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Abstract: We derive the particle asymmetry due to inflationary baryogenesis involving a complex
inflaton, obtaining a different result to that in the literature. While asymmetries were found to be
significantly smaller than previously calculated, in certain parameter regions, baryogenesis can still
be achieved.
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1. Introduction

Whilst the general principles behind the generation of particle asymmetries are well
understood [1], the specific mechanism through which baryogenesis occurred remains
a mystery. What is apparent is that the Standard Model alone does not give rise to the
appropriate conditions to realise baryogenesis via the electroweak phase transition [2]. An
interesting prospect is that the baryon asymmetry might be generated due to inflationary
physics [3–12]. In this work, we re-examine the inflationary baryogenesis scenario proposed
recently in [8,9]. We rederive the parametric form of the asymmetry, finding a significantly
different result. Subsequently, we identify the parameter regions, which are simultaneously
consistent with the cosmological evidence for inflation [13,14] and allow for successful
baryogenesis. Moreover, we discuss issues related to effective field theory intuition and
procedures for changing between dimensionful and dimensionless sets of variables, which
are more generally applicable. Specifically, we highlight that consistent scaling of variables
should typically be in terms of a single mass scale and thus equivalent to a change of units.

Hertzberg and Karouby [8,9] considered the possibility that the inflaton was a
complex field

φ(t) =
1√
2

ρ(t)eiθ(t) , (1)

which carries a conserved global quantum number (up to Planck scale, MPl, with effects
that are expected to violate all continuous global symmetries). The requirements for
generating a particle asymmetry in a given global charge is a period of out-of-equilibrium
dynamics, together with violation of C, CP, and the associated global symmetry [1]. In
the scenario at hand, the out-of-equilibrium dynamics are driven by inflation. Further,
C and CP can be broken spontaneously due to the initial phase of the inflaton field θi
(reminiscent of the Affleck–Dine mechanism [4]). Finally, the violation of the inflaton
global symmetry is sourced from small breaking terms in the potential. We shall take a
simple quadratic potential (as used commonly in chaotic inflation [15]) supplemented by
a single dimension-α operator (for α ≥ 3), which breaks the U(1) global symmetry, and,
following [8], we assume a potential of the form

V(φ, φ∗) =
1
2

m2|φ|2 + λ

(
1
Λ

)α−4
(φα + φ∗α) , (2)

where λ is a dimensionless coupling, and Λ has mass dimension one (deviating from the
notation of [8]). As the latter term causes a perturbation from the quadratic potential, it is
constrained to be small for successful inflation
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(
λ

2
α
2−1Λα−4

)
ρα

i cos(αθi)�
1
2

m2ρ2
i , (3)

where the subscript i indicates the value of a given parameter at some arbitrary initial time
for which the inflaton’s field value is ρi ∼ MPl. Note that Equation (3) is required to be
satisfied for all θi in [8], but this seems too stringent a requirement. It follows that to avoid
perturbing the quadratic potential it is required that

λ� 2
α
2−1Λα−4m2

Mα−2
Pl cos(θiα)

. (4)

A natural measure of particle asymmetries is

A∞ ≡
n− n̄
n + n̄

, (5)

in terms of the number densities of particles n and antiparticles n̄. This quantity is bounded
by 0 ≤ |A∞| ≤ 1. Extremal values correspond to equal populations n = n̄ for A∞ = 0
or a completely asymmetric population with vanishing n or n̄ for |A∞| = 1. Once an
asymmetry is established in the inflaton charge, the inflaton can decay in a manner that
transfers the asymmetry to baryons. An appropriate measure of the inflaton asymmetry at
an early time is given by [8]

A0 =
m(n− n̄)

ε
, (6)

where ε is the energy density and the subscripts 0 and ∞ distinguish the asymmetry at
early and late times. At late times, the energy density is determined by the non-relativistic
gas of φ and φ∗; thus, ε = m(n + n̄) and the asymmetry reduces to the form of Equation (5).

It was argued in [8] that, by evaluating Equation (6), the late time asymmetry can be
expressed as follows

A(HK)
∞ ∼ −cαλ

(
Mα−2

Pl
m2Λα−4

)
sin(θiα) . (7)

The constant cα is estimated to be of the order [8]

cα ∼
(

2
3

) α
2
αΓ 1

2

(α

2

)
, (8)

in terms of the incomplete Γ-function
Whilst the prospect of generating baryogenesis through the dynamics of a complex

inflaton is rather elegant, the form of A(HK)
∞ raises some questions, in particular, whether

Equation (7) can take values greater than unity. As discussed above, the coupling λ must
satisfy Equation (4) to avoid perturbing the inflationary potential. Assuming λ saturates
this bound (although it should also be perturbative λ . 1), then |A(HK)

∞ | can take values in
the range

0 ≤ |A(HK)
∞ | < 2α/2−1cα

(
MPl
ρi

)α−2
tan(θiα) . (9)

This allows values of A(HK)
∞ greater than unity for large tan(θiα), e.g., with α = 5 and

sin(5θi) = −1, one finds

A(HK)
∞ ∼ 1012

(
λ

1

)(
1016 GeV

Λ

)(
1013 GeV

m

)2

, (10)

in contradiction with the definition of the asymmetry, as given in Equation (5). Further,
from inspection of Equation (7), the scaling behaviour of A(HK)

∞ , seems counterintuitive as
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it does not conform to expectations from effective field theory. The asymmetry receives
sequentially larger contributions from operators with increasing mass dimension.

The purpose of this study was to rederive the form of the asymmetry due to a complex
inflaton A∞. We obtained a result that differs in form from Equation (7) and that satisfies
both |A∞| ≤ 1 and effective field theory considerations. In particular, Section 3 gives a
careful account of the differences between the derivation here and that of [8], along with
arguments in favour of our approach.

2. The Inflaton Asymmetry

The asymmetry A0 can be expressed in terms of the overall charge difference ∆Nφ,
which is related to the particle asymmetry per comoving volume n− n̄ as follows

A0 =
m(n− n̄)

ε
=

m
ε

(
∆Nφ

Vcoa3

)
, (11)

where Vco is the comoving volume, and a(t) is the scale factor. By examining the evolution
of the number of inflatons Nφ relative to the number of anti-inflatons Nφ̄, assuming an
FRW metric, one obtains

∆Nφ ≡ Nφ − Nφ̄ = iVcoa3(φ∗φ̇− φ̇∗φ) , (12)

Following the first steps of [8]; we start from the equation of motion (EoM) for φ
given by

φ̈ + 3Hφ̇ + m2φ + λα

(
1
Λ

)α−4
φ∗α−1 = 0 , (13)

where H = ȧ/a is the Hubble parameter. The final charge difference ∆Nφ(t f ) can be found
by taking the time derivative of Equation (12) and using the EoM, to obtain

∆Nφ(t f ) ' ∆Nφ(ti) + iλ
(

1
Λ

)α−4
αVco

∫ t f

ti

a(t)3[φ(t)α − φ∗(t)α].

Moreover, as any initial asymmetry is likely erased via inflation: ∆Nφ(ti) ' 0. Thus,
to O(λ) this gives

∆Nφ(t f ) ' −
(

1
Λ

)α−4 λαVco

2
α
2−1

∫ t f

ti

a(t)3ρ(t)α sin(αθ(t)). (14)

Since at zeroth order in λ the argument does not evolve, we can take θ(t) = θi.
Moreover, at zeroth order in λ, the radial component ρ is a real valued function satisfying

ρ̈ + 3Hρ̇ + m2ρ = 0 , (15)

with the associated Friedmann equation

H2 =
1

6M2
Pl

(
ρ̇2 + m2ρ2

)
≡ ε

3M2
Pl

. (16)

Then, working at lowest order, one can express ∆Nφ(t f ) in terms of the radial compo-
nent to obtain [8]

∆Nφ(t f ) ' −λ

(
1
Λ

)α−4 Vcoα

2
α
2−1

sin(θiα) I(ti, t f ) , (17)

with

I(ti, t f ) =
∫ t f

ti

dt a(t)3ρ(t)α . (18)
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It follows that the asymmetry can be expressed as follows

A0 = − m
a3ε

(
1
Λ

)α−4
λ

α

2
α
2−1

sin(θiα) I(ti, t f ) . (19)

Here is where our derivation differs crucially from [8] (in the next section, we explore
this difference in detail). We make a change of variables such that everything is measured
in units of inflaton mass m

τ ≡ mt , ρ̂ ≡ ρ

m
, Ĥ ≡ H

m
. (20)

Thus, each of the rescaled quantities is dimensionless (reminiscent of the MPl-units
sometimes employed). The scaling leads to a dimensionless version of Equation (15)

d2

dτ2 ρ̂ + 3Ĥ
d

dτ
ρ̂ + ρ̂ = 0 . (21)

The corresponding dimensionless Friedmann equation is Ĥ2 = ε̂
3 in terms of ε̂ ≡

ε/(mMPl)
2. Following the notation of [8], we introduce

fα =
α

2
α
2−1

1
a3ε̂

Ī(τi, τf ) , (22)

in terms of the scaled quantity

Ī(τi, τf ) =
∫ τf

τi

dτ a(τ)3ρ̂(τ)α . (23)

It follows that Equation (19) can be rewritten as

A0 = −λ fα

(
mα−2

M2
PlΛ

α−4

)
sin(θiα) . (24)

To obtain the late time asymmetry, we should evaluate fα in the limit τi, τf → ±∞.
Then, making the replacement fα → cα = fα(τi → −∞, τf → ∞) gives our main result

A∞ = −cαλ

(
mα−2

M2
PlΛ

α−4

)
sin(θiα) , (25)

where the coefficients cα are given parametrically in Equation (8). Observe that A∞ above
is distinct from Equation (7); the asymmetry is bounded |A∞| ≤ 1, and contributions are
suppressed for increasing α, as expected from effective-field-theory considerations.

3. Changing Variables

We next discuss the differences between Equation (25), derived here, and Equation (7),
from [8]. Notably, the derivation of [8] introduces a number of dimensionful arbitrary scal-
ing constants; here, we highlight that these scalings cannot be independent and highlight
that a proper choice for these scalings lead one to the result of Equation (25). Specifically,
in [8], the following dimensionless EoM is considered

d2

dτ̄2 ρ̄ + 3H̄
d

dτ̄
ρ̄ + ρ̄ = 0 , (26)

where a change of variables different to Equation (20) is used, and variables with mass
dimension are not scaled by a single mass scale. To see why the change of variables used
in [8] runs into difficulties, consider the general scaling



Symmetry 2021, 13, 2449 5 of 8

τ̄ ≡ Mtt , ρ̄ ≡ ρ

Mρ
, H̄ ≡ H

MH
. (27)

Then rescaling Equation (26) one obtains

ρ̈ + 3H
Mt

MH
ρ̇ + M2

t ρ = 0 . (28)

Requiring that Equation (15) is recovered from Equation (28) fixes Mt = MH = m.
However, this does not specify Mρ. Moreover, as we show shortly, Mρ appears explicitly in
the form of A∞ and so can not be chosen arbitrarily. In [8], the identification Mρ = MPl is
made, causing a problem, which we address below.

Without specifying Mρ we now rederive the form of the asymmetry A∞. Starting from
Equation (19)

A0 = − m
a3ε

(
1
Λ

)α−4
λ

α

2
α
2−1

sin(θiα) I . (29)

Recall from Equations (18) and (23) the definitions of I and Ī, with the scaling factor
Mρ unspecified these can be related by Ī = m

Mα
ρ

I . Thus in terms of fα, cf. Equation (22),
we obtain

A0 = −
(

ε̂

ε

)
λ fα

(
1
Λ

)α−4
Mα

ρ sin(θiα) . (30)

Using ε̂ ≡ ε/(mMPl)
2 and replacing fα with cα we obtain

A∞ = −λcα

Mα
ρ

m2M2
PlΛ

α−4
sin(θiα) . (31)

Given that the asymmetry changes with Mρ signals, this scale can not be chosen
arbitrarily. Observe that taking Mρ = MPl gives the result of [8], as quoted in Equation (7),
and, for Mρ = m, we recovered Equation (25), as expected.

We already argued that an appropriate scaling amounts to a simple change of units.
We next give an explicit argument in support of this approach. Whilst previously we have
rescaled to obtain a dimensionless EoM for ρ, we now consider the EoM for φ

φ̈ + 3Hφ̇ + m2φ + λα

(
1
Λ

)α−4
φ∗α−1 = 0. (32)

The validity of a set of scalings is independent of α, and the root of the problem is
most transparent for α = 4. We consider again a general rescaling, as in Equation (27), with
φ̄ = φ/Mρ. The desired form of the rescaled EoM is

d2

dτ̄2 φ̄ + 3H̄
d

dτ̄
φ̄ + φ̄ + 4λφ̄∗3 = 0. (33)

Applying the parameter scalings, we obtain

φ̈ + 3H
Mt

MH
φ̇ + M2

t φ + 4λ

(
M2

t
M2

ρ

)
φ∗3 = 0 , (34)

and, to recover Equation (32) with α = 4, we require m = Mρ = Mt = MH . Finally, con-
sider the case of general α, where the appropriate dimensionless version of Equation (32) is

d2

dτ2 φ̄ + 3Ĥ
d

dτ
φ̄ + φ̄ + λα

(
1
Λ̂

)α−4
φ̄∗α−1 = 0. (35)
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We rescale all dimensionful quantities (including Λ) by a single scale m, except for φ,
which we leave unspecified, in order to show that this fixes the scaling factor for φ

τ ≡ mt , φ̄ ≡ φ

Mρ
, Ĥ ≡ H

m
, Λ̂ ≡ Λ

m
. (36)

Applying Equation (36) to (35), we obtain

φ̈ + 3Hφ̇ + m2φ +
(m

Λ

)α−4
(

m2

Mα−2
ρ

)
λαφ∗α−1 = 0.

To recover Equation (32), we again require m = Mρ. Hence, consistent scalings should
typically be in terms of a single mass scale and thus be equivalent to a change of units.

4. The Baryon Asymmetry

The asymmetry in baryons is typically given as follows

ηb =
nb − n̄b

nγ
' 6× 10−10 . (37)

This is similar to Equation (5), but here the difference between baryons nb and anti-
baryons n̄b is normalised relative to the photon number density nγ. In the previous section,
we derived the parametric form of the asymmetry in the inflaton global charge A∞, which
is related to ηb via

ηb ∼ g
3
4∗ A∞

(√
ΓMPl
m

)
. (38)

We calculated here the magnitude of ηb, which arises due to the inflaton asymmetry,
and to identify parameter regions in which the observed baryon asymmetry can be realised.

As only quarks carry baryon number in the Standard Model, the first gauge and
Lorentz invariant baryon number violating operator is φQQQL; however, mild extensions
of the Standard Model can alter this. Incidentally, leptogenesis might be accomplished
with lower-dimension operators. We do not pursuit these possibilities further but hope
to return to them in a future publication. For our purposes, we simply suppose that the
inflaton decays dominantly via a dimension-p operator, suppressed by a scale M. Thus,
the decay rate is parametrically

Γφ ∼ m
( m

M

)2(p−4)
. (39)

It would be quite natural to identify M with Λ, but, for the moment, we maintain the
more general possibility that these scales are distinguished. Substituting the forms of Γφ

and A∞, and assuming that each inflaton decay violates baryon number by one unit (as
with φQQQL), the resultant baryon asymmetry is given by

ηb ∼ −cαλg
3
4∗
( m

M

)p−4(m
Λ

)α−4
(

m
MPl

) 3
2

sin(θiα). (40)

Further, up to a dependence on the number of e-folds of inflation N, the observed
value [13] of the squared amplitude of density fluctuations ∆2

R ≈ 2.45× 10−9 fixes the
inflaton mass in models of single-field slow-roll inflation

m '
√

6π∆R MPl
N

' 1.5× 1013 GeV
(

60
N

)
. (41)
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Notably, the observed baryon asymmetry can be reproduced with this value of inflaton
mass. For a dimension 5 breaking operator (α = 5) and a dimension 7 transfer operator
(p = 7) generated at the scale Λ = M, with sin 5θi ≈ 1, the observed ηb is obtained for

ηb ∼ 10−9
(

λ

1

)(
m

1.5× 1013GeV

) 11
2
(

5× 1013GeV
Λ

)4
(42)

where we took g∗ ' 100.
In [8], it is argued, using the form of A(HK)

∞ , that ηb ∼ 10−9 can be obtained for
M = Λ ∼ 1016 GeV. As a result, decays via φQQQL are subdominant to dimension five
U(1)-violating MPl-suppressed decays, and the asymmetry is erased unless some symmetry
forbids these operators. However, using instead the form of A∞ from Equation (25), such
ad hoc symmetries are no longer necessary.

We conclude that realistic values of the baryon asymmetry can in principle be gen-
erated. It remains to examine the requirements of inflation, as given in Equations (3)
and (4). For general θi, this constraint is highly problematic, as it implies λ� 1; e.g., with
sin(αθi) ∼ 1√

2
and α = 5, it is required that

λ� Λm2

M3
Pl
' 10−14

( m
1013 Gev

)2
(

Λ
1014 Gev

)
. (43)

Such values of λ are typically too small to realise the observed baryon asymmetry. In
the example studied in Equation (42) this leads to baryon asymmetries ηb � 10−23.

However, observe that Equation (4) is trivially satisfied for cos(αθi) ≈ 0 (also note that,
in this case, |A∞| is maximal, as sin(αθi) ≈ ±1). Thus, for special values of θi, inflationary
cosmology is unperturbed.Note also that forms of Equations (3) and (25) can vary if the
symmetry violating operator is changed (e.g., Λ4−αφα−1φ∗ + c.c.). Thus, so can the values
of θi for which Equation (3) is automatically satisfied.

It would be interesting to investigate whether there are mechanisms that can fix θi at
these distinguished values. From an alternative perspective, given that prior to inflation
the field φ takes different values of θi in different local patches, one of which subsequently
inflates to form the visible universe, this might allow for an anthropic explanation.

5. Conclusions

Our main result is the expression of A∞ given in Equation (25), the magnitude of
the particle asymmetry expected due to a complex inflaton. The form of the asymme-
try is characteristically different from A(HK)

∞ derived in [8,9], as quoted in Equation (7).
Arguments were presented for why we believe the asymmetry derived here is correct.
Using the form of A∞ derived in Equation (25), we identified parameter regions in which
an appropriate baryon asymmetry can be generated without perturbing the quadratic
potential that drives inflation. In particular, we argued that, for the simple model studied,
inflationary cosmology and the observed baryon asymmetry can only be simultaneously
reproduced for special values of θi.

The calculations presented here have involved purely perturbative inflationary pro-
cesses; however, there have been some efforts [16,17] to examine analogous baryogenesis
scenarios involving preheating [18,19] and oscillons [20–23]. As these non-perturbative
calculations are distinct, the results of [16,17] are likely unaffected by the issues discussed
here. On the other hand, some model-building considerations explored in [8], and certain
subsequent studies, e.g., [24,25], may need to be re-examined.

The possibility of realising baryogenesis via a complex inflaton is quite elegant, espe-
cially in its minimality. The purpose of this study was to compute the expected magnitude
of asymmetries generated in this manner for simple models of inflation, which is a crucial
step towards building more elaborate scenarios. We leave the myriad of model building
opportunities for future work.
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