√
2
π

σ−3r−4
1 e−1/2r2

1σ2
and f (r2) =

√
2
π

σ−3r−4
2 e−1/2r2

2σ2
. (A1)

Then the PDF of U = R1 + R2 is given by

f (u) =
2
π

σ−6u−4e−
1

2u2σ2 I(u), (A2)

where, I(u) =
∫ ∞

0
1

6u2v6−4u3v5−4uv7+v8 e−
1

v2σ2 +
1

4uvσ2 dv and r1 > 0 and r2 > 0.

Proof. Here R1 and R2 are two independent random variables, so their joint density
function is calculated by

f (r1, r2) = f (r1)× f (r2)

=
2
π

σ−6r−4
1 r−4

2 e
−( 1

2r2
1σ2 +

1
2r2

2σ2 ), r1 > 0 and r2 > 0. (A3)

Let, U = R1 + R2 and V = R1 or R2 = U − V. The Jacobian of transformation is
|J| = 1.

Now the joint density function of u and v is given by

f (u, v) =
2
π

σ−6v−4(u− v)−4e
−( 1

2v2σ2 +
1

2(u−v)2σ2 ) ; u > 0 and v > 0.

So, the density function of u is given by

f (u) =
2
π

σ−6u−4e−
1

2u2σ2

∫ ∞

0

1
6u2v6 − 4u3v5 − 4uv7 + v8 e−

1
v2σ2 +

1
4uvσ2 dv =

2
π

σ−6u−4e−
1

2u2σ2 I(u)

where
I(u) =

∫ ∞

0

1
6u2v6 − 4u3v5 − 4uv7 + v8 e−

1
v2σ2 +

1
4uvσ2 dv.

Hence, the theorem is proved. �

Theorem A3. If R1 and R2 are two independent random variables having densities like Equation
(A1), then the joint PDF of subtraction of these two random variables is similar to Equation (A2).

Proof. The PDF of the subtraction of two random variables can be derived as Theorem A2
and comparing the output with the Equation (A2). We can easily prove this theorem. �

We can conclude from Theorems A2 and A3 that the joint PDF of summation and
subtraction of the inverse Maxwell random variables are similar.

Theorem A4. If R1 and R2 are two independent random variables having density functions like

Equation (A1). Then the PDF of U = R1/R2 is given by f (u) = 2
π σ−6u−6e−

1
2u2σ2 I(u);

where

I(u) =
∫ ∞

0

1
6u2v5 − 4u3v4 − 4uv6 + v7 e−

1
2v2σ2 −

v2

σ2 dv and r1, r2 > 0.

Proof. This theorem can be proven according to Theorem A2. �
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Theorem A5. Let R1, R2, . . . .Rn be a random sample of size n from a population with density
function like Equation (4), the maximum likelihood estimator (MLE) of the scale parameter σ is
given as

σ̂ =

√
(3n)−1

n

∑
i=1

1
r2

i
. (A4)

Proof. For a sample of size n and set of observations to be r1, r2 . . . .rn with PDF f (r1, σ),
f (r2, σ), . . . . . . f (rn, σ). The likelihood function is given by,

L(σ, r) =

(√
2
π

σ−3

)n n

∏
i=1

r−4
i e
−∑n

i=1
1

2r2
i σ2

Now the log-likelihood function becomes,

log(L) = nlog

√
2
π
−3nlog(σ) +

n

∑
i=1

log(r−4
i )−

n

∑
i=1

1
2r2

i σ2
. (A5)

Differentiating Equation (A5) with respect to parameter σ and then equating to zero.
We get,

∂

∂σ
log(L) = 0⇒ σ2 = (3n)−1

n

∑
i=1

1
r2

i
.

Finally, the MLE of σ is
√
(3n)−1 ∑n

i=1
1
r2

i
, which is also given in the theorem. �

Note that Singh et al. [10] provided MLE for θ, which is a linear transformation of the
scale parameter of the inverse Maxwell distribution.

Fisher information tells us how much information about an unknown parameter we
can get from a sample.

Theorem A6. For inverse Maxwell distribution, the expected amount of information given by a
random variable for the parameter σ is 6σ−2.

Proof. Let, R1, R2, . . . Rn be a random sample of size n follows the inverse Maxwell distri-
bution. According to Equations (4) and (A5), the Fisher information of the inverse Maxwell
distribution is given by

I(σ) = E
(

1
r2σ3 −

3
σ

)2
=
∫ ∞

0

√
2
π

1
r8σ9 e−

1
2r2σ2 dr−

∫ ∞

0

√
2
π

6
r6σ7 e−

1
2r2σ2 dr +

∫ ∞

0

√
2
π

9
r4σ5 e−1/2r2σ2

dr

Finally, we can write
I(σ) = I1 − I2 + I3, (A6)

where

I1 =
∫ ∞

0

√
2
π

1
r8σ9 e−

1
2r2σ2 dr.

Let, u = 1
2r2σ2 ⇒ dr

du = − 1

2
√

2σu
3
2

.

Now, we can write,

I1 =

√
2√

πσ9

∫ ∞

0

(
1

2
√

uσ

)−8
(
− 1

2
√

2σu
3
2

)
e−udu =

8√
π

σ−2
∫ ∞

0
u

5
2 e−udu= 15σ−2.

Similarly, I2 = 18σ−2 and I3 = 9σ−2. Now, putting all these values into Equation (A6),
we get I(σ) = 6σ−2.
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So, the Fisher information of the inverse Maxwell distribution is 6σ−2. �

Appendix B

We develop a function named “rl.VIM” in “R language” to estimate the RL properties
of the proposed control chart. The computational codes are given below.

rl.VIM<-function(L1,L2,n,sg,del){
sg2 = del*sgˆ2; lcl = L1*sgˆ2; ucl = L2*sgˆ2;
vim = rl =c()
for (j in 1:10000) {

for (i in 1:10000) {
r = 1/sqrt(rgamma(n, 1.5, scale = 2*sg2))
vim[i] = sum(rˆ-2)/(3*n)
if (lcl > vim[i] | ucl < vim[i])
{

rl[j] = i
break

}
else
{

rl[j] = 100000
}

}
}

ARL=mean(rl);SDRL=sd(rl);MDRL=median(rl);Q10=quantile(rl,.10);Q25=quantile(rl,.25);
Q50=quantile(rl,.50);Q75=quantile(rl,.75);Q90=quantile(rl,.90)
print(cbind(ARL,SDRL,MDRL,Q10,Q25,Q50,Q75,Q90))

}

The function “rl.VIM” is used to estimate the average run length (ARL), standard
deviation (SDRL), and median of run length (MDRL), as well as percentiles of the VIM
control chart. Here, Q10, Q25, Q50, Q75, and Q90 denote 10th, 25th, 50th, 75th, and 90th
percentiles, respectively. For any fixed false alarm rate and sample size, we have to put “L1”
and “L2” values, and Table 1 in this paper contains these values. To check the proposed
chart variations detecting ability, we have changed the values of “del”. In this function,
the parameter “sg” denotes the estimated value of the process scale parameter and we
used 8.810865 × 10−5, which is the estimated value of σ for our cars’ data set. So, the
function becomes

rl.VIM(L1 = 0.2848,L2 = 2.2987,n = 6,sg = 8.810865 × 10−5,del = 1).

By changing the parameters of this function, we have estimated the RL properties of
our proposed chart.
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