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Abstract: Discovering densely-populated regions in a dataset of data points is an essential task for
density-based clustering. To do so, it is often necessary to calculate each data point’s local density
in the dataset. Various definitions for the local density have been proposed in the literature. These
definitions can be divided into two categories: Radius-based and k Nearest Neighbors-based. In this
study, we find the commonality between these two types of definitions and propose a canonical form
for the local density. With the canonical form, the pros and cons of the existing definitions can be
better explored, and new definitions for the local density can be derived and investigated.

Keywords: density-based clustering; local density; data mining

1. Introduction

Density-based clustering is the task of detecting densely-populated regions (called
clusters) separated by sparsely-populated or empty regions in a data set of data points. It
is an unsupervised process that can discover clusters of arbitrary shapes [1]. Many density-
based clustering algorithms have been proposed in the literature [2–9], but most of them
adopt their definitions of local density. Since clusters are derived based on each data point’s
local density, using an inappropriate definition for local density could yield bad clustering
results. Thus, it is crucial to define local density properly for density-based clustering.

This study divides the definitions for local density in the literature into two categories:
Radius-based and k Nearest Neighbors-based (or kNN-based for short). Radius-based local
density uses a radius to specify the neighborhood of a data point, and the data points
within a data point’s neighborhood mainly determine the local density of the data point.
In contrast, kNN-based local density uses the k nearest neighbors or the reverse k nearest
neighbors of a data point to derive its local density.

In this study, we propose a canonical form for local density. All previous definitions
for local density can be viewed as a special case of the canonical form. The canonical form
decomposes local density definition into three parts: The contribution set, contribution
function, and integration operator. The contribution set of a data point specifies the set
of data points that contribute to the data point’s local density. The contribution function
calculates the contribution of a data point to the local density of another data point.
The integration operator is used to combine the contributions of the data points in the
contribution set to yield local density.

The advantage of using this canonical form is twofold. First, it allows us to interpret
the implicit difference between different definitions for local density. For example, in
Section 2.2, we show that the kNN-based local density defined in [6,7] implicitly uses a
radius equal to one and

√
k, respectively. Second, this canonical form facilitates exploring

the pros and cons of these existing definitions for local density. We can then combine these
definitions’ merits to derive suitable definitions for local density for the problem at hand.

The rest of this paper is organized as follows. Section 2 reviews the existing definitions
for local density. Section 3 proposes the canonical form for local density and shows how
these definitions fit the canonical form. Section 4 describes how to derive new definitions
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for local density using this canonical form. Section 5 conducts an experiment to show how
the three parts (i.e., contribution set, contribution function, and integration operator) of the
canonical form affect local density distribution. Section 6 concludes this paper.

2. Review on Local Density

Most density-based clustering algorithms require calculating each data point’s local
density to derive clusters in the dataset. However, there is no standard definition for a
data point’s local density. Many definitions for local density have been proposed in the
literature. Based on the parameters used in the definitions, we can divide the existing
definitions into two categories. A radius-based definition uses a parameter ε for the radius
of a data point’s neighborhood, and a kNN-based definition uses a parameter k to limit
the scope of the data points involved to the k nearest neighbors. In this section, we review
these two types of definitions. For ease of exposition, some notations are defined in Table 1.

Table 1. Notations.

X = {x1, · · · , xn} the dataset of n data points to be clustered

ρ(xi) the local density of a data point xi ∈ X

d
(

xi, xj

)
the distance between two data points xi and xj

ε the radius of a data point’s neighborhood

εp the radius derived from top p% of all pairs’ distances. (1st used in Section 4)

εk the radius derived using the parameter k and Equation (8). (1st used in Section 4)

εkP
the radius derived using the P-th percentile of the distances between all data

points and their k-th nearest neighbors. (1st used in Section 4)

Nk(xi) the set of k nearest neighbors of xi. (1st used in Equation (4))

Rk(xi) the set of reverse k nearest neighbors of xi. (1st used in Equation (12))

yj
i

the j-th nearest neighbor of xi. (1st used in Section 2.2)

δ
j
i the distance between xi and its j-th nearest neighbor yj

i . (1st used in Equation (8))

Ci the set of data points that contribute to the density of xi. (1st used in Equation (17))

c
(

xi, xj

)
the contribution of xj to the density of xi. (1st used in Equation (17))

2.1. Radius-Based Local Density

As described earlier, a radius-based local density uses parameter ε to specify the radius
of a data point’s neighborhood. Consider a dataset X = {x1, x2, · · · , xn} of n data points
and the local density ρ(xi) of a data point xi ∈ X. A radius-based local density ensures
that those data points within xi’s neighborhood have a large contribution to ρ(xi) and that
the data points outside xi’s neighborhood have little or no contribution to ρ(xi). In what
follows, we describe two definitions for the radius-based local density in the literature.

In [4], the local density of a data point is defined as the number of data points within
the data point’s neighborhood, which is given as follows:

ρ(xi) = ∑
xj∈X

X

(
d
(

xi, xj
)

ε

)
(1)

where

X(d) =

{
1 if d < 1
0 otherwise

(2)

and d
(

xi, xj
)

is the distance between data points xi and xj. Thus, each data point xj ∈ X
with d

(
xi, xj

)
< ε contributes 1 to ρ(xi). In [2], the constraint d

(
xi, xj

)
≤ ε is adopted

instead of d
(

xi, xj
)
< ε, i.e., each data point xj ∈ X with d

(
xi, xj

)
≤ ε contributes 1 to ρ(xi).

However, this change should not make a significant difference on ρ(xi).
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Instead of using the radius ε as a hard threshold in Equation (1), [4] proposed a local
density definition that uses an exponential kernel, as shown in Equation (3).

ρ(xi) = ∑
xj∈X

e−(
d(xi ,xj)

ε )
2

(3)

With Equation (3), each data point xj ∈ X contributes e−(
d(xi ,xj)

ε )
2

to ρ(xi). Notably,

e−(
d(xi ,xj)

ε )
2

is an inverse S-shaped function of
d(xi ,xj)

ε with an inflection point at
d(xi ,xj)

ε = 1√
2

.

That is, the value of e−(
d(xi ,xj)

ε )
2

decreases at an increasing speed as
d(xi ,xj)

ε approaches 1√
2

from 0, and then at a decreasing speed after
d(xi ,xj)

ε is greater than 1√
2
. Thus, to be exact,

Equation (3) uses a soft threshold at d
(
xi, xj

)
= ε√

2
, instead of at d

(
xi, xj

)
= ε. Figure 1

shows the curves of e−(
d(xi ,xj)

ε )
2

and its first and secondary derivatives with respect to
d(xi ,xj)

ε . The three black dots indicate that the inflection point occurs when the first and
secondary derivatives reach minimum and zero, respectively.
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Figure 1. The horizontal axis is
d(xi ,xj)

ε and the vertical axis is the values of e−(
d(xi ,xj )

ε )
2

(in red) and its

first (in blue) and secondary (in purple) derivatives with respect to
d(xi ,xj)

ε .

The proper value for ε is dataset-dependent. Thus, instead of setting the value for ε
directly, Ref. [4] used another parameter, p, to derive ε. Specifically, ε is set to the top p%
distance of all pairs’ distances in X, and 1 ≤ p ≤ 2 is recommended. Alternatively, Ref. [5]
used parameter k to determine the value of ε.

2.2. kNN-Based Local Density

Although the radius-based local density is intuitive and straightforward, using the
same radius for all data points may be inappropriate for some datasets. The kNN-based
local density adopts a different approach by restricting only the k nearest neighbors con-
tributing to the local density. In what follows, we describe four definitions of the kNN-based
local density in the literature.
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In [6], a data point’s local density is defined using an exponential kernel and the
distances to k nearest neighbors, as shown in Equation (4).

ρ(xi) = ∑
xj∈Nk(xi)

e−d(xi ,xj) (4)

where Nk(xi) denotes the set of k nearest neighbors of xi. Notably, e−d(xi ,xj) is a mono-
tonically decreasing function of d

(
xi, xj

)
. Its derivative to d

(
xi, xj

)
is −e−d(xi ,xj), which is

a monotonically increasing function of d
(
xi, xj

)
. As d

(
xi, xj

)
increases from 0, the value

of e−d(xi ,xj) drops at an exponentially decreasing speed. Such a property may cause a
significantly different effect for different datasets. For example, if the maximum distance
between any xi ∈ X and xj ∈ Nk(xi) is small, then a fixed change to d

(
xi, xj

)
will cause a

large change to e−d(xi ,xj). In contrast, if the minimum distance between any xi ∈ X and
xj ∈ Nk(xi) is large, then a fixed change to d

(
xi, xj

)
will only cause a small change to

e−d(xi ,xj). The cause of such an inconsistent behavior is because Equation (4) is not unit-less.

Alternatively, the function e−d(xi ,xj) can be interpreted as a unit-less function e−(
d(xi ,xj)

ε )

with a fixed radius ε = 1 for any dataset.
Reference [7] used the mean of xi’s squared distance to its k nearest neighbors to

derive ρ(xi), as shown in Equation (5):

ρ(xi) = e
− 1

k ∑
xj∈Nk(xi)

(d(xi ,xj))
2

(5)

Similar to Equation (4), ρ(xi) in Equation (5) is a monotonically decreasing function
of 1

k ∑
xj∈Nk(xi)

(
d
(

xi, xj
))2 and is not unit-less. We can rewrite Equation (5) to remove the

summation in the exponent as follows.

ρ(xi) = e
−∑xj∈Nk(xi)

(
d(xi ,xj)√

k
)

2

= ∏
xj∈Nk(xi)

e−(
d(xi ,xj)√

k
)

2

(6)

Similar to e−(
d(xi ,xj)

ε )
2

in Equation (3), e−(
d(xi ,xj)√

k
)

2

in Equation (6) is an inverse S-shaped

function of
d(xi ,xj)√

k
with an inflection point at

d(xi ,xj)√
k

= 1√
2
. The function e−(

d(xi ,xj)√
k

)
2

can

also be interpreted as a unit-less function e−(
d(xi ,xj)

ε )
2

with a fixed radius ε =
√

k for any
dataset. That is, Equation (6) uses the parameter k to implicitly derive the radius ε, which

controls the positions of the inflection point of the inverse S-shaped function e−(
d(xi ,xj)√

k
)

2

.
Reference [5] proposed a kNN-based unit-less definition for ρ(xi), which is similar to

Equation (3) but limits the data points contributing to ρ(xi) only to Nk(xi), as shown in
Equation (7).

ρ(xi) = ∑
xj∈Nk(xi)

e−(
d(xi ,xj)

ε )
2

(7)

Reference [5] also used the parameter k to determine the value of ε as follows:

ε = µk +

√
1

|X| − 1 ∑
xi∈X

(
δk

i − µk
)2 (8)

µk =
1
|X| ∑

xi∈X
δk

i (9)

where δk
i is the distance between xi and its kth nearest neighbor, and µk is the mean of δk

i of
all data points in X. Equation (8) derives ε as µk plus the standard deviation of δk

i , and thus
a larger k yields a larger ε.
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Reference [8] used the distance between xi and the mean of its k nearest neighbors to
derive ρ(xi), as follows:

ρ(xi) = e−(d(xi ,xi))
2

(10)

xi =
1
k ∑

xj∈Nk(xi)

xj (11)

This definition could yield counterintuitive results because using the mean of k nearest
neighbors sacrifices their distribution. For example, consider the case of two nearest
neighbors y1

i and y2
i of xi located at opposite sides of xi, and d

(
xi, y1

i
)
= d

(
xi, y2

i
)
. Then,

ρ(xi) remains unchanged independent of the values of d
(

xi, y1
i
)

and d
(
xi, y2

i
)
, which

contradicts the intuition that larger d
(
xi, y1

i
)

and d
(
xi, y2

i
)

should result in smaller ρ(xi).
Reference [8] also proposed using the number of reverse k nearest neighbors as the

local density, as follows:
ρ(xi) = |Rk(xi)| (12)

where Rk(xi) =
{

xj ∈ X
∣∣xi ∈ Nk

(
xj
)}

is the set of reverse k nearest neighbors of xi. This
definition could render a data point xi having ρ(xi) = 0 even though xi is in a densely-
populated region. Thus, this definition should be used with caution.

To avoid the bias of k nearest neighbors, [10] proposed the using mutual k nearest
neighbors to define local density, as follows:

SNN
(
xi, xj

)
= (Nk(xi) ∪ {xi}) ∩

(
Nk
(
xj
)
∪
{

xj
})

(13)

Sim
(

xi, xj
)
=


|SNN(xi ,xj)|2

∑xp∈SNN(xi ,xj)(d(xi ,xp)+d(xj ,xp))
i f xi, xj ∈ SNN

(
xi, xj

)
0, otherwise

(14)

ρ(xi) = ∑
xj∈L(xi)

Sim
(
xi, xj

)
(15)

where SNN
(

xi, xj
)

is the set of mutual k nearest neighbors of xi and xj; Sim
(
xi, xj

)
is the

similarity between xi and xj; and L(xi) is the set of k data points chosen from X\{xi} with
the largest Sim

(
xi, xj

)
.

3. Canonical Form for Local Density

In this section, we first propose the canonical form for local density. Then, we show
how the existing definitions for local density fit the canonical form.

3.1. Canoncial Form

Based on the review in Section 2, this section proposes a canonical form for local
density. Consider dataset X and data point xi ∈ X. The canonical form for the local density
ρ(xi) includes three parts: The contribution set Ci, the contribution function c

(
xi, xj

)
, and

the integration operator. The contribution set Ci ⊂ X is the set of data points contributing
to ρ(xi). Three possible values for Ci are commonly used in the literature: Nk(xi), X, and
Bε(xi) =

{
xj ∈ X

∣∣d(xi, xj
)
< ε

}
. The first value Nk(xi) is the set of k nearest neighbors of

xi, where k is the parameter [5–7]. The second value X is the entire dataset [4]. The third
value Bε(xi) uses ε to specify the radius of a data point’s neighborhood, and only the data
points within the neighborhood of xi contribute to ρ(xi) [2,4].

The contribution function c
(
xi, xj

)
calculates the contribution of a data point xj ∈ Ci

to the density of xi. A general form for c
(
xi, xj

)
is proposed as follows:

c
(

xi, xj
)
= e−(

d(xi ,xj)
ε )

m

(16)

where ε is the radius of a data point’s neighborhood. In the literature, the value of the
exponent m is 1, 2, or ∞. In practice, we can use any m ≥ 1 to achieve a different effect,
which is discussed further in Section 4.
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The integration operator integrates the contributions of the data points in Ci to yield
ρ(xi). In the literature, either the summation Σ or the product Π operator is used. Thus,
the canonical form for local density can be defined using Equation (17) or Equation (18),
as follows:

ρ(xi) = ∑
xj∈Ci

c
(
xi, xj

)
(17)

ρ(xi) = ∏
xj∈Ci

c
(
xi, xj

)
(18)

3.2. Fit the Existing Definitions to the Canoncial Form

Based on the canonical form defined in Section 3.1, we can derive most of the defini-
tions for local density reviewed in Section 2, and Table 2 summarizes the results. We have
excluded the definition in Equation (10) because it tends to conflict with the basic property
of local density, as described in Section 2.

Table 2. Equations (3), (4), (6), (7) and (19)–(21) fit the canonical forms defined in Equations (16)–(18).

Equation Π or Σ Ci c
(
xi , xj

)
m ε

(19) ∑
xj∈X

e−(
d(xi ,xj )

ε )
∞

Σ X e−(
d(xi ,xj )

ε )
∞

∞
ε is set to the distance at the top p%

of all pairs’ distances in X, where p is
a parameter [4].

(3) ∑
xj∈X

e−(
d(xi ,xj )

ε )
2

Σ X e−(
d(xi ,xj )

ε )
2

2
ε is set to the distance at the top p%

of all pairs’ distances in X, where p is
a parameter [4].

(4) ∑
xj∈Nk(xi)

e−(
d(xi ,xj )

1 ) Σ Nk(xi) e−(
d(xi ,xj )

1 ) 1 1

(6) ∏
xj∈Nk(xi)

e
−(

d(xi ,xj )√
k

)
2

Π Nk(xi) e
−(

d(xi ,xj )√
k

)
2

2
√

k

(7) ∑
xj∈Nk(xi)

e−(
d(xi ,xj )

ε )
2

Σ Nk(xi) e−(
d(xi ,xj )

ε )
2

2
ε is derived from the distance between

each data point to its kth nearest
neighbor using Equation (8) [5].

(20) ∑
xj∈Rk(xi)

1 Σ Rk(xi) 1

(21) ∑
xj∈L(xi)

Sim
(

xi , xj
)

Σ Nk(xi) ∩ Rk(xi) Sim
(
xi , xj

)

Notably, we have transformed Equation (1) to Equation (19) below such that it can
match the canonical form in Equation (17):

ρ(xi) = ∑
xj∈X

e−(
d(xi ,xj)

ε )
∞

, (19)

Here, e−(
d(xi ,xj)

ε )
∞

= 1 if 0 <
d(xi ,xj)

ε < 1, and e−(
d(xi ,xj)

ε )
∞

= 0 if
d(xi ,xj)

ε > 1. Thus,

Equations (1) and (19) yield exactly the same results except at
d(xi ,xj)

ε = 1 where Equation
(1) has c

(
xi, xj

)
= 0, but Equation (19) has c

(
xi, xj

)
= e−1.

Similarly, we have transformed Equation (12) to Equation (20) below such that it can
match the canonical form in Equation (17).

ρ(xi) = ∑
xj∈Rk(xi)

1 (20)

Additionally, Equation (15) is rewritten as Equation (21) to avoid using L(xi).

ρ(xi) = ∑
xj∈Nk(xi)∩ Rk(xi)

Sim
(
xi, xj

)
(21)
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Notably, by (14), Sim
(
xi, xj

)
6= 0 only if xi, xj ∈ SNN

(
xi, xj

)
, and by (13), SNN

(
xi, xj

)
\

{xi} ⊆ Nk(xi) contains at most k data points, and thus we replace L(xi) in (15) by
Nk(xi) ∩ Rk(xi) or simply Nk(xi) to speed up the computation.

By fitting the existing definitions to the canonical form, we can see that most of them
use a radius ε, explicitly or implicitly. With Table 2, we can better explore the pros and cons
of these definitions. For example, Equation (4) uses a fixed radius of ε = 1, and Equation (6)
uses radius ε =

√
k which only depends on the parameter k. Both of them do not consider

the data points’ distribution in the dataset to determine ε. Consequently, the chosen value
for ε may not be adaptable to different datasets. In contrast, Equations (3), (7) and (19) not
only use a parameter (p or k) but also consider the distribution of the data points to decide
a proper value for ε.

4. Derive New Definitions Using the Canonical Form

As described in Section 3.1, there are three parts in the canonical form for local density.
We can combine possible values for the three parts from the existing definitions to form
new definitions for local density. However, some combinations may generate undesirable
results, e.g., replacing the contribution set Nk in Equation (6) with X. Thus, it is crucial to
understand how the possible values for the three parts affect the results.

First, consider the integration operator in the canonical form. As shown in the second
column of Table 2, most of the existing definitions for local density used the summation
operator Σ. We can replace the summation operator Σ with the product operator Π (or
vice versa) to yield new definitions for local density. The operators Π and Σ affect the local
density differently. For example, if the value of ∑

xj∈Ci

c
(
xi, xj

)
is fixed, then the more evenly

distributed the value of c
(
xi, xj

)
for all xj ∈ Ci, the larger the value of ∏

xj∈Ci

c
(

xi, xj
)
. On the

contrary, if the value of ∏
xj∈Ci

c
(
xi, xj

)
is fixed, then the more unevenly distributed the value

of c
(

xi, xj
)

for all xj ∈ Ci, the larger the value of ∑
xj∈Ci

c
(
xi, xj

)
. Notably, the contribution

c
(

xi, xj
)

grows as the distance d
(
xi, xj

)
decreases. If we intend to give higher local density

to those data points with more evenly distributed distances to their respective neighbors in
Ci, then the product operator Π is adopted. Otherwise, the summation operator Σ should
be used in most cases.

Next, consider the contribution function c
(
xi, xj

)
. The general form of c

(
xi, xj

)
, de-

fined in Equation (16), contains two parameters: The exponent m and the radius ε. First,

focus on the impact of using different values for m. We can view e−(
d(xi ,xj)

ε )
m

in Equation

(16) as a function of
d(xi ,xj)

ε . Figure 2 shows that the value of m affects the shape of the

function curve. For m > 1, e−(
d(xi ,xj)

ε )
m

is an inverse S-shaped function of
d(xi ,xj)

ε with an

inflection point at
d(xi ,xj)

ε = m
√

m−1
m . As the value of m approaches infinity, the inflection

point approaches
d(xi ,xj)

ε = 1, yielding e−(
d(xi ,xj)

ε )
m

= e−1, and the function e−(
d(xi ,xj)

ε )
m

approximates the step function in Equation (2). Notably, if m = 1, e−(
d(xi ,xj)

ε )
m

is not an
inverse S-shaped function. The function curves for m = 1, 1.5, 2, 3, 4, and 50 are shown in
Figure 2, where the positions of the inflection points are indicated with solid circles. To
choose a suitable value for m, we can check whether the problem at hand prefers that a
small increase in d

(
xi, xj

)
does not cause too much decrease in c

(
xi, xj

)
when d

(
xi, xj

)
< ε.

If this is the case, then a large value for m should be adopted to move the inflection point

to the right, i.e., closer to
d(xi ,xj)

ε = 1.
Next, consider the radius ε of a data point’s neighborhood. The value of ε should be

dataset-dependent. For example, in [4], ε is set to the distance at the top p% of all pairs’
distances in X, where p is a parameter. This method’s intuition is to have bp(n − 1)/200c
data points within a data point’s neighborhood on average. However, this method tends
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to emphasize the dense regions and overlooks the sparse regions in the dataset. We
denote the radius derived using this method by εp. In [5], ε is set to the mean plus one
standard deviation of all data points’ distances to their respective k-th nearest neighbors
(see Equation (8)). This method is sensitive to the outliers in the dataset and the value of k.
We denote the radius derived using this method by εk.
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To avoid the shortcomings of the above two methods, we integrate both methods and
propose a new method, shown in Algorithm 1. The new method requires two parameters:
k and P. First, it collects the distance of each data point to its k-th nearest neighbor. Then, it
sorts these distances in ascending order and sets ε to the P-th percentile location, i.e., the⌈

P×n
100

⌉
-th distance, where n is the number of data points in the dataset. This new method

considers each data point’s k-th nearest neighbor instead of the top p% of all pairs’ distances.
Thus, it is less likely to overlook the sparse regions in the dataset. Furthermore, because
the new method does not use mean and standard deviation, it is less sensitive to outliers
than the second method. We denote the radius derived using this method by εkP.

Algorithm 1: The proposed method to derive ε.

Input: the set of data points X ∈ Rn×m, k, and P
Output: the radius ε
1. Set S =

{
δk

i

∣∣ xi ∈ X
}

, where δk
i is the distance between xi and its k-th nearest neighbor.

2. Sort the elements in S in ascending order.
3. Set s =

⌈ P×n
100

⌉
.

4. Set ε = the s-th element in S.
5. Return ε

Finally, consider the contribution set Ci. As described in Section 3.1, Nk(xi), X, and
Bε(xi) are three commonly used values for Ci. Setting Ci = X allows every data point
contributing to ρ(xi). It should only be used when the adopted c

(
xi, xj

)
is near zero for

any data point xj far from xi (e.g., Equation (16) with a large m value). For a data point
xi in a dense region, its k nearest neighbors are likely to locate within its neighborhood,
i.e., Bε(xi) ⊃ Nk(xi). However, for xi in a sparse region, Bε(xi) ⊂ Nk(xi) usually holds.
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Using the product operator Π with Ci = X (i.e., ρ(xi) = ∏
xj∈X

c
(
xi, xj

)
) is a poor

combination. Most of the data points in X are far from xi thus, this combination involves
multiplying many small c

(
xi, xj

)
rendering a small ρ(xi) that fails to represent the local

density of xi properly. In contrast, using the summation operator Σ with Ci = X does not
cause such a problem.

Using the product operator Π with Ci = Bε(xi) could also render strange results. For
example, let h be the current local density of xi, and y /∈ X be a data point where d(xi, y) is
less than the distance between xi and xi’s nearest neighbor in X. Intuitively, adding y to
X should increase the local density of xi. However, according to Equation (16), c

(
xi, xj

)
is

between 0 and 1 for any two data points xi and xj. Thus, with the addition of y to X, the
local density of xi becomes h ∗ c(xi, y), which is less than the original local density h. Thus,
the combination of using the product operator Π and Ci = Bε(xi) is also a poor definition
for local density.

5. Experiment
5.1. Experiment Design

For brevity, we use a tuple with four components to describe a definition for local
density, where the first component indicates the integration operator, the second com-
ponent indicates the contribution set, and the third and the fourth components indicate
the exponent m and the radius ε in the contribution function, respectively. For example,
the row for Equation (7) in Table 2 can be represented as (Σ, Nk, 2, εk). This representa-
tion facilitates modifying an existing definition to create new definitions. For example,
(Π, Nk, 2, εk), (Σ, Nk, 20, εk), and (Σ, Nk, 2, εkP) are three new definitions modified from
(Σ, Nk, 2, εk).

This experiment is divided into four tests. In each test, we use the definition (Σ, Nk, 2, εk)
proposed in [5] as the benchmark and vary one component in the tuple to study how this
component affects the results. In Test 1, we compare three different ways (i.e., εp, εk, and
εkP, described in Section 4) to derive radius ε. Here, εp and εkP are derived by setting the
parameters p = 2 and P = 75, respectively. Parameter k is also set to 5 to 50 in a step of 5
for both εkP and εk. Test 2 compares the three definitions (Σ, Nk, 2, εk), (Σ, X, 2, εk), and
(Σ, Bε(xi), 2, εk) to study the impact of using different values for the contribution set Ci.
Test 3 compares the three definitions (Σ, Nk, 2, εk), (Σ, Nk, 4, εk), and (Σ, Nk, 8, εk) to study
the impact of using different values for the exponent m. Test 4 compares the two definitions
(Σ, Nk, 2, εk) and (Π, Nk, 2, εk) to study the impact of using a different integration operator.
In Tests 2 to 4, parameter k is set to 10 to derive εk and Nk.

This experiment uses 16 well-known two-dimensional synthetic datasets. Table 3
shows the number of points and the number of clusters in these datasets.

Table 3. Number of points and number of clusters in the 16 synthetic datasets.

Dataset Number of Clusters Number of Points

Spiral [11] 3 312
Flame [12] 2 240

Aggregation [13] 7 788
Jain [14] 2 373
D31 [15] 31 3100
R15 [15] 15 600

Compound [16] 6 399
A1 [17] 20 3000
A2 [17] 35 5250
A3 [17] 50 7500
S1 [18] 15 5000
S2 [18] 15 5000
S3 [18] 15 5000
S4 [18] 15 5000

Path_based [11] 3 300
Unbalance [19] 8 6500
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5.2. Test 1: Comparing the Radiuses εp, εk, and εkP

Test 1 compares radiuses εp, εk, and εkP derived by the three methods described in
Section 4. Obviously, increasing the values of p and P increases the values for εp and εkP,
respectively.

Figure 3 shows the experimental results of εp, εk, and εkP by setting p = 2, P = 75, and
k = 5 to 50 in a step of 5. The larger the value of k, the larger the values of εk and εkP. In
most cases, εk > εkP. For smaller datasets, εp tends to be smaller than εk and εkP. It appears
that the size of the dataset influences the behaviors of εp, εk, and εkP differently. Let n
denote the size of the dataset X. The number of possible pairs of the data points in X is
n(n−1)

2 . Since εp is set to the
⌊

n(n−1)
2 × p

100

⌋
-th smallest value of all pairs’ distances in X, the

location of εp is linear with n2. In contrast, εkP is set to the
⌊

n× P
100

⌋
-th smallest value of

the distances between all data points and their k-th nearest neighbors. That is, the location
of εkP is only linear with n. Thus, the dataset size appears to have a greater impact on εp
than on εkP.
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Two small datasets (Compound dataset and Path_based dataset) and two large
datasets (D31 dataset and A2 dataset) are selected to show the impact of the database
size on εp, εk, and εkP. Three definitions, (Σ, Nk, 2, εk),

(
Σ, Nk, 2, εp

)
, and (Σ, Nk, 2, εkP),
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are used to calculate each data point’s local density, where the values of εp, εk, and εkP
(shown in Table 4) are derived by setting parameters p = 2, P = 75, and k =10. Notably,
(Σ, Nk, 2, εk) is the definition proposed in [5].

Table 4. εp (p = 2), εk (k = 10), and εkP (k = 10 and P = 75) for four datasets.

Dataset Compound Path_Based D31 A2

εp 0.182606 0.223688 0.203595 0.206687
εkP 0.280839 0.522962 0.094954 0.071405
εk 0.430744 0.558793 0.114488 0.088676

In Figure 4, the color scale legend on each subfigure’s right indicates the measure
of local density. For the two small datasets (i.e., Compound and Path_based), we have
εp < εkP < εk, and thus using ε = εk or εkP results in more data points having high local
density than using ε = εp does, as shown in the upper two rows of Figure 4. In contrast,
for the two large datasets (i.e., D31 and A2), εp > εk > εkP, and thus using ε = εp results
in more data points having high local density than using ε = εk or εkP, as shown in the
lower two rows of Figure 4.
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5.3. Test 2: Impact of the Contribution Set Ci on Local Density

Test 2 adopts three definitions, (Σ, Nk, 2, εk), (Σ, X, 2, εk), and (Σ, Bε(xi), 2, εk), to
calculate local density and evaluates the impact of using different values for Ci. Here, k is
set to 10 to derive εk and Nk. The results are shown in Figure 5, where the subfigures in the
same row are the results for a dataset and the subfigures in the same column are the results
using the same method to determine Ci.
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In Figure 5, the color scale legend on each subfigure’s right indicates the measure of
local density. A large local density range is usually preferred because it provides more
discrepancy to compare the local density among data points. Using Ci = X has the largest
local density range than using Ci = Bε(xi) or Ci = Nk(xi) because using Ci = X combines
all data points’ contributions and Test 2 adopts the summation operator. Using Ci = Nk(xi)
results in a much smaller range of local density than using Ci = Bε(xi) does, indicating
that, for any data point xi in a densely-populated region, Bε(xi) ⊃ Nk(xi) usually holds.

In the literature, all kNN-based methods (e.g., Equations (4), (6), and (7) in Table 2)
adopted Ci = Nk(xi) to calculate the local density. Figure 5 shows that replacing Ci = Nk(xi)
with Ci = Bε(xi) or Ci = X can enlarge the range of local density. Using Ci = Nk(xi) tends
to result in more data points within the high-density regions (see the subfigures in column 3
of Figure 5). For example, the subfigure of “Flame” database using Ci = Nk(xi) shows that
a majority of the data points have high local densities, making it difficult to partition the
two densely-populated regions in the dataset. It is better to have each densely-populated
region surrounded by low-density data points to facilitate clustering, e.g., the subfigure for
“aggregation” dataset using Ci = Bε(xi). Therefore, overall, using Ci = Bε(xi) is preferred.

However, for datasets containing both high-density clusters and low-density clusters
(e.g., the Path_based dataset and the Unbalance dataset in the last two rows of Figure 5),
using Ci = Nk(xi) or Ci = Bε(xi) tends to yield very low local density for the data points
in the low-density clusters. A dense-based clustering algorithm must handle this situation
carefully to avoid omitting the low-density clusters.

5.4. Test 3: Impact of the Exponent m on Local Density

Test 3 varies the value of m in the contribution function c
(
xi, xj

)
= e−(

d(xi ,xj)
ε )

m

to
study the impact of m on the local density. Specifically, we compare three definitions,
(Σ, Nk, 2, εk), (Σ, Nk, 4, εk), and (Σ, Nk, 8, εk), where k is set to 10 to derive εk and Nk. The
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results are shown in Figure 6, where the subfigures in the same row are the results for a
dataset, and the subfigures in the same column are the results using the same value for m.
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(
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)
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Comparing the subfigures in the same row of Figure 6 reflects that a larger m incurs
more data points to have a higher local density. For those datasets with nicely separated
clusters (e.g., dataset R15), using a large m helps identify the cores of the clusters. However,
for datasets with poorly separated clusters (e.g., dataset S4), using a large m makes it
challenging to spot the boundary between two adjacent clusters. For datasets containing
both high-density clusters and low-density clusters (e.g., the Unbalance dataset), the impact
of the value of m on the local density is not significant.

5.5. Test 4: Impact of the Integration Operator (Π or Σ) on Local Density

Test 4 studies the impact of using different integration operator (Π or Σ) using two
definitions (Σ, Nk, 2, εk) and (Π, Nk, 2, εk), to calculate local density. As in Tests 2 and 3, k
is set to 10 to derive εk and Nk. The results are shown in Figure 7, where the subfigures in
the same column are the results using the same integration operator.

The contribution function c
(
xi, xj

)
in Equation (16) yields a value between 0 and 1, so

using the product operator Π to integrate the data points’ contributions results in a smaller
local density than using the summation operator Σ does. Using Π tends to keep only a
small portion of data points having a higher local density, and thus it helps to identify the
density peaks in the dataset. However, for datasets containing both high-density clusters
and low-density clusters (e.g., the Path_based dataset and the Unbalance dataset), using Π
cannot find the density peaks in the low-density clusters.
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Figure 7. The local densities calculated using different integration operator (Π or Σ). The horizon-
tal and the vertical coordination show the position of data points, and the color indicates the value 
of local densities. 

6. Conclusions 
In this study, we first divided the existing definitions for local density into two cate-

gories, radius-based and kNN-based. It was shown that a kNN-based definition is implic-
itly radius-based. Then, we propose a canonical form to decompose the definition of local 
density into three parts: The integration operator (Σ or Π), the contribution set ܥ௜, and 
the contribution function ܿ(ݔ௜ , -௝). Furthermore, the contribution function could be conݔ
trolled with a radius ߳ and an exponent ݉. Thus, a definition for local density could be 
represented as a tuple of four components (Σ or Π, ܥ௜, ݉, ߳) to derive new definitions for 
local density. We conclude the following guidelines for developing new definitions for 
local density based on our analysis and experiment: 
 (Π, ܤఢ(ݔ௜),*,*) and (Π, ܆,*,*) should be avoided because they could incur results con-

tradicting the notion of local density. For example, they could yield a low density to 
a should-be high-density data point. Here, ‘*’ is used to represent a do not-care term; 

 Product operator Π could be used only when the size of the contribution set ܥ௜ is 
fixed for every data point, e.g., ܥ௜ = ௞ܰ(ݔ௜); 

 In most cases, the summation operator Σ should be adopted. However, product op-
erator Π helps to identify the density peaks in a dataset; 

 The value for ߳ should be dataset-dependent, e.g., ߳௣, ߳௞, and ߳௞௉. Notably, ߳௣ is 
sensitive to the dataset’s size, ߳௞ is sensitive to the parameter k and the outliers in 
the dataset, and ߳௞௉ provides a compromise between them; 

Figure 7. The local densities calculated using different integration operator (Π or Σ). The horizontal
and the vertical coordination show the position of data points, and the color indicates the value of
local densities.

6. Conclusions

In this study, we first divided the existing definitions for local density into two
categories, radius-based and kNN-based. It was shown that a kNN-based definition is
implicitly radius-based. Then, we propose a canonical form to decompose the definition
of local density into three parts: The integration operator (Σ or Π), the contribution set Ci,
and the contribution function c

(
xi, xj

)
. Furthermore, the contribution function could be

controlled with a radius ε and an exponent m. Thus, a definition for local density could
be represented as a tuple of four components (Σ or Π, Ci, m, ε) to derive new definitions
for local density. We conclude the following guidelines for developing new definitions for
local density based on our analysis and experiment:

• (Π, Bε(xi),*,*) and (Π, X,*,*) should be avoided because they could incur results
contradicting the notion of local density. For example, they could yield a low density to
a should-be high-density data point. Here, ‘*’ is used to represent a do not-care term;

• Product operator Π could be used only when the size of the contribution set Ci is
fixed for every data point, e.g., Ci = Nk(xi);

• In most cases, the summation operator Σ should be adopted. However, product
operator Π helps to identify the density peaks in a dataset;

• The value for ε should be dataset-dependent, e.g., εp, εk, and εkP. Notably, εp is
sensitive to the dataset’s size, εk is sensitive to the parameter k and the outliers in the
dataset, and εkP provides a compromise between them;

• The value of m should be≥2 so that the contribution function c
(

xi, xj
)

has an inflection

point at
d(xi ,xj)

ε = m
√

m−1
m . The greater the value of m, the closer the inflection point

near
d(xi ,xj)

ε = 1.
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Notably, using the above (Σ or Π, Ci, m, ε) representation assumes that the contribution

function c
(

xi, xj
)
= e−(

d(xi ,xj)
ε )

m

is adopted. That is, given the parameters m and ε, the
value of c

(
xi, xj

)
depends only on the distance d

(
xi, xj

)
. However, in recent studies [8,10],

c
(

xi, xj
)

may involve not only xi and xj but also their k nearest neighbors. In such cases, a
tuple of three components (Σ or Π, Ci, c

(
xi, xj

)
) should be adopted to represent a definition

for local density, where c
(
xi, xj

)
may require additional parameters, e.g., k for k nearest

neighbors. Furthermore, c
(
xi, xj

)
could incorporate the symmetric distance based on the

mutual k nearest neighbors of xi and xj, as did in [10]. Other symmetric distance matrices
can also be adopted.

Using only one local density definition can be challenging to identify clusters in a
dataset containing clusters with different densities. Future studies can address how to apply
the proposed canonical form to handle this problem. For example, we can adopt a stepwise
approach. Each step uses a different definition of local density to target the clusters of a
specific feature. The proposed canonical form can facilitate changing the density definition
at different stages of a clustering approach. The effective integration of the canonical form
and a clustering approach is currently under-studied.

Funding: This research is supported by the Ministry of Science and Technology, Taiwan, under Grant
MOST 108-2221-E-155-013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository. Please refer to the
references in Table 3 for availability.

Acknowledgments: The author acknowledges the Innovation Center for Big Data and Digital
Convergence at Yuan Ze University for supporting this study.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Han, J.; Kamber, M.; Pei, J. Data Mining: Concepts and Techniques, 3rd ed.; Morgan Kaufmann Publishers Inc.: Waltham, MA, USA, 2011.
2. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters a density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231.

3. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. In Proceedings
of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, PA, USA, 1–3 June 1999; pp. 49–60.

4. Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496. [CrossRef] [PubMed]
5. Liu, Y.; Ma, Z.; Fang, Y. Adaptive density peak clustering based on K-nearest neighbors with aggregating strategy. Knowl. Based Syst.

2017, 133, 208–220. [CrossRef]
6. Xie, J.; Gao, H.; Xie, W.; Liu, X.; Grant, P.W. Robust clustering by detecting density peaks and assigning points based on fuzzy

weighted K-nearest neighbors. Inf. Sci. 2016, 354, 19–40. [CrossRef]
7. Du, M.; Ding, S.; Jia, H. Study on density peaks clustering based on k-nearest neighbors and principal component analysis.

Knowl. Based Syst. 2016, 99, 135–145. [CrossRef]
8. Liu, Y.; Liu, D.; Yu, F.; Ma, Z. A Double-Density Clustering Method Based on “Nearest to First in” Strategy. Symmetry 2020, 12, 747.

[CrossRef]
9. Lin, J.-L.; Kuo, J.-C.; Chuang, H.-W. Improving Density Peak Clustering by Automatic Peak Selection and Single Linkage

Clustering. Symmetry 2020, 12, 1168. [CrossRef]
10. Lv, Y.; Liu, M.; Xiang, Y. Fast Searching Density Peak Clustering Algorithm Based on Shared Nearest Neighbor and Adaptive

Clustering Center. Symmetry 2020, 12, 2014. [CrossRef]
11. Chang, H.; Yeung, D.-Y. Robust path-based spectral clustering. Pattern Recognit. 2008, 41, 191–203. [CrossRef]
12. Fu, L.; Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 2007, 8, 3.

[CrossRef] [PubMed]
13. Gionis, A.; Mannila, H.; Tsaparas, P. Clustering aggregation. ACM Trans. Knowl. Discov. Data 2007, 1, 4. [CrossRef]
14. Jain, A.K.; Law, M.H. Data clustering: A user’s dilemma. In Proceedings of the 2005 International Conference on Pattern

Recognition and Machine Intelligence, Kolkata, India, 20–22 December 2005; pp. 1–10.

http://doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://doi.org/10.1016/j.knosys.2017.07.010
http://doi.org/10.1016/j.ins.2016.03.011
http://doi.org/10.1016/j.knosys.2016.02.001
http://doi.org/10.3390/sym12050747
http://doi.org/10.3390/sym12071168
http://doi.org/10.3390/sym12122014
http://doi.org/10.1016/j.patcog.2007.04.010
http://doi.org/10.1186/1471-2105-8-3
http://www.ncbi.nlm.nih.gov/pubmed/17204155
http://doi.org/10.1145/1217299.1217303


Symmetry 2021, 13, 185 22 of 22

15. Veenman, C.J.; Reinders, M.J.T.; Backer, E. A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24,
1273–1280. [CrossRef]

16. Zahn, C.T. Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. IEEE Trans. Comput. 1971, 100, 68–86.
[CrossRef]

17. Kärkkäinen, I.; Fränti, P. Dynamic Local Search Algorithm for the Clustering Problem; A-2002-6; University of Joensuu: Joensuu,
Finland, 2002.

18. Fränti, P.; Virmajoki, O. Iterative shrinking method for clustering problems. Pattern Recognit. 2006, 39, 761–775. [CrossRef]
19. Rezaei, M.; Fränti, P. Set Matching Measures for External Cluster Validity. IEEE Trans. Knowl. Data Eng. 2016, 28, 2173–2186.

[CrossRef]

http://doi.org/10.1109/TPAMI.2002.1033218
http://doi.org/10.1109/T-C.1971.223083
http://doi.org/10.1016/j.patcog.2005.09.012
http://doi.org/10.1109/TKDE.2016.2551240

	Introduction 
	Review on Local Density 
	Radius-Based Local Density 
	kNN-Based Local Density 

	Canonical Form for Local Density 
	Canoncial Form 
	Fit the Existing Definitions to the Canoncial Form 

	Derive New Definitions Using the Canonical Form 
	Experiment 
	Experiment Design 
	Test 1: Comparing the Radiuses p , k , and kP  
	Test 2: Impact of the Contribution Set Ci  on Local Density 
	Test 3: Impact of the Exponent m on Local Density 
	Test 4: Impact of the Integration Operator ( or ) on Local Density 

	Conclusions 
	References

