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Abstract: MORUS is one of the finalists of the CAESAR competition. This is an ARX construction
that required investigation against rotational cryptanalysis. We investigated the power of rotational
cryptanalysis against MORUS. We show that all the operations in the state update function of MORUS
maintain the rotational pairs when the rotation distance is set to a multiple of the sub-word size. Our
investigation also confirms that the rotational pairs can be used as distinguishers for the full version
of MORUS if the constants used in MORUS are rotational-invariant. However, the actual constants
used in MORUS are not rotational-invariant. The introduction of such constants in the state update
function breaks the symmetry of the rotational pairs. Experimental results show that rotational pairs
can be used as distinguishers for only one step of the initialization phase of MORUS. For more than
one step, there are not enough known differences in the rotational pairs of MORUS to provide an
effective distinguisher. This is due to the XOR-ing of the constants that are not rotational-invariant.
Therefore, it is unlikely for an adversary to construct a distinguisher for the full version of MORUS
by observing the rotational pairs.

Keywords: authenticated encryption; CAESAR competition; MORUS; stream cipher; rotational
cryptanalysis

1. Introduction

MORUS [1,2] is a family of authenticated encryption stream cipher algorithms, one
of the finalists in the CAESAR Authenticated Encryption (AE) competition [3]. There
are three variants: MORUS-640-128, MORUS-1280-128 and MORUS-1280-256, where the
first number represents the state size and the latter represents the key size. The cipher
is intended to provide confidentiality and integrity assurance for the input data. This
is a popular candidate from the CAESAR competition. Third-party security analysis is
important for promoting and validating the design claims of MORUS. This paper provides
a third-party analysis of MORUS subject to rotational cryptanalysis.

The MORUS family of ciphers has been subject a wide range of third-party security
analyses. We first briefly discuss the existing security analyses of MORUS. Mileva et al. [4]
proposed a distinguisher for MORUS-640 under the nonce-reuse scenario. This attack can
analogously be used for MORUS-1280. They also reported collisions in the internal state
of MORUS. However, an adversary must inject specific differences in the internal state to
obtain the collisions. Dwivedi et al. [5] discussed the use of SAT solvers for state recovery
with a complexity of 2370. The complexity of this attack is beyond the designer’s claimed
security margin. Dwivedi et al. [6] also performed differential and rotational cryptanalysis
with a reduced version of MORUS. The best result from this work was a theoretical key
recovery attack against MORUS-1280-256, where the initialization phase was reduced to
18 rounds (3.6 steps). Salam et al. [7] applied cube attacks that obtained distinguishers
with up to 4/5 steps for MORUS-640/1280 with negligible complexity. Kales et al. [8]
and Vaudenay et al. [9] analyzed the security of MORUS under the nonce-reuse scenario.
Their attacks included state recovery, key recovery, forgery with practical complexities
and a small number of nonce-misuse queries. Salam et al. [10] described key recovery and
forgery against MORUS using fault attacks. This work considered different fault models.
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The best result from this work was a full key recovery with a transient fault model. Nozaki
and Yoshikawa [11] investigated a power analysis attack against MORUS. Their work
implemented the attack on an FPGA, which demonstrated the vulnerability of MORUS
to power analysis. Ashur et al. [12] presented a linear correlation in the output of the
full version of MORUS. This correlation can be used to distinguish the MORUS output
keystream from randomness. Their work shows a plaintext recovery attack can be applied
to MORUS-1280 using about 2152 blocks of data. They also presented a forgery attack
on a reduced version of MORUS, where the finalization was reduced to three steps, and
a key recovery attack under a nonce-reuse scenario for a reduced 10-step initialization.
Li and Wang [13] analyzed division property and differential trails against MORUS. They
reported 6/6.5-step integral distinguishers for MORUS-640/1280 and 4.5-step differential
distinguishers for MORUS-1280. Shi and Guan [14] described a state recovery attack
against MORUS under a nonce-reuse scenario. The attack reuses the nonce seven times
to recover the internal state bits with practical complexity. Ye et al. [15] proposed a new
existence terms detection method using the cube attack and applied it to MORUS. This
method demonstrated key recovery attacks on 6/7-step MORUS-640-128 and integral
distinguishers against 7-step MORUS-640-128/MORUS-1280-256. Shi et al. [16] proposed
an algorithm to compute the correlation of quadratic Boolean functions. They applied the
method to analyze the linear trails of MORUS. They identified a set of trails with correlation
2−38, which led to distinguishing and message-recovery attacks for all versions of MORUS
with a complexity of 276. Chen et al. [17] discussed a method to search for cubes based on
the division property. This work demonstrated a cube attack on 4.4-step MORUS-640-128
with a complexity of 227.91. He et al. [18] also investigated cube attacks against MORUS.
The best result from this work used a cube of size 22 to apply a key recovery attack against
6-step MORUS-640-128.

Rotational cryptanalysis was applied [19] to ciphers composed of three operations:
addition, rotation and XOR (ARX). MORUS is an ARX-like cipher, except that it uses bitwise
multiplication instead of the addition operation. For ARX-like constructions, there is a
need for analysis against rotational cryptanalaysis. Rotational cryptanalysis investigates
the propagation of rotational pairs in the outputs of a cryptographic scheme for given
rotational input pairs. The term rotational cryptanalysis was coined by Khovratovich
and Nikolić in 2010 [19]; however, the attack technique was known and applied prior to
this work by Biham [20]. To the best of our knowledge, there have been few third-party
analyses of MORUS components and operations using rotational cryptanalysis. Therefore,
we considered investigating the application of rotational cryptanalysis to MORUS, since it
has similar ties to the ARX ciphers. In particular, we investigated different components
and operations in MORUS and their rotational properties. Note that a rotational attack
on MORUS was also investigated by Dwivedi et al. [6]. Their application of rotational
cryptanalysis tried to recover the secret key of MORUS. They have developed a key recovery
attack on round-reduced MORUS based on rotational cryptanalysis. On the other hand,
we used rotational cryptanalysis to build a distinguisher for MORUS. Our approach of
rotational cryptanalysis can build the distinguisher for just one step of the initialization
phase of MORUS. Both of these works show that MORUS provides a large security margin
against rotational cryptanalysis. The work by Dwivedi et al. [6] suggests that all the
operations, except for the XOR-ing of constants, preserve the rotational pairs in MORUS
for any arbitrary rotation distance. However, according to our analysis, this is not always
true. We note that the Rotl_xxx_yy(x, b) operation in MORUS does not preserve rotational
pairs in all the bits for arbitrary rotation distance; instead, it preserves the rotational pairs
in all the bits when the rotation distance is a multiple of the sub-word length yy. This does
not affect their cryptanalysis, since it uses known rotational characteristics in specific bits,
which are computed in a pre-computation phase.
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2. Description of MORUS

The MORUS family of stream ciphers supports a key K of either 128-bits or 256-bits.
The initialization vector V is 128 bits for all the variants of MORUS. It takes an input
plaintext P of arbitrary length. Confidentiality is achieved by encrypting the plaintext P by
XOR-ing with the output keystream generated by the cipher to obtain the ciphertext C. The
cipher also takes associated data D of arbitrary length as input. The associated data are not
encrypted. MORUS provides integrity assurance for both the plaintext P and associated
data D. This is done by injecting the plaintext and associated data into the internal state of
the cipher and computing a tag τ in terms of the internal state.

MORUS has five state elements S0,0, · · · , S0,4. Each element is a register of length
either 128 bits or 256 bits, for MORUS-640 and MORUS-1280, respectively. This gives a
total internal state size of 640 or 1280 bits, for MORUS-640 and MORUS-1280, respectively.
Before going into the details of MORUS structure and operation phases, we first introduce
the notations and operations used in this paper, as below:

⊕: Bit-wise XOR operation.
⊗: Bit-wise AND operation.
‖: Concatenation
Word: A sequence of 32 bits or 64 bits, for MORUS-640 and MORUS-1280, respectively.
Block: A sequence of 128 bits or 256 bits, for MORUS-640 and MORUS-1280, respec-
tively.
Rotl_xxx_yy(x, b): Divide a xxx-bit block x into 4 yy-bit words and rotate each word
to the left by b bits.
K = k0k1 . . . klk−1

: The secret key of size lk bits.
V: The initialization vector of size 128 bits.
const0: A 128-bit constant 0x000101020305080d1522375990e97962 in hexadecimal for-
mat.
const1: A 128-bit constant 0xdb3d18556dc22ff12011314273b528dd in hexadecimal for-
mat.
Mt: The external input message to the state at step t.
Pt: The input plaintext block at step t.
Dt: The input associated data block at step t.
Zt: The output keystream block at step t.
Ct: The output ciphertext block at step t.
τ: Authentication tag.
St: The internal state at step t.
St

j : The internal state at the jth round of step t.
St

j,k: kth element of state St
j .

←−
X

r
: Rotation of the input X to the left by r bits.

Xrotlb : Rotl_xxx_yy(x, b) operation applied to X. xxx and yy assumed to be known
from context.

2.1. Phases of Operation

Operations performed in MORUS can be divided into five phases:

1. Initialization
2. Processing associated data
3. Encryption
4. Finalization
5. Decryption and tag verification

Note that there are two versions of the MORUS family of authenticated encryption
cipher: MORUSv1 [1] and MORUSv2 [2]. The two versions differ only in the finalization
phase. The general description provided in this paper is based on MORUSv2 [2]. Here we
briefly describe the initialization of MORUS, as we investigated rotational cryptanalysis
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on this phase. Interested readers are referred to the original specifications of MORUS for
further details.

Initialization of MORUS

The initialization of MORUS starts with loading the key, initialization vector and
two 128-bit constants const0 and const1 into the internal state in a particular format. The
loaded state of MORUS-640 is defined as (St=0

0,0 ‖ St=0
0,1 ‖ St=0

0,2 ‖ St=0
0,3 ‖ St=0

0,4 ) = (V ‖ K128 ‖
1128 ‖ const0 ‖ const1). For MORUS-1280, two different key sizes may be used: a 128-bit
key or a 256-bit key. The loaded state of MORUS-1280 with a 128-bit key is defined as
(St=0

0,0 ‖ St=0
0,1 ‖ St=0

0,2 ‖ St=0
0,3 ‖ St=0

0,4 ) = (V ‖ 0128 ‖ K128 ‖ K128 ‖ 1256 ‖ 0256 ‖ const0 ‖ const1).
Similarly, the loaded state of MORUS-1280 with a 256-bit key is defined as (St=0

0,0 ‖ St=0
0,1 ‖

St=0
0,2 ‖ St=0

0,3 ‖ St=0
0,4 ) = (V ‖ 0128 ‖ K256 ‖ 1256 ‖ 0256 ‖ const0 ‖ const1). After forming the

loaded state, the state of MORUS is updated for 16 clocks (steps) using the state update
function Update(St, Mt). During these updates, the external input Mt is set to zero and the
cipher does not produce any output. After these 16 updates, the content of state element
St=16

0,1 is XORed with the key. The state obtained at the end of this process is the initial state
of MORUS-640.

2.2. Functions Used in MORUS

The operations performed in different phases of MORUS are based on several compo-
nent functions. These are:

1. State Update Function
2. Keystream Generation Function
3. Combining Function

2.2.1. State Update Function

One of the main component functions of MORUS is the state update function
Update(St, Mt). At each clock (step) t of the state update function, there are 5 rounds
with similar operations. The operations in the state update function include AND, XOR
and rotation operation. MORUS uses the bitwise left rotation

←−
X

wi
, a simple rotation of the

input X to the left by wi bits, where 0 ≤ i ≤ 4. It also uses the Rotl_xxx_yy(x, bi) operation
which divides a xxx-bit block input x into 4 yy-bit words and rotates each word to the
left by bi bits, where 0 ≤ i ≤ 4. The rotation constants bi and wi for different variants of
MORUS are listed in Table 1.

Table 1. Rotation constants used in MORUS.

MORUS-640 MORUS-1280

b0 5 13
b1 31 46
b2 7 38
b3 22 7
b4 13 4
w0 32 64
w1 64 128
w2 96 192
w3 64 128
w4 32 64

Figure 1 shows the operations involved in the state update function of MORUS in
generic form. As shown in Figure 1, in each round, two of the state elements St

j,k are

updated using the operations Rotl_xxx_yy(x, bi) and
←−
X

wi
. The state update function takes

input from the internal state and external input M. Depending on the phase the cipher
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is in, the external input M can be: all zero bits, the associated data, the plaintext or a
representation of the length of the associated data and plaintext. During the initialization
phase, the external input Mt is set to zero. The external inputs Mt are defined in terms of
the plaintext Pt and the associated data Dt for the encryption and associated data loading
phases, respectively. The external input Mt is defined in terms of the length of the plaintext
and associated data for the finalization phase.

Figure 1. State update function of MORUS.

2.2.2. Keystream Generation Function

The keystream generation function outputs a keystream block at each step of the
encryption phase. The first four state elements (S0,0, S0,1, S0,2, S0,3) of MORUS are used in
the keystream function, as shown in

Zt = St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3). (1)

In the keystream generation function, w2 is the left rotation constant, set to 96 bits or
192 bits for MORUS-640 and MORUS-1280, respectively.
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2.2.3. Combining Function

MORUS is a binary additive stream cipher. Hence, it uses a simple XOR operation
as the combining function during the encryption phase. That is, the ciphertext block is
computed by XOR-ing the input plaintext block and the keystream block. At each clock
t of the encryption phase, MORUS outputs a keystream block using Equation (1). This
output keystream block Zt is XOR-ed with the plaintext block Pt to compute the respective
ciphertext block. The ciphertext computation is shown in

Ct = Pt ⊕ Zt

= Pt ⊕ St
0,0 ⊕

←−
St

0,1

w2
⊕ (St

0,2 ⊗ St
0,3).

(2)

3. Rotational Cryptanalysis of MORUS

Rotational cryptanalysis investigates the propagation of rotational pairs in the outputs
of a cryptographic scheme for any given rotational input pairs. Let X and

←−
X

r
denote two

input vectors, where
←−
X

r
is equivalent to the r-bit left rotated version of the input vector X.

The input vector pair (X,
←−
X

r
) is called a rotational input pair. In rotational cryptanalysis,

the adversary inputs such a rotational pair (X,
←−
X

r
) into the underlying cryptographic

algorithm and observes the behavior of the output pairs. Let Z and Z′ denote the resulting
output pair for the inputs X and

←−
X

r
, respectively; and

←−
Z

r
denotes the r-bit left rotated

version of Z. Having Z′ =
←−
Z

r
implies that the operations involved in the cryptographic

algorithm do not affect the rotational relations in the output pair (Z, Z′). That is, in such a
scenario, the rotational relation is preserved in the output pair (Z, Z′) for the corresponding
input pair (X,

←−
X

r
). Clearly, if the rotational relation is preserved, the adversary can observe

it in the output pair to build a distinguisher for the underlying cryptographic algorithm.
In the attack model, the adversary needs to select a pair of inputs. In the initialization

phase of stream cipher based scheme, the adversary can select the rotational input pairs
from the key or the initialization vector or combination of both key-initialization vector.
Therefore, the attack model follows the chosen key attack, or the chosen initialization vector
attack, or the chosen key-initialization vector attack. Additionally, note that the inputs in
the rotational pair are related to each other; thus, this can also be considered as a related
key-initialization vector attack.

This section discusses the applicability of rotational cryptanalysis to MORUS. We
investigated the basic rotational properties of different operations used in the MORUS
state update function. XOR-ing of constants also plays an important role in the analysis of
rotational pairs. Our investigation also included the analysis of rotation invariant bits in
the constants used for MORUS. We then investigated the rotational properties of MORUS
state contents using the above mentioned operations. The goal of these investigations was
to construct a distinguisher for MORUS, if the rotational properties were preserved in the
input and the output.

3.1. Rotational Properties of Operations Used in MORUS

The operations in the state update function of MORUS include AND, XOR and rotation
operations. It also uses the Rotl_xxx_yy(x, b) operation, which divides a xxx-bit block
input x into 4 yy-bit words and rotates each word to the left by b bits.

The rotational properties of bitwise XOR and rotation operation were investigated
by Khovratovich and Nikolić [19]. In the following, we review these properties. We also
analyze the properties of the Rotl_xxx_yy(x, b) operation, which were not explored in any
previous literature.

3.1.1. Rotational Properties of XOR and Rotation Operation

Khovratovich and Nikolić stated that XOR operation preserves rotational pairs [19].
That is, for an r-bit rotation, Equation (3) is true. Their work stated that Equation (3) is
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true, but did not include the proof of this statement. For completeness, we provide a proof
for this.

Theorem 1. Bitwise XOR operation applied to a binary string X preserves the rotational pairs for
any arbitrary rotation distance r. That is,

←−
X

r
⊕←−Y

r
=
←−−−
X⊕Y

r
. (3)

Proof of Theorem 1. Suppose X = [XL|iXR] denotes the notation for n-bit string X =
xn−1 · · · x0, where XL = xn−1 · · · xi and XR = xi−1 · · · x0. Similarly we define the string
Y = [YL|iYR] for n-bit string Y = yn−1 · · · y0, where YL = yn−1 · · · yi and YR = yi−1 · · · y0.
Then, for a r-bit arbitrary left rotation with 0 ≤ r ≤ n, we can represent X and Y as
X = [XL|n−rXR] and Y = [YL|n−rYR], respectively. We can write

←−
X

r
⊕←−Y

r
=
←−−−−−−−
[XL|n−rXR]

r
⊕
←−−−−−−
[YL|n−rYR]

r

= [XR|rXL]⊕ [YR|rYL]

= [(XR ⊕YR)|rXL ⊕YL]

and

←−−−
X⊕Y

r
=
←−−−−−−−−−−−−−−−−
[XL|n−rXR]⊕ [YL|n−rYR]

r

=
←−−−−−−−−−−−−−−−−−
[(XL ⊕YL)|n−r(XR ⊕YR)]

r

= [(XR ⊕YR)|rXL ⊕YL].

Therefore,
←−
X

r
⊕←−Y

r
=
←−−−
X⊕Y

r
.

The analysis show that the bitwise rotation operation also preserves the rotational
pairs. Therefore, XOR and rotation operations in the state update function of MORUS do
not break the symmetry in the rotational pairs.

3.1.2. Rotational Properties of AND Operation

Similar to the XOR operation, it is easy to prove that the bitwise AND operation
always preserves the rotational pairs. That is, Equation (4) is true for any arbitrary rotation
distance r.

Theorem 2. Bitwise AND operation applied to a binary string X preserves the rotational pairs for
any arbitrary rotation distance r. That is,

←−
X

r
⊗←−Y

r
=
←−−−
X⊗Y

r
. (4)

Proof of Theorem 2. Suppose X = [XL|iXR] denotes the notation for n-bit string X =
xn−1 · · · x0, where XL = xn−1 · · · xi and XR = xi−1 · · · x0. Similarly we define the string
Y = [YL|iYR] for n-bit string Y = yn−1 · · · y0, where YL = yn−1 · · · yi and YR = yi−1 · · · y0.
Then, for a r-bit arbitrary left rotation with 0 ≤ r ≤ n, we can represent X and Y as
X = [XL|n−rXR] and Y = [YL|n−rYR], respectively. We can write

←−
X

r
⊗←−Y

r
=
←−−−−−−−
[XL|n−rXR]

r
⊗
←−−−−−−
[YL|n−rYR]

r

= [XR|rXL]⊗ [YR|rYL]

= [XR ⊗YR|rXL ⊗YL]
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and

←−−−
X⊗Y

r
=
←−−−−−−−−−−−−−−−−
[XL|n−rXR]⊗ [YL|n−rYR]

r

=
←−−−−−−−−−−−−−−−−−
[(XL ⊗YL)|n−r(XR ⊗YR)]

r

= [(XR ⊗YR)|rXL ⊗YL].

Therefore,
←−
X

r
⊗←−Y

r
=
←−−−
X⊗Y

r
.

Therefore, bitwise AND operation in the state update function of MORUS does not
break the symmetry in the rotational pairs.

3.1.3. Rotational Properties of Rotl_xxx_yy(x, b) Operation

MORUS uses the Rotl_xxx_yy(x, b) operation which is a composition of two opera-
tions. This includes dividing the input word into four sub-words of equal length and then
applying bitwise left rotation operation to these sub-words of MORUS. This operation
can be considered as a bit-wise permutation. In general, bit-wise permutation does not
preserve the rotational pairs. This is illustrated below with a simple example.

Let X = x0x1x2x3x4x5x6x7 be a sequence of 8 bits. The application of Rotl_8_2(x, 1)
operation on this 8-bit sequence X results in:

Xrotl1 = Rotl_8_2(X, 1) = x1x0x3x2x5x4x7x6.

Following this, the application of a one-bit left rotation applied to Xrotl1 results in:

←−−
Xrotl1

1
= x0x3x2x5x4x7x6x1.

Now, consider the alternative where first, the one bit left rotation is applied to the
8 bit sequence X, followed by the application of Rotl_8_2(x, 1) operation on the rotated
sequence. The one bit left rotation applied to the sequence X results in:

←−
X

1
= x1x2x3x4x5x6x7x0.

Following that, application of Rotl_8_2(x, 1) operation on the rotated sequence
←−
X

1

results in:
←−
X

1
rotl1 = x2x1x4x3x6x5x0x7.

Clearly
←−−
Xrotl

1
6=←−X

1
rotl in general, and therefore a rotational pair is not guaranteed to

be preserved.

Conditions for Preserving a Rotational Pair under Rotl_xxx_yy(x, b)

We observe that the operation Rotl_xxx_yy(x, b) preserves the rotational pair, if the
distance r of the left rotation applied to X equals to a multiple of the sub-word length yy.
For the above example, the sub-word length is two. Applying two bit left rotation to the
sequence X results in:

←−
X

2
= x2x3x4x5x6x7x0x1.

Application of Rotl_8_2(x, 1) operation on the rotated sequence
←−
X

2
results in:

←−
X

2
rotl1 = x3x2x5x4x7x6x1x0.

Alternatively, application of two bit left rotation applied to Xrotl1 results in:

←−−
Xrotl1

2
= x3x2x5x4x7x6x1x0.
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As shown in the example,
←−
X

2
rotl =

←−−
Xrotl

2
when the distance of the rotation applied is

equal to the sub-word size. Experimental verification also confirms that the rotational pairs
are preserved when the distance of the left rotation applied to X is equal to a multiple of
the sub-word length yy. Additionally, the rotational pair (X,

←−
X

r
) will be preserved if the

sequence X is rotation invariant for any arbitrary rotation distance.
We define the following theorem which identifies the condition for preserving rotation

pairs when the Rotl_xxx_yy(x, b) operation is applied.

Theorem 3. The Rotl_xxx_yy(x, b) operation applied to a binary string X preserves the rotational
pairs if the distance of the rotation r applied is equal to a multiple of the sub-word size or if the input
X is rotation invariant. That is,

←−
X

r
rotlb =

←−−
Xrotlb

r
, (5)

if r is a multiple of the sub-word size.

Proof of Theorem 3. Suppose X = X1|X2|X3|X4 denotes a n-bit string X = xn−1 · · · x0,
where X1 = xn−1 · · · xn− n

4
, X2 = xn− n

4−1 · · · xn− 2n
4

, X3 = xn− 2n
4 −1 · · · xn− 3n

4
and X4 =

xn− 3n
4 −1 · · · x0. Let X = [XL|iXR] denote the notation for n-bit string X = xn−1 · · · x0,

where XL = xn−1 · · · xi and XR = xi−1 · · · x0. Let b be the rotation distance applied in
the Rotl_xxx_yy(x, b) operation. Then, Xrotlb = (X1|X2|X3|X4)rotlb can be represented as

Xrotlb = (
←−
X1

b
|←−X2

b
|←−X3

b
|←−X4

b
).

The length of the sub-word is n/4 for a n bit string. Thus, we need to show that the
rotation distance r = n/4, 2n/4, 3n/4, n on the Rotl_xxx_yy(x, b) operation will preserve
the rotational pairs.

For a r-bit left rotation with r = n/4, we can represent the left hand side of Equation (5)
as:

←−
X

r=n/4
rotl =

←−−−−−−−−−
(X1|X2|X3|X4)

r=n/4

rotlb

= (X2|X3|X4|X1)rotlb

= (
←−
X2

b
|←−X3

b
|←−X4

b
|←−X1

b
)

= (
←−−−−−−−−−−
[X2L|n/4−bX2R]

b
|
←−−−−−−−−−−
[X3L|n/4−bX3R]

b
|
←−−−−−−−−−−
[X4L|n/4−bX4R]

b
|
←−−−−−−−−−−
[X1L|n/4−bX1R]

b
)

= ([X2R|bX2L]|[X3R|bX3L]|[X4R|bX4L]|[X1R|bX1L]).

For a r-bit left rotation with r = n/4, we can represent the right hand side of
Equation (5) as:

←−−
Xrotlb

r=n/4
=
←−−−−−−−−−−−−
(X1|X2|X3|X4)rotlb

r=n/4

=

←−−−−−−−−−−−−
(
←−
X1

b
|←−X2

b
|←−X3

b
|←−X4

b
)

r=n/4

=

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(
←−−−−−−−−−−
[X1L|n/4−bX1R]

b
|
←−−−−−−−−−−
[X2L|n/4−bX2R]

b
|
←−−−−−−−−−−
[X3L|n/4−bX3R]

b
|
←−−−−−−−−−−
[X4L|n/4−bX4R]

b
)

r=n/4

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
([X1R|bX1L]|[X2R|bX2L]|[X3R|bX3L]|[X4R|bX4L])

r=n/4

= ([X2R|bX2L]|[X3R|bX3L]|[X4R|bX4L]|[X1R|bX1L]).

Therefore,
←−
X

r
rotlb =

←−−
Xrotlb

r
when r = n/4. Similarly, we can prove that Theorem 3

is true for a rotation distance r = 2n/4, 3n/4, n. Additionally, if the input sequence X is
rotation invariant for arbitrary rotation distance r, then application of Rotl_xxx_yy(x, b) to
the input X will not have any effect on it. Therefore, the operation Rotl_xxx_yy(x, b) will
preserve the rotational pairs if the input X is rotation invariant.
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In MORUS-640, the sub-word size is 32 bits. Thus, to maintain the rotational pairs
in the Rotl_xxx_yy(x, b) operation of MORUS-640, the distance of the rotations applied
should be a multiple of 32. Analogously, the sub-word size is 64 bits for MORUS-1280.
Therefore, the distance of the rotations applied needs to be a multiple of 64 to preserve the
rotational pair in the Rotl_xxx_yy(x, b) operation of MORUS-1280.

3.2. Rotational Properties of the Constants in MORUS

MORUS uses two constants const0 and const1 at the beginning of the initialization
phase, which are used to load some of the state elements. These constants are XOR-ed with
the contents of specific state elements as a part of the state update process. Khovratovich
and Nikolić show that addition/XOR of a constant breaks the symmetry in rotational
relations, if the constant is not rotation invariant [19]. Therefore, XOR-ing of constants
plays an important role in the rotational cryptanalysis. In the following, we discuss the
rotational properties of the constants used in MORUS.

3.2.1. Rotational Properties of MORUS-640 Constants

We analyzed the MORUS-640 constants when r-bit rotation is applied to it. We
investigated the number of bits in the constant which are rotation invariant for the r-bit
rotation. MORUS-640 applies the Rotl_128_32(x, b) operation in its state update function.
According to Theorem 3, the Rotl_128_32(x, b) preserves the rotational pairs if the rotation
distance is a multiple of 32 bits, i.e., 32, 64 or 96. Therefore, for the analysis of MORUS-640
constants, we set the rotation distance r as a multiple of 32.

With the above conditions, the constant also needs to be 32, 64, 96 or 128 bits rotation
invariant depending on the distance of the rotations applied. If the constant is 32-bit
rotation invariant (i.e., the constant can be divided into 4 small sub-word of 32 bits where
each of the sub-word has same content), then there are 232 rotation invariant constants. For
a 64 bits rotation invariant constant, there are 264 rotation invariant constants.

We investigated the rotation invariant bits in the constants for any distance of the
rotation which are multiples of r = 32. For any multiples of r = 32, the constants used
in MORUS-640 are not rotation invariant among all the bits; except for the trivial one
r = 128, 256, · · · which is basically the same constant. In the following, we discuss the
number of bits that remain rotation invariant for different rotation distances set based on
above criteria.

In MORUS-640, const0 and const1 are used to load the state element S0,3 and S0,4. We
examined the number of rotation invariant bits in these constants for any rotation distance
which is a multiples of 32. The rotated constant

←−−−
const0

r
has 74, 60 and 74 rotation invariant

bits for 32, 64, and 96 bit rotation distances, respectively. Similarly, the rotated constant
←−−−
const1

r
has 64, 62 and 64 rotation invariant bits for 32, 64, and 96 bit rotation distances,

respectively. This means XOR-ing of these constants with the contents of any state element
inverts about half of the bits in the corresponding state element compared to the result of
XOR-ing with the rotated version of the constant.

Additionally, in the first step of the initialization phase,
←−−−
const0

32
⊕ const1 is used

to update S1,1,. The rotated version of this constant
←−−−−−−−−−−−←−−−
const0

32
⊕ const1

r

has 62, 74 and 62
rotation invariant bits for 32, 64, and 96 bit rotation distances, respectively.

The constant (
←−−−
const0

32
⊗←−−−const1

64
)⊕ Rotl_128_32(const0, 5) is used at the first step of

initialization phase to update the state element S2,2. The rotated version of this constant
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(
←−−−
const0

32
⊗←−−−const1

64
)⊕ Rotl_128_32(const0, 5)

r

has 72, 64 and 72 rotation invariant bits for
rotation distances 32, 64, and 96 bits, respectively.

3.2.2. Rotational Properties of MORUS-1280 Constants

We investigated the constants used in MORUS-1280, when r-bit rotation is applied
to it. The investigation explores the number of rotation invariant bits in the constant for
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rotation distance r. MORUS-1280 applies the Rotl_256_64(x, b) operation in its state update
function. According to Theorem 3, the operation Rotl_256_64(x, b) preserves the rotational
pairs if the rotation distance is a multiple of 64 bits, i.e., 64, 96, 192 or 256. Therefore, for
the analysis of MORUS-1280 constants, we set the rotation distance r as a multiple of 64.

With the above conditions, the constant also needs to be 64, 128, 192 or 256 bits rotation
invariant depending on the distance of rotations applied. For MORUS-1280, if the constant
is 64-bit rotation invariant (i.e., the constant can be divided into four small sub-word of
64 bits where each of the sub-word has same content), then there are 264 rotation invariant
constants. For a 128 bits rotation invariant constant, there are 2128 rotation invariant
constants which will preserve the rotational pairs for MORUS-1280.

We investigated the rotation invariant bits in the constants for any distances of rotation
which are multiples of r = 64. For any multiples of r = 64, the constant const0||const1
used in MORUS-1280 is not rotation invariant among all the bits; except for the trivial one
r = 256, 512, · · · which is basically the same constant. In the following, we discuss the
number of bits that remain rotation invariant for different rotation distances set based on
above criteria.

In MORUS-1280, const0||const1 is used to load the state element S0,4. The rotated

version of this constant
←−−−−−−−−
const0||const1

r
has 138, 114 and 138 rotation invariant bits for

rotation distances 64, 128 and 192 bits, respectively. This means that XOR-ing this constant
const0||const1 with the contents of the state element S0,4 will preserve the rotational pairs
in 138 bits when the rotation distance in the input is set to 64 bits.

The constant used to initialize state element S0,2 consists of all 1. This constant is
rotation invariant for any arbitrary rotation distance. Similarly, the constant used to
initialize state element S0,3 consists of all 0s. This constant is also rotation invariant for any
arbitrary rotation distance.

3.3. Rotational Properties of MORUS State Contents

This section investigates the rotational properties in the MORUS state contents.
The contents of MORUS state elements were updated using the state update function
Update(St, Mt). Rotational properties of the operations and constants used in the state
update function Update(St, Mt) are discussed in Sections 3.1 and 3.2. In our investigation,
we used these properties to determine the propagation of rotational pairs in MORUS
state contents.

We first investigated the probability of preserving the rotational pairs in the MORUS
state elements after one step of the initialization phase. We then extended our analysis for
more than one step of the initialization phase.

We started our experiment by defining the key K and initialization vector V in terms
of variables. We then generated equations in terms of K and V to represent the state
contents of n-step MORUS. After that, we generated the equations in terms of rotated
versions of the key

←−
K

r
and initialization vector

←−
V

r
to represent the state contents of n-

step MORUS. Finally, we investigated the rotational pair in the state elements (S,
←−
S

r
) to

determine whether they preserve the rotational pair. Preserving the rotational pair in the
state elements means that the rotational pair in the output keystream is also preserved.

If the rotational pair is preserved in the output pair, then adversary can observe the
output pair and use this to distinguish the MORUS output from a randomly generated
output. This can be considered as a distinguisher under the related key-IV model.

3.3.1. Rotational Properties of MORUS-640 State Contents

MORUS-640 uses the operations XOR, AND, bitwise left rotation and the operation
Rotl_128_32(x, b) in its state update function. As illustrated in Theorems 1 and 2, bitwise
XOR and AND operation will preserve the rotational pair for any arbitrary number of
rotations. However, for the Rotl_128_32(x, b) operation, as described in Theorem 3, the
rotation distance in the input needs to be a multiple of 32 bits—i.e., 32, 64 or 92—for
MORUS-640, to preserve rotational pairs in the output. Thus, in our analysis of MORUS-640
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state contents, the distance of the rotation r was set to 32. We conducted our analysis with
the rotation distance of 32 bits, since that preserved the rotational pairs in maximum number
of bits after performing the XOR operation with the constant const0 (see Section 3.2.1).

Rotational Pairs in MORUS-640 with 1-Step Initialization Phase

For a 32 bit rotated input, rotational pairs are preserved in 74 bits of the state element
S0,0 with probability 1. Rotational pairs are preserved in the rest of the 54 bits of the state
element S0,0 with probability 0—i.e., the corresponding bits are inverted. This is because
of the the XOR of const0 with the contents of state element S0,0, at the beginning of the
initialization phase. As shown in Section 3.2.1 for r = 32 bit rotation distance, const0 has
74 bits which are rotation invariant. Thus, this introduces 54 inverted bits.

For state element S0,1, rotational pairs are preserved in 62 bits with probability 1.
Rotational pairs are preserved in the rest of the 66 bits of the state element S0,1 with

probability 0; i.e., the corresponding bits are inverted. Note that
←−−−−−−−−−−−←−−−
const0

32
⊕ const1

32

is
XOR-ed with the contents of state element S1,1. As shown in Section 3.2.1, constant
←−−−−−−−−−−−←−−−
const0

32
⊕ const1

32

has 62 rotation invariant bits. Thus, this introduces 128 − 62 = 66
inversion in the resulting rotational pair.

Rotational pairs are preserved in 72 bits of the state element S0,2 with probability
1. Rotational pairs are preserved in the remaining 56 bits of the state element S0,2 with
probability 0; i.e., the corresponding bits are inverted. We also observe that the constant
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(
←−−−
const0

32
⊗←−−−const1

64
)⊕ Rotl_128_32(const0, 5)

32

is XOR-ed with the contents of S0,2. As

illustrated in Section 3.2.1, constant
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(
←−−−
const0

32
⊗←−−−const1

64
)⊕ Rotl_128_32(const0, 5)

32

has
72 rotation invariant bits. Thus, this introduces 128− 72 = 56 inversion in the resulting
rotational pair.

Rotational pairs are preserved with probabilities 1, 0.5 and 0 in 36, 64 and 28 bits of
S0,3, respectively. Finally, rotational pairs are preserved with probabilities 1, 0.5 and 0 in
14, 94 and 20 bits of S0,4, respectively. Table 2 summarizes the probability of preserving
rotational pairs in the state elements of 1-step MORUS-640.

Table 2. Probability of preserving rotational pairs after one step of the initialization of MORUS-640.

State Element p = 1 p = 0.5 p = 0

S0,0 74 0 54
S0,1 62 0 66
S0,2 72 0 56
S0,3 36 64 28
S0,4 14 94 20

258 158 224

As shown in Table 2, after one step there are 482 known differences in rotational
pairs based on 32-bit rotations of the state elements of MORUS. Therefore, observing
these known differences in the specific output bit of a rotational pair, an adversary can
distinguish the keystream of 1-step MORUS-640 from a randomly generated output.

Rotational Pairs in MORUS-640 with Initialization Phase beyond One Step

We extended our experiments to determine the probability of preserving rotational
pairs in more than one step of the initialization phase of MORUS-640. For two steps of
the initialization phase, we found there are only 21 known differences in rotational pairs
of the state contents of MORUS-640. In particular, we found only 14 bits and 7 bits are
preserved in state elements S0 and S1, respectively, with a probability of 1 or 0. This is not
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sufficient to determine a distinguisher because there are no known differences in the rest of
the state elements.

For more than two steps of the initialization phase, Sage fails to generate the equa-
tions. This is due to the fact that the equations get very complicated after two steps of
the initialization phase and the software Sage runs out of memory to perform the neces-
sary computations.

As indicated above, after the two steps of the initialization phase, there are not enough
rotational pairs in the state elements to construct a distinguisher and such situation becomes
worse with more steps. Therefore, it is unlikely for an adversary to construct a distinguisher
for the full version of MORUS-640 based on observing the rotational pairs.

3.3.2. Rotational Properties of MORUS-1280 State Contents

MORUS-1280 uses the XOR, AND, bitwise left rotation and the Rotl_256_64(x, b)
operations in its state update function. As illustrated in Theorems 1 and 2, bitwise XOR
and AND operation will preserve the rotational pair for any arbitrary number of rotations.
However, for the Rotl_256_64(x, b) operation as described in Theorem 3, the rotation
distance in the input needs to be a multiple of 64 bits, i.e., 64, 128 or 192, for MORUS-1280,
to preserve rotational pairs in the output. Thus, in our analysis of MORUS-1280 state
contents, the distance of the rotation r is set to 64. We conducted our analysis with the
rotation distance of 64 bits, since it preserved the rotational pairs in the maximum number
of bits after performing the XOR operation with the constant const0 (see Section 3.2.2).

Rotational Pairs in MORUS-1280 with 1-Step Initialization Phase

Rotational pairs are preserved in all of the 256 bits of the state element S0,0 with
probability 1. This is because the constant XOR-ed with the contents of this state element
are all zeroes and so rotation invariant for arbitrary rotation distance r.

Rotational pairs are preserved in 138 bits of the state element S0,1 with probability
1. Rotational pairs are preserved in the remaining 118 bits of the state element S0,1 with
probability 0; i.e., the corresponding bits are inverted. Observe that const0||const1 is XOR-

ed with the contents of the state element S0,1. As described in Section 3.2.2,
←−−−−−−−−
const0||const1

64

has 138 rotation invariant bits. Thus, XOR-ing of this constant introduces 118 bits of
inversion in the rotational pair.

Rotational pairs are preserved in all of the 256 bits of the state element S0,2 with
probability 1. This is because the constant XOR-ed with the contents of this state element is
const0 ⊗ 0128, e.g., all zeroes, and rotation invariant for arbitrary rotation distance r.

Rotational pairs are preserved with probabilities 1, 0.5 and 0 in 73, 118 and 65 bits of
S0,3, respectively. Rotational pairs are preserved with probabilities 1, 0.5 and 0 in 78, 118
and 60 bits of S0,4, respectively.

Table 3 summarizes the probability of preserving rotational pairs in the state elements
of 1-step MORUS-1280. We found that rotational pairs are preserved with probability 1
in 801 bits of the 1-step MORUS-1280. After one step of the initialization phase, there are
only 236 bits which are unknown with probability 0.5. Therefore, based on these known
differences in the specific output bit of a rotational pair, an adversary can distinguish the
keystream of 1-step MORUS-1280 from a randomly generated output.

Table 3. Probability of preserving rotational pairs after one step of the initialization of MORUS-1280.

State Element p = 1 p = 0.5 p = 0

S0,0 256 0 0
S0,1 138 0 118
S0,2 256 0 0
S0,3 73 118 65
S0,4 78 118 60
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Rotational Pairs in MORUS-1280 with Initialization Phase beyond One Step

We extended our experiments to determine the probability of preserving rotational
pairs in more than one step of the initialization phase of MORUS-640. For two steps of
the initialization phase, we found only 30 bits and 17 bits are preserved in state elements
S0 and S1, respectively, with a probability of 1 or 0. This is not sufficient to determine a
distinguisher because there are no known differences in the rest of the state elements.

For more than two steps of the initialization phase, Sage fails to generate the equations
for MORUS-1280. This is due to the fact that the equations get very complicated after two
steps of the initialization phase and the software Sage runs out of memory.

As indicated above, after the two steps of the initialization phase, there are not enough
rotational pairs in the state elements to construct a distinguisher; and said situation becomes
worse with more steps. Therefore, it is unlikely an adversary will be able to construct a
distinguisher for the full version of MORUS-1280 based on observing the rotational pairs.

4. Conclusions

We investigated the feasibility of rotational cryptanalysis on different variants of
MORUS. Our investigation showed that all the operations used in MORUS preserve the
rotational pairs when the rotation distance is set to a multiple of 32 or 64 for MORUS-
640 and MORUS-1280, respectively. We have also verified that an adversary can build
a distinguisher for the full version of MORUS if rotational-invariant constants are used
in the state update function of MORUS. However, the constants used in MORUS are not
rotational-invariant, which makes it infeasible to build the distinguisher for more than one
step. Due to the non-invariant constants used in the state update function of MORUS, we
found that rotational cryptanalysis can distinguish the MORUS output for only one step of
the initialization phase. For more than one step of the initialization phase, the probability
of preserving rotational pair becomes 0.5 in most of the bits. This makes it infeasible to
apply the distinguisher for more than one round.
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