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Abstract: We present a toy model for extending the Friedmann equations of relativistic cosmology
using fractional derivatives. We do this by replacing the integer derivatives, in a few well-known
cosmological results with fractional derivatives leaving their order as a free parameter. All this
with the intention to explain the current observed acceleration of the Universe. We apply the Last
Step Modification technique of fractional calculus to construct some useful fractional equations of
cosmology. The fits of the unknown fractional derivative order and the fractional cosmographic
parameters to SN Ia data shows that this simple construction can explain the current accelerated
expansion of the Universe without the use of a dark energy component with a MOND-like behaviour
using Milgrom’s acceleration constant which sheds light into to the non-necessity of a dark matter
component as well.

Keywords: cosmology; SN Ia; fractional calculus

1. Introduction

The Hilbert–Einstein field equations, a success of general relativity, work tremendously
well at mass-to-length scales similar to those of the solar system see (e.g. [1]), where the
gravitational field is moderately weak [2–14]. At very large mass-to-length ratios, where
the gravitational field is very strong, the detection of gravitational waves produced by
the interactions of compact objects such as black holes and neutron stars has shown a
remarkable good agreement with the predictions of general relativity.

When the Newtonian acceleration of a test particle reaches values a0 . 10−10 m/s2,
or equivalently when the mass-to-length ratios are much smaller than those of the so-
lar system [15], the Hilbert–Einstein field equations cannot fit an enormous amount of
astrophysical and cosmological data unless: (a) extra dark matter and/or dark energy
components are added or (b) the curvature caused by the matter and energy requires exten-
sions or modifications. In other words, the Hilbert–Einstein field equations do not correctly
predict the observed results at those acceleration scales unless (a) or (b) are adopted. In
what follows, we will only deal with case (b) for the accelerated expansion of the Universe
at the present epoch.

If the gravitational field equations are to be extended, the first intuitive attempt consists
on assuming a general f (R) function of the Ricci curvature scalar R as the Lagrangian
in the gravitational action. Despite some f (R) theories have interesting results [16–23],
there is currently not a full f (R) Lagrangian which solves all the shortcomings between
observations and the gravitational theory. Through the years, more general actions have
been proposed, using for example functions of several scalars built with the Riemann
tensor and even ones in which couplings between R and the matter Lagrangian or the
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trace of the energy-momentum tensor [24–30] are adopted. These proposals are still being
developed and investigated in full, and although interesting in principle, they have a small
general inconvenient: the motion of free particles is not necessarily geodesic and as such, a
fifth force appears naturally.

In Barrientos and Mendoza [30], Bernal et al. [31], Mendoza et al. [32], Barrientos and
Mendoza [33], Barrientos et al. [34], the authors proposed general gravitational actions with
curvature-matter couplings in order to obtain a feasible explanation for the MOdified Newto-
nian Dynamics (MONDian) behavior of gravitational phenomena. The general conclusions
reached by the works of Bernal et al. [31], Mendoza et al. [32], Barrientos et al. [34] is that it
is possible to recover the MONDian expression for the acceleration in the regime a < a0
for a pure metric f (R) theory provided a non-local action construction. Non-locality in
these attempts is introduced as an extra scalar field with dimensions of mass that can be
conveniently thought of as the causally-connected mass to each point in space-time.

The idea of a non-local gravity and its implications at solar system and cosmological
scales have been recently revisited by the works of Mashhoon [35,36], Chicone and Mash-
hoon [37–39], Blome et al. [40]. These theories claim that locality, which allows to treat an
accelerated observer as an inertial one at each instant on his proper world-line in special
relativity, has its limitations. Since the Einstein Equivalence Principle relates an observer
in a local gravitational field with another accelerated one with no gravitation, those limi-
tations are thus extended to gravitational theory. A general characteristic of non-locality
is that fields are no longer given by their instant (or local) value but have a contribution
attached to the history of the observer (in general terms the Lagrangian density is not
localised and as such is not defined as a simple function of the space-time coordinates).
Recent investigations have shown that these kind of proposals can simulate dark matter
behaviour [41–43]. For Tully–Fisher scalings, MOND introduces a gravitational potential
for a point mass source proportional to ln(r), which flattens rotation curves. This is also
included in these non-local proposals, but they cannot fully explain the proportionality
of the MOND force to

√
G, where G is Newton’s gravitational constant. For the non-local

constructions, the relation between the acceleration and the gravitational constant turns
out to be linear.

In the present article, we discuss another possible non-local approach in which frac-
tional calculus is used. Fractional calculus, although still a curiosity for many, has proved to
describe appropriately non-local space-time effects in a wide range of applications [44–50].
In general terms, fractional calculus extends the order of differentiation and integration
from the natural to the real numbers (in fact to the complex numbers, but we are only going
to work with real values in this work). In order to simplify the understanding of fractional
calculus to the non-expert, we have included in Appendix A a simple introduction to
fractional calculus.

The introduction of fractional derivatives in gravity is not a trivial task since there
are several proposals in order to perform the required generalisations. From a pure
mathematical point of view, fractional derivatives must induce a somehow fractional
geometry in such a way that all the geometric entities involved in general relativity e.g., the
connection, the covariant derivative, the Riemann tensor and the metric should be defined
in terms of a fractional derivative order. Such an approach is known as the First Step
Modification (FSM). A more practical and simple way consist in modifying the Hilbert–
Einstein field equations for a given geometry, replacing the covariant derivative order
by its analogous fractional derivative without going deeper in how such equation can be
obtained. This last approach is usually called a Last Step Modification (LSM). In recent
years the applicability of both approaches has been studied in gravity at a classical and
and cosmological level [51–57]. An intermediate approach is to formulate a variational
principle for a fractional order action. This latter approach is of particular interest for the
scientific community, not exclusively of the gravitational area, since a fractional variational
theory is general enough for applications in different scientific fields [58–63].
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The introduction of fractional derivatives (with unknown derivative orders, which are
to be fitted to observations) in the Friedmann equations means that either the gravitational
Lagrangian contains fractional derivatives, or the order of variation has a non-integer
value (or both). In general terms, if fractional derivatives are to be allowed in physical
equations, then the order of differentiation should also be a parameter in the action. In other
words, the principle of least action for field equations should somehow contain fractional
derivatives. If this is not the case, another possibility is that the variation of the action
includes a fractional operator. In a more complicated scenario, both the variation and the
Lagrangian could contain fractional derivatives. By itself, this constitutes a very profound
subject outside the scope of this work. In this article we force the introduction of fractional
derivatives into the standard Friedmann equation of cosmology and see whether we can
fit the order of derivatives using SN Ia observations. The goal of this article is to find out
whether it would be possible to explain the accelerated expansion of the universe without
the introduction of a dark energy component into the cosmological density budget in the
Friedmann equation for a dust flat universe as observed today. We deal with the dark
matter component by introducing MOND’s acceleration constant a0 into the dynamics
of the universe and in principle one would expect that this will force the end result to
mean that a non-baryonic dark matter component is not required. The end result is that
the fractional derivative order used to generalise the Friedmann equations turns out to
be coherent with the reported value of a full MONDian construction of gravity using
fractional derivatives. Nevertheless, as it will be discussed in the article, in general terms
with the studies performed we can not completely claim the non-necessity of a non-baryonic
dark matter, but since MONDian effects are introduced into the problem we expect that
component to have a null value.

The article is organised as follows. In section 2 we describe a few key results of
standard cosmology and cosmographic parameters. In Section 3 we extend the Friedmann
equations and other relations –including cosmographic parameters– to their fractional
derivative counterparts. Since the derivative order is a free parameter of the proposal,
using these fractional extensions we calibrate all free parameters using SN Ia observations
for the accelerated expansion of the Universe in Section 4. In Section 5 we present our
statistical results and finally in Section 6 we state final remarks of the toy model developed
in this article.

2. Standard Cosmology

In this section we briefly summarise a few standard concepts of relativistic cosmology
that will be extended to their fractional derivatives counterparts later on. Many of the
results presented in this section can be found elsewhere (see e.g., [64–67] and references
therein).

The Friedmann–Lemaı̂tre–Robertson–Walker (FRLW) metric describes an isotropic
and homogeneous Universe, and is given by:

ds2 = c2dt2 − a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdϕ2
)

, (1)

where c is the speed of light, a(t) is is the cosmological scale factor as a function of the
cosmic time t, r is the radial distance, k is the curvature and θ and ϕ are the polar and
azimuthal angles respectively. Substitution of the FLRW metric into the field equations of
general relativity with a cosmological constant Λ yields two independent expressions for
the time 00 and radial 11 components respectively:

ȧ2 + kc2

a2 =
8πGρ + Λc2

3
, (2)

ä
a
= −4πGρ−Λc2

3
, (3)
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for a dust, i.e., pressure-less Universe. In the previous equations ρ represents the matter
density. Using the standard definition for the Hubble parameter:

H(t) :=
ȧ
a

, (4)

Equation (2) turns into:

H2 =
8πGρ + Λc2

3
− kc2

a2 . (5)

The right hand side of this equation contains all the information for a late-time Uni-
verse’s constituents: the curvature k, the matter density ρ and the cosmological constant Λ.
The previous equation means that:

1 = ΩM + ΩΛ + Ωk, (6)

where:

ΩM :=
8πGρ

3H2 , ΩΛ :=
c2Λ
3H2 , Ωk := − kc2

H2a2 , (7)

represent the matter, dark energy and curvature density parameters respectively.
Equation (6) is a convenient normalisation for all the energy constituents of the universe,
so that their sum equals one.

We now define a few cosmographic parameters. To begin with, the deceleration
parameter:

q := − 1
H2

ä
a

, (8)

can be rewritten as:
q =

ΩM

2
−ΩΛ, (9)

by means of Equation (3).
Derivating with respect to cosmic time t the second Friedmann Equation (3) yields:

...
a
a
− äȧ

a2 = −4πGρ̇

3
. (10)

We now introduce another cosmographic parameter, namely the jerk:

j :=
1

H3

...
a
a

. (11)

In order to express the jerk in terms of the density parameters, we use the fact that
the covariant divergence of the energy-momentum tensor vanishes, i.e., ∇µTµν = 0, For a
matter-dominated dust Universe, it follows that this relation yields:

ρ̇ = −3Hρ. (12)

and so ρ ∝ a−3. Substitution of this last relation into Equation (10) yields:

j =
3
2

ΩM − q, (13)

which can be expressed in terms of energy densities only using relation (9):

j = ΩM + ΩΛ. (14)

An additional derivative with respect to cosmic time in Equation (10) gives the follow-
ing expression:
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....
a
a
− 2

...
a ȧ
a2 + 2

äȧ2

a3 −
(

ä
a

)2
= −4πGρ̈

3
. (15)

The snap cosmographic parameter s is defined as:

s :=
1

H4

....
a
a

. (16)

The time derivative of Equation (12) yields ρ̈ = −3(ρ̇H + ρḢ) = −3(−3ρH2 + ρḢ).
So, using Equation (15), together with the definitions of H, q, j and Ḣ = −H2(1 + q),
the snap parameter can be written as:

s = −3
2

ΩM(4 + q) + 2j + 2q + q2, (17)

which in terms of the density parameters is:

s = −3ΩM −
1
2

Ω2
M +

1
2

ΩMΩΛ + Ω2
Λ. (18)

Equations (9), (14) and (18) can be expressed in terms of the curvature density param-
eter Ωk [68] instead of the dark energy density parameter ΩΛ using Equation (6). Since the
current observations from Planck [69] strongly suggest that we are living in a flat universe
k = 0, we will work with this value in what follows. Therefore, Equation (6) simplifies to:
1 = ΩM + ΩΛ and so, the value for the jerk parameter in general relativity has a constant
unitary value, i.e., j = 1.

3. Fractional Friedmann Equation

In what follows, we explore the cosmological consequences of replacing the inte-
ger time derivatives in the Friedmann Equations (2) and (3) with fractional derivatives.
The idea is to fit the unknown derivative order to SN Ia observations. Following this path,
we write down the fractional Friedmann equations as:(

Dγa
Dtγ

)2
= κa2

(
8πGρ + Λc2

3

)
, (19)

Dγ

Dtγ

(
Dγa
Dtγ

)
= κa

(
−4πGρ−Λc2

3

)
, (20)

for a flat Universe. The constant κ, with dimensions of time2(1−γ) has been introduced into
the fractional Friedmann equations in order to have dimensional coherence. The left-hand
side of Equation (20) is written as such since in general DγDγ 6= D2γ.

Since our target is to work with a Friedmann fractional model with no dark matter,
we introduce Milgrom’s acceleration constant a0 as a fundamental physical quantity for
the description of gravitational phenomena at cosmological scales. With this and since
the velocity of light c and Newton’s gravitational constant G are also fundamental, using
Buckingham-Π theorem for the dimensional analysis [70], it follows that:

κ = A
( a0

c

)2(γ−1)
. (21)

where A is a dimensionless constant.
Under the idea of fractional orders on the derivative, we can adapt the cosmographic

parameters in a natural way as follows. To begin with, we define the fractional Hubble
parameter as:

H? :=
1
a

Dγa
Dtγ

. (22)
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Since our intention is to express the Friedmann equation in terms of the density
parameter, we follow the procedures of Section 2 and so, dividing Equation (19) by H2 and
using the previous definition it follows that:(

H?

H

)2
= A

( a0

c

)2(γ−1)
(ΩM + ΩΛ). (23)

At this point it is important to mention that the use of the standard definitions for
the density parameters in Equation (7) implies that in this extended fractional Friedmann
cosmological model, the sum (6) is no longer valid. This essentially occurs because the
critical density to “close” a pure matter dominated universe is no longer given by 3H2

0 /8πG.
One can of course redefine the density parameters in such a way that the sum (6) holds.
Indeed, if:

Ω?
M = A

( a0
c
)2(γ−1)ΩM

(
H
H?

)2
(24)

andΩ?
Λ = A

( a0
c
)2(γ−1)ΩΛ

(
H
H?

)2
. (25)

then:
Ω?

M + Ω?
Λ = 1. (26)

However, in order to avoid more confusion with new extended definitions we decided
to keep the standard cosmological definitions of Equation (7) at the cost of breaking up the
validity of relation (6).

Matter Dominated Universe

In order to compute the term H?/H in the previous expressions, a further assumption
about the scale factor a must be made. In standard cosmology, to get how the scale factor
evolves as function of t, the different constituents of the Universe are treated separately.
In this work, we are going to proceed that way. Thus, from now on we restrict our study to
a matter dominated Universe (ΩΛ = 0). For this kind of Universe, the following ansatz is
proposed (see e.g., [66,71,72]):

a = a1tn, (27)

where a1 is a constant, and using the rules of fractional derivative for a power law given in
Appendix A, the fractional Hubble parameter H? is given by:

H? =
Γ(n + 1)

Γ(n + 1− γ)
t−γ, (28)

where the exponent γ that appears in t−γ in the previous equation follows standard
algebraic rules. Also, the standard Hubble parameter for this scale factor is: H = nt−1.
Thus, H?/H can be written as:

H?

H
=

Γ(n)
Γ(n + 1− γ)

t1−γ =
Γ(n)

Γ(n + 1− γ)

(
H
n

)γ−1
. (29)

Substitution of this last result into Equation (23) yields:

H = B
a0

c
(ΩM)1/2(γ−1), (30)

where the constant B is defined as:

B :=
[

Γ(n + 1− γ)

Γ(n)

]1/(γ−1)

nA1/2(γ−1). (31)
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At this point, we have complete freedom over A and so, in order to simplify the
Hubble parameter Equation (30), the following choice is made:

A =

[
Γ(n)

Γ(n + 1− γ)

]2

n2(1−γ). (32)

Therefore, the equation for the Hubble parameter is:

H =
a0

c
Ω1/2(γ−1)

M . (33)

In the previous equation, the definitions of the density parameters given in (7) were
used. Equation (33) can of course be rewritten in such a way so that Ω?

M = 1, where
Ω?

M is the right-hand side of Equation (33) divided by H, but as we mentioned before we
preferred to stay with the definitions used in standard cosmology. Furthermore, the use
of Equation (33) is very convenient since in it, the Hubble parameter H is represented
by a simple function of ΩM. A similar relation is not found in standard cosmology and
a value for the Hubble constant needs to be known somehow when fitting the standard
cosmological model to SN Ia data as shown in the Appendix B.

Also, the use of Equation (33) is quite useful since the definitions of the fractional
cosmographic parameters in Equations (34), (39) and (48), involve the Hubble parameter H,
making necessary an explicit equation for such parameter. Note that the previous equation
is not valid for γ = 1 and since we are going to use that result on many of the rest of the
article, in here and in what follows we demand γ 6= 1.

By defining a fractional deceleration parameter as:

q? := − 1
aH2γ

Dγ

Dtγ

(
Dγa
Dtγ

)
, (34)

where γ in H2γ is an exponent, the second fractional Friedmann Equation (20) for a matter
dominated Universe can be written as:

q?H2γ = κ
4πGρ

3
, (35)

which after dividing by H2 yields:

q?H2(γ−1) = κ
1
2

ΩM, (36)

and so, using Equation (33) and (21) we find:

q? =
A
2

. (37)

In order to find expressions for the fractional jerk and snap cosmographic parame-
ters as functions of the density parameters only, the natural way would be to follow an
analogous procedure as the one described in Section 2. This procedure will involve the
cumbersome application of two consecutive fractional cosmic derivatives (one for the jerk
and another for the snap) in Equation (20). To avoid that, we apply a Last Step Modification
procedure in Equations (10) and (15) with correct definitions for the fractional jerk and
snap parameters. For simplicity and coherence, we will continue to use in what follows a
Last Step Modification and so, the fractional equivalent of relation (10) is given by:

1
a

Dγ

Dtγ

(
Dγ

Dtγ

(
Dγa
Dtγ

))
− 1

a2
Dγ

Dtγ

(
Dγa
Dtγ

)
Dγa
Dtγ

= −κ
4πG

3
Dγρ

Dtγ
. (38)
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We define the fractional jerk parameter as:

j? :=
1

aH3γ

Dγ

Dtγ

(
Dγ

Dtγ

(
Dγa
Dtγ

))
, (39)

and substitute this together with the definitions of the fractional deceleration (34) and
Hubble parameter (22) into Equation (38) to obtain:

H3γ j? + q?H2γH? = −κ
4πG

3
Dγρ

Dtγ
. (40)

In order to obtain an expression for Dγρ/Dtγ an equation for ρ must be found.
From Equation (33) the following relation is given:

ρ =
3

8πG

(
c
a0

)2(γ−1)
H2γ. (41)

With the ansatz a = a1tn, the fractional derivative of order γ of the previous equation is:

Dγρ

Dtρ =
3

8πG

(
c
a0

)2(γ−1)
n2γ Γ(1− 2γ)

Γ(1− 3γ)
t−3γ, (42)

or in terms of the Hubble parameter and the matter density:

Dγρ

Dtγ
=

Γ(1− 2γ)

nγΓ(1− 3γ)
Hγρ. (43)

With this result, Equation (40) takes the following form:

H2γ j? + q?HγH? = −A
( a0

c

)2(γ−1) Γ(1− 2γ)

nγΓ(1− 3γ)

4πG
3

ρ. (44)

or:

H2(γ−1)
[

j? + q?
Γ(n)

Γ(n + 1− γ)nγ−1

]
=

−A
( a0

c

)2(γ−1) Γ(1− 2γ)

nγΓ(1− 3γ)

ΩM

2
. (45)

where Equation (29) was used. Direct substitution of Equations (33) and (37) into the
previous relation yields:

j? = − A
2nγ

[
Γ(1− 2γ)

Γ(1− 3γ)
+

Γ(n)
Γ(n + 1− γ)n−1

]
. (46)

A fractional analogous of Equation (15) involves the term Dγ
t Dγ

t ρ. Since the Leibniz’s
rule is a complicated relation (see Appendix A), it is easier to derive Equation (42) instead
of (43).

The fractional snap parameter is defined by:

s? :=
1

aH4γ

Dγ

Dtγ

(
Dγ

Dtγ

(
Dγ

Dtγ

(
Dγa
Dtγ

)))
. (47)

By performing a similar procedure as the one to obtain the fractional jerk parameter it
follows that:
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s? = −A
[

Γ(1− 2γ)

2Γ(1− 4γ)n2γ

+
Γ(n)Γ(1− 2γ)

Γ(1− 3γ)Γ(n + 1− γ)n2γ−1 −
A
2

]
. (48)

4. SN Ia Fits

The accelerated expansion of the Universe was first inferred through cosmological
observations of SN Ia as standard candles at all redshifts. Perlmutter et al. [73] used 42
high-redshift supernovae to construct an apparent magnitude-redshift diagram in order to
obtain the best values for the matter density parameter ΩM with the introduction of a dark
energy density parameter ΩΛ component.

The model independent relation between the luminosity distance dL(z) as a function
of redshift z and the apparent magnitude µ is given by [34,67]:

µ(z) = 5 log
[

H0dL(z)
c

]
− 5 log h(z) + 42.3856, (49)

where H0 is the Hubble constant evaluated at the present epoch t0 and
h := H0/100 km/s/Mpc is the normalised Hubble constant, with the luminosity distance
for a flat universe given by [74]:

dL(z) =
c

H0

[
z +

1
2
(1− q0)z2 − 1

6

(
1− q0 − 3q2

0 + j0
)

z3

+
1

24

(
2− 2q0 − 15q2

0 − 15q3
0 + 5j0 + 10q0 j0 + s0

)
z4 + ...

]
,

(50)

where q0, j0 and s0 are the cosmographic parameters evaluated at the present epoch.
Substitution of Equations (9), (14) and (18) into the previous relation yields an expression for
the distance modulus µ as a function of z and ΩM. Since the values for the distance modulus
and redshift are given by observations, a statistical fit will return the best estimated values
for both density parameters.

Since our intention is to see whether the fractional Friedmann model presented above
can account for SN Ia observations, we made the assumption that the Last Step Ap-
proximation can be employed on Equation (50) and the cosmographic parameters de-
fined in terms of the ordinary time derivatives can be replaced by their fractional ana-
logues, so instead of using Equations (9), (14) and (18) for the cosmographic deceleration,
jerk and snap parameters, we use their fractional extension given in (37), (46) and (48).
This generalisation requires the Hubble parameter H0 to be given by Equation (33). The
SN Ia distance modulus-redshift data was taken from the Supernova Cosmology Project
(SCP) Union 2.1 [75]. The data can be downloaded at the following location: http:
//supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt, or in the cosmology ta-
bles section of http://supernova.lbl.gov/Union/.

In order to perform the statistical fits, we used the free software gnuplot (www.gnuplot.
info) to obtain the best values for the free parameters of our model. The calibration can be
directly performed since the constants c, a0 and j0 are known and so the corresponding
equations for H0, q0 and s0 become functions of the density parameters and the fractional
order. We used the fit function command in gnuplot for the calibration of the free parameters.
This command uses non-linear and linear least squares methods and is able to fit the
required function through the empirical data and provides the correlation matrix between
the parameters, the number of iterations employed for the converged fit, the final sum
of the squares of residuals (SSR), the best fit value for the parameters and its asymptotic
standard error, the p-value for the χ-square distribution and the root mean squares of
residuals.

http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
http://supernova.lbl.gov/Union/
www.gnuplot.info
www.gnuplot.info


Symmetry 2021, 13, 174 10 of 18

At this point it is very important to note that in the definition of the cosmographic
parameters q?, j? and s? we used the Hubble parameter H and not H?. With the use of
the Last Step Modification technique we have no formal way to decide which one to use.
We have used H for the simplicity it produces but of course at first sight it seems more
natural that the choice H? would be the correct choice.

In order to see that the choice H is the only viable one we proceed as follows. The final
relation we would like to solve is the redshift-magnitude relation (49). That equation con-
tains the Hubble parameter H(z) through the definition of h. As mentioned on Appendix B,
for the case of the standard Λ-CDM cosmology a knowledge of H0 is required to perform
the fit to SN Ia data since there is no independent equation to relate H(z) with some of
the parameters of the model. In the case of fractional calculus cosmology studied in this
article we could have chosen to use H? instead of H on Equation (49), but then we would
be required to know by observations the value of H?

0 . In order to avoid this it is then best
to leave Equation (49) as it is and take advantage of relation (33), i.e., in our model we do
not need to know a priori the value of H0 to perform the fit to SN Ia data.

Also, it is important to note that the definitions of the csomographic parameters q?, j?

and s? in Equations (34), (39) and (47) could have been made in terms of H? instead of H.
But this just means to rewrite the standard cosmological Equations (6), (9), (14) and (18)
with their star counterparts. This will not have any departure from the standard ΛCDM
cosmological model.

5. Results

The fractional cosmographic parameters are functions that depend on n (via A), γ
and ΩM. Therefore, an extensive search for a coherent fit with the simple gnuplot routine
with those three parameters as free variables was made. Setting up the initial values as
follows: n = 2.6, γ = 2.1 and ΩM = 4.5, yields quite good convergence for the routine. The
obtained results are reported in Table 1.

Table 1. Left: Best fit results for the fractional derivative model with three free parameters: the
fractional derivative order γ, the matter density parameter ΩM and the power for the scale factor
n presented with their corresponding errors for the initial values: n = 2.6, γ = 2.1 and ΩM = 4.5.
Right: The panel shows the correlation matrix for the best fit values reported. The SSR and the
p-value for this model are: 636.015 and 0.04 respectively.

γ 1.7254± 0.043
ΩM 11.6273± 1.583

n 0.9306± 0.846

γ ΩM n
γ 1.000

ΩM 0.999 1.000
n 0.995 0.995 1.000

Although the error in n is ∼90%, the mean plotted best distance modulus-redshift
function in Figure 1 seems to be in a good agreement with the observations.

The envelope curves that represent the statistical errors above and below the solid
mean curve in Figure 1 have not been drawn since they turn out to be quite wide due to
the somewhat large error in n.

With the mean values reported in Table 1, the Hubble constant H0 given by Equation (33)
has the following numerical value:

H0 = 66.95 km/s/Mpc, (51)

which is in a great agreement with the value reported by Planck [69] (see Appendix B).
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Figure 1. Apparent magnitude µ vs. redshift z Hubble diagram from the Union 2.1 SNe Ia data (dots
with their corresponding error bars) and the best fit from our model. The solid line represents the
distance modulus µ(z) from the best fit to the data of the model.

Due to limitations of the gnuplot’s fit routine and the divergences in the range x < 0
of the Γ(x) function, the convergence of the fit is highly dependent on the initial values
of the free parameters n, γ and ΩM. The results shown in Table 1 are obtained using a
wide range of initial values. Another fit with a good convergence of the fit is given by the
initial values: n = 1.3, γ = 2.6 and ΩM = 2.1. The obtained values are reported in Table 2.
The distance modulus-redshift plot for the values obtained in this fit is shown in Figure 2.
The envelope curves that represent the statistical errors are present, but due to the small
asymptotic errors such envelope is cover by the mean curve.

Table 2. Left: Best fit results for the fractional derivative model with three free parameters: the
fractional derivative order γ, the matter density parameter ΩM and the power for the scale factor n
presented with their corresponding errors for the initial values: n = 1.3, γ = 2.6 and ΩM = 2.1. The
right panel shows the correlation matrix for the best fit values reported. The SSR and the p-value for
this model are: 573.544 and 0.50 respectively.

γ 1.4937± 0.0003
ΩM 5.4220± 0.0243

n 0.5539± 0.0046

γ ΩM n
γ 1.000

ΩM 0.273 1.000
n −0.140 0.587 1.000

For this set of initial values the resulting asymptotic error of the free parameters
is considerably less than those reported in Table 1. The parameters γ and ΩM do not
have a significant improvement, unlike the parameter n whose error drastically decreased.
Another relevant difference resides in the p-value, this statistical indicator increased, but is
acceptable to within the ranges of gnuplot. With these results, the Hubble constant has the
following value:

H0 = 68.37 km/s/Mpc. (52)
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Figure 2. Apparent magnitude µ vs. redshift z Hubble diagram from the Union 2.1 SNe Ia data (dots
with their corresponding error bars) and the best fit from our model. The solid blue line represents
the distance modulus µ(z) from the best fit to the data of the model. The other solid curves represents
the envelope of the statistical errors.

6. Final Remarks

In this article we have generalised the standard Friedmann equations of cosmology
using fractional derivatives by performing a Last Step Modification approach. The ob-
tained fractional Friedmann equations and the formulae of the corresponding fractional
cosmographic parameters in terms of the cosmological density parameters were used to
explain the current accelerated expansion of a dust and zero curvature Universe, with-
out the introduction of a dark energy component. We introduced Milgrom’s acceleration
constant into the built expressions with the intention of not requiring any non-baryonic
dark matter component. The statistical fitting of the free parameters in the model shows
an excellent agreement with a fractional derivative order of 3/2, which has recently been
shown to be the required fractional order to explain MOdified Newtonian Dynamics
(MOND) phenomenology [76]. This result is in excellent agreements with the recent work
by Barrientos et al. [34] since the Universe at the present epoch is in the deep MOND
regime. Indeed, Milgrom [77] noticed a coincidental relation between the acceleration
a0 and H0: a0 ≈ cH0/2π. Since the Hubble radius rH = c/H0 and the Hubble mass is
MH ≈ c3/2GH0 it then follows that the Newtonian gravitational acceleration experienced
by a test galaxy at a distance rH of a point mass source MH is ≈ GMH/r2

H ≈ πa0 (see
e.g., [78,79]). In other words, the Newtonian gravitational acceleration at the present
epoch in the Universe is approximately MONDian. As such, one would expect that if
no dark matter components are introduced into the cosmological energy budget, then a
MONDian description of the Universe at the present epoch is required. The introduction of
fractional derivatives into physics usually means that non-locality is taking place at some
level and it gets more noticeable at large scales. As noted by Barrientos et al. [34], there
are an infinite number of non-local relativistic theories of gravity with curvature-matter
couplings that have MOND on their weak field limit of approximation. All this is pointing
into the direction that MOND is most probably a non-local phenomenon which occurs at
sufficiently small mass to squared length scales, i.e., at acceleration scales . a0.

Strictly speaking, the fitting procedure is only giving information about the total
matter density ΩM which includes baryonic and non-baryonic components. In this sense
the model presented shows that a simple introduction of fractional Friedmann equations in
cosmology can account for a dark energy component. However, as mentioned in Section 3,
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the introduction of Milgrom’s acceleration constant a0 in Equation (21) was done with the
intention that the dark matter component would be taken into account by a MOND-like
prescription. The obtained value of the fractional derivative order of ∼3/2 in this article
and the fact that we expect MONDian effects to be relevant in the present epoch dynamics
of the Universe, further reinforce this result as mentioned in the previous paragraph.

The present work is restricted to a matter dominated Universe and puts aside the
possibility of a dark-energy dominated Universe. The main reason lies in the complexity of
the resultant equations. In fact, for a Λ-dominated Universe, Equation (27) is not longer
valid. Thinking in analogy to the standard cosmological model, we can expect that the scale
factor for a dark-energy dominated era has an exponential dependence on t. However, the
fractional derivative of an exponential function is a cumbersome expression that makes
the fit extremely difficult. The case of a Universe where both components are taken into
account is equally complex since our definitions for the cosmographic parameters require
an equation for the Hubble parameter and Equation (23) is a relation for H?. In order
to have a more solid proposal, a more profound model needs to be built, introducing
fractional derivatives in the principle of least action. Such topic goes beyond to the toy
model introduced in this work.

The toy model presented in this article about the current expansion of the Universe
using fractional derivatives using the Last Step Modification is to be taken with care.
It represents a first exploration onto whether there could be any interesting aspects of
gravitational theory to be more deeply investigated since the field equations do not come
from a variational principle. We intend to go beyond the present work to construct a
formalism in terms of fractional derivatives for geometrical objects in general relativity and
in formulating a fractional calculus of variations with applications to gravitational theory.
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Appendix A. Fractional Calculus: A Simple Introduction

The question of whether it is possible to take half the derivative of a function goes back
to a letter written by Leibniz to L’Hôpital in 1665. Since then the subject of fractional calcu-
lus, as it is now known, has attracted the interest of mathematicians like Abel, Liouville
and Riemann, who developed the basis of the theory. In recent years, fractional derivatives
have proved to be useful in many applications ranging from anomalous diffusion, finance
to modeling of viscoelastic materials. As expected, when considering the order of differ-
entiation to be an integer, the fractional derivative coincides with the standard definition.
However, for non-integer values it has an intrinsic non-local character, which explains its
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applicability in complex phenomena in which long range interactions or memory effects
are present. Before providing the general definition of fractional derivative, we give a few
examples motivating this notion. Take for instance

f (x) = xk.

Computing the first derivative we obtain

f ′(x) =
d f
dx

= kxk−1.

The successive repetition of this procedure n times yields the n-th derivative:

dn f
dxn =

k!
(k− n)!

xk−n.

The above expression makes perfect sense for a real number k, if we can define its
factorial in a meaningful way. The Γ function provides such a generalization, and the above
expression can be written as

dα f
dxα

=
Γ(k + 1)

Γ(k− α + 1)
xk−α,

where we have replaced n by α to emphasize the fact that now the order of differentiation
can be taken to be any real number.
A similar reasoning can be applied to other basic examples such as the exponential or
trigonometric functions. In such a way, it is possible to define the fractional derivative
or integral for functions expressed in their Taylor or Fourier series expansions. However,
a more general and useful definition is based on the Riemann-Liouville representation
formula of a function. More precisely, the integral operator of order α is defined as

Iα f (t) =
1

Γ(α)

∫ t

0

f (τ)
(t− τ)1−α

dτ.

Again, this definition can be justified by applying the standard integral operator m
times and integrating by parts and then making sense of the definition for a real order of
integration. Less intuitive, but more appropriate in formulating initial value problems than
other definitions of fractional derivatives is the Caputo proposal given by

Dα f (t) = Im−αDm f =
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1 f (m)(τ) dτ,

for m− 1 < α < m, m ∈ N and where f (m) denotes the standard derivative of f . For a
systematic presentation of fractional calculus the reader is referred to Podlubny [44].

There are two properties of fractional derivatives that are important to mention since
they depar from the common sense in ordinary calculus. The first one is the Leibniz’s rule
for the product of two functions. Oldham and Spanier [80] proved that the most general
expression is given by:

Dα[ f g]
dxα

=
∞

∑
j=−∞

Γ(α + 1)
Γ(α− β− j + 1)Γ(β + j + 1)

dα−β−j f
dxα−β−j

dβ+jg
dxβ+j .

The second one is the composition rule:

DαDβ f = Dα+β f −
β−1

∑
k=0

[x− a]k−α−β f (k)(a)
Γ(k− α− β + 1)

.
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Appendix B. ΛCDM Standard Cosmology

With the intention of showing the robustness of the fitting procedure we are using
in the article with the fit routine of gnuplot, we show in this appendix that for the case
γ = 1 we recover the values of ΩM and ΩΛ reported in the standard ΛCDM cosmological
model. To do so, we cannot simply fix the value γ = 1 on all fractional equations since
Equation (30) is not valid for such value. Therefore, the non-fractional Equations (6), (9), (14)
and (18) must be employed. Unlike the fractional case, Equation (6) is a constriction
and not an equation for the Hubble parameter H0. Since the distance modulus µ(z)
relation (49) has an explicit dependence on this parameter, a value must be introduced.
There are several values reported in the literature for H0 that constitutes the so called
“cosmological tension”. We performed fits to SN Ia data using the values reported by the
Planck Collaboration [69]: HPlanck

0 = 67.36 km s−1Mpc−1, a value from SN Ia observations:
HSN Ia

0 = 63 km s−1Mpc−1 (see Figure 9 in [73] and references therein) and a local Hubble
constant [81]: Hloc

0 = 75.35 km s−1Mpc−1.
Due to condition given by (6) the number of free parameters is reduced to one. ΩM

was chosen to be this free parameter. The results obtained by the fit are shown in Table A1.

Table A1. Best fit results for the standard cosmological model with one free parameter: the matter
density parameter ΩM, presented with its corresponding error, SSR and p-value.

Planck SN Ia Local

ΩM 0.185818 0.3601 0.027163
Asymptotic Error ±0.008958 ±0.01343 ±0.005725

SSR 557.741 822.58 742.651
p-value 0.203964 <0.0001 <0.0001

The value of Ωloc
M greatly differs from the standard estimation: ΩM = 0.27. How-

ever, such value is between ΩPlanck
M and ΩSN Ia

M . Thus, a Hubble parameter H0 between
63 km s−1Mpc−1 and 67.36 km s−1Mpc−1 will be closer to what is expected. A recent study
made by Mukherjee et al. [82] reports the following estimations for the Hubble parameter
and the matter density: H0 = 67.6+4.3

−4.2km s−1Mpc−1 and ΩM = 0.47+0.34
−0.27, which agree with

the results obtained from our fit.
Figure A1 shows the Hubble diagram for the ΛCDM cosmological model using the

Planck value for the Hubble parameter.

 32

 34

 36

 38

 40

 42

 44

 46

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

µ

z

Figure A1. Apparent magnitude µ vs. redshift z Hubble diagram from the Union 2.1 SN Ia data
(dots with their corresponding error bars) and the best fit from the ΛCDM cosmological model with
HPlanck

0 = 67.36 km s−1Mpc−1. The solid line represents the distance modulus µ(z) from the best fit
to the data.
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