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Abstract: In this work, we prove a new (p, q)-integral identity involving a (p, q)-derivative and
(p, q)-integral. The newly established identity is then used to show some new Simpson'’s formula
type inequalities for (p, q)-differentiable convex functions. Finally, the newly discovered results are
shown to be refinements of comparable results in the literature. Analytic inequalities of this type, as
well as the techniques used to solve them, have applications in a variety of fields where symmetry

is important.
Keywords: Simpson’s inequalities; post-quantum calculus; convex functions
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1. Introduction

During his lifetime, Thomas Simpson created important approaches for numerical
integration and the estimation of definite integrals, which became known as Simpson’s
rule (1710-1761). J. Kepler, who made a comparable calculation roughly a century before
Newton, is the inspiration for Kepler’s rule. Estimations based exclusively on a three-step
quadratic kernel are commonly referred to as Newton-type results because Simpson’s
technique incorporates the three-point Newton—-Cotes quadrature rule.

(1) Simpson’s quadrature formula (Simpson’s 1/3 rule)

7T + 70

5 >+.7-"(712)}

(x)dx ~ 270

o
F X~

/. ;

(2) Simpson’s second formula or Newton—Cotes quadrature formula (Simpson’s 3/8 rule)

T —
/ FFdr~ 22T — [J—"(m) +3f(2”13+ ”2> +3f<”1 +32”2> +J:(7'c2)].
Us|

[]-"(711) +4}'(

The following estimation, known as Simpson’s inequality, is one of many linked with
these quadrature rules in the literature:
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Theorem 1. Suppose that F : [111, 1p] — R is a four-times continuously differentiable mapping
on (111, 72), and let H]—" ) H = sup ‘J—" ®) (x)’ < co. Then, one has the inequality
® )

xe(my,m)

e T

2 2 M -m “.7-'(4))‘00(7'(2—7'(1)4.

< L
= 2880

Many researchers have focused on Simpson-type inequality in various categories of
mappings in recent years. Because convexity theory is an effective and powerful technique
to solve a huge number of problems from various disciplines of pure and applied math-
ematics, some mathematicians have worked on the results of Simpson’s and Newton's
type in obtaining a convex map. The novel Simpson’s inequalities and their applications
in numerical integration quadrature formulations were presented by Dragomir et al. [1].
Furthermore, Alomari et al. [2] discovered a number of inequalities in Simpson’s kind of
s-convex functions. The variance of Simpson-type inequality as a function of convexity
was then observed by Sarikaya et al. in [3]. Refs. [4—6] can be consulted for further research
on this subject.

On the other hand, quantum and post-quantum integrals for many types of functions
have been used to study many integral inequalities. The authors of [7-21] employed left—
right g-derivatives and integrals to prove HH integral inequalities and associated left-right
estimates for convex and coordinated convex functions. Noor et al. proposed a generalized
version of quantum integral inequalities in their paper [22]. In [23], the authors demonstrated
some parameterized quantum integral inequalities for generalized quasi-convex functions.
In [24], Khan et al. used the green function to prove quantum HH inequality. For convex and
coordinated convex functions, the authors of [25-30] constructed new quantum Simpson’s
and quantum Newton’s type inequalities. Consult [31-33] for quantum Ostrowski’s inequality
for convex and co-ordinated convex functions. Using the left (p, q)-difference operator and
integral, the authors of [34] expanded the results of [9] and demonstrated HH-type inequalities
and associated left estimates. In [16], the authors discovered the right estimates of HH-type
inequalities, as demonstrated in [34]. Vivas-Cortez et al. [35] recently generalized the results
of [11] and used the right (p, g)-difference operator and integral to prove HH-type inequalities
and associated left estimates.

We use the (p, q)-integral to establish some new post-quantum Simpson’s type inequal-
ities for (p, q)-differentiable convex functions, as inspired by recent research. The newly
revealed inequalities are also shown to be extensions of previously discovered inequalities.

The structure of this article is as follows. The principles of g-calculus, as well as other
relevant topics in this subject, are briefly discussed in Section 2. The basics of (p, g)-calculus,
as well as some recent research in this topic, are covered in Section 3. In Section 4, we
prove a new (p, q)-integral identity involving a (p, q)-derivative. Section 5 describes the
Simpson’s type inequalities for (p, q)-differentiable functions via (p, q)-integrals. It is also
taken into account the relationship between the findings given here and similar findings in
the literature. Section 6 finishes with some research suggestions for the future.

2. Preliminaries of g-Calculus and Some Inequalities
In this section, we revisit several previously regarded ideas. In addition, we utilize
the following notation here and elsewhere (see [36]):
1—-4g"

[n], = — =14+g+¢°+..+4", g€ (0,1).

In [37], Jackson gave the g-Jackson integral from 0 to 7, for 0 < g < 1 as follows:

T

F(x) dgx = (1—q)m2 ), q"F(m2q") 1)
n=0
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provided that the sum converges absolutely.

Definition 1 ([38]). For a function F : [rt1, 2] — R, the left g-derivative of F at x € [y, 73]
is characterized by the expression

WDy F(x) =2 (]“f(;;z; _(17;;’)7“), x # 1. @)

If x = 11, we define o, Dy F (711) = limy s, 7, DgF(x) if it exists and it is finite.

Definition 2 ([11]). For a function F : [r1y, 73] — R, the right q-derivative of F at x € |11, 713)
is characterized by the expression

Flgx + (1 —q)m) — F(x)
(1—g)(m2 —x)

If x = 1y, we define ™Dy F (rp) = limy ., ™DgF (x) ifit exists and it is finite.

DG F(x) = , X # . (©)

Definition 3 ([38]). Let F : [my, ] — R be a function. Then, the left q-definite integral on
[711, 712] is defined as

[F@) mdix = (A-q(m-m) L F'm+1-)m) @
o n=0

1
_ (nrnl)/f((pt)nﬁtnz) dot .
0

Definition 4 ([11]). Let F : [y, 12| — R be a function. Then, the right q-definite integral on
[711, 715] is defined as

[F@) mdx = (-gm-m) L F@m+-m) )
o n=0

1
- (ng—nl)/f(tn1+(1—t)712) dt .
0

Alp et al. [9] proved the following Hermite-Hadamard-type inequalities for convex
functions via g-integral.

Theorem 2. For the convex mapping F : [111, 1a] — R, the following inequality holds

qmy + 7T 1 7 gF(m) + F(mo)
F( 1% 2) < 7szzf(x) mdgx < 1[2L, 23

In [11], Bermudo et al. established the following quantum Hermite-Hadamard-type
inequalities:

Theorem 3. For the convex mapping F : [111, 1a] — R, the following inequality holds

4yl
]—'(m +qﬂ2> < ! /}'(x) Tdgx < Flm) +q7(m2),
7Ty — 701
T

[2] q [2] q
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Us) T
7T + 7T 1 / / F(m) + F(mp)
= Uy < V) T2
}-( 2 > = 2(my — ) F(x) mdgx + [ F(x) ™dgx | < .
s m

Recently, Siricharuanun et al. [29] proved the following Simpson’s formula type
inequality for convex functions.

Theorem 4. Let F : [y, 715] — R be a g™2-differentiable function on (711, 712) such that 2Dy F
is continuous and integrable on [rr1, 7r2]. If |™2DyF| is convex on [r11, 1), then we have the
following inequality for q"2-integrals:

F(m) +q2[41qf<’“+‘1”2> +qf<nz>] (6)

2],

q
< q(m — m){| ™DgF (m)|[A1(q) + A2(q)] + | ™Dy F (2)|[B1(q) + B2(q)]},

[ . 1
(m_m)n[}'(s) dgs — o

where 0 < g < 1and

A = p
1 EHENCH
q[B]q[6]q_q2 1 <q+q2 L]2+2q>
B = 2 i — ,
1@ 2,6,6F  RE\ B,
275 16, (1+[215) — 3,15, (1 + [21))
Ax(q) = 3+ 3 ’
21,081, 61; 23081, 6],
_aBPeL,Bl, Bl @ 4P,
R0 = Eer e, B,
1 [B,(29+4°)  g+¢2
2]; [6], 3],

3. Post-Quantum Calculus and Some Inequalities

In this section, we review some fundamental notions and notations of (p, q)-calculus.
The [n]p 4 is said to be (p, q)-integers and expressed as:

P —1
nl =
g = 2
with0 < g < p <1.The [n]m! and [ Z ]! are called (p, q)-factorial and (p, q)-binomial,

respectively, and expressed as:

n

[n]p'q! = H[k]p,q/ n Z ]., [0]p’q' = 1,

[ n }! (1], 4!

k [ — k], ![K]

k], 1
p4q p4q

Definition 5 ([39]). The (p, q)-derivative of mapping F : [rt1, 72| — R is given as:

Fpx) = 7)o,

Pra? () = =0, =%
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with0 <g<p <1

Definition 6 ([40]). The left p, g-derivative of mapping F : [rr1, 712) — R is given as:

Flpx+(1—p)m)—Fgx+(1—q)m)
(p—q)(x—rm)

1 DpgF (x) = ;X £ )

with 0 < g < p < 1. For x = 1, we state that Dy o F (711) = limy sz, 7, Dp g F (x) if it exists
and it is finite.

Definition 7 ([35]). The right (p, q)-derivative of mapping F : [mt1, mp] — R is given as:

"2DpgF(x) = Flax+ U _(27)7_{2,;)27;7:(_;9?(; 0= P)sz), X 7 70 ®)

with 0 < q < p < 1. For x = 715, we state that 2Dy,  F (112) = limy_,z, ™D, o F (x) if it exists
and it is finite.

Remark 1. It is clear that if we use p = 1 in (7) and (8), then the equalities (7) and (8) reduce to
(2) and (3), respectively.

Definition 8 ([40]). The left (p, q)-integral of mapping F : [y, ma| — R on [y, 2] is stated

s X oo qi’l qn qn
[ 7@ ntr=-a-m) & Lor(Loxs (1- L )m) - @
sl =0 P p p

with0 < g < p < 1.

Definition 9 ([35]). The right (p,q)-integral of mapping F : [m1, m2] — R on [my, mp] is
stated as:

/JQ.F( )72, T = ( 3 7 -0 10
Jx paT =P — q 7T2 Pn+1x+ pn+1 2 ( )

with0 <g<p <1

Remark 2. It is evident that if we select p = 1 in (9) and (10), then the equalities (9) and (10)
change into (4) and (5), respectively.

Remark 3. If we take t11 = 0 and x = 7y = 1in (9), then we have
1 o0 q"
/()f()()qu—P qgn-&-l <n+1>
Similarly, by taking x = 11 = 0 and 1o = 1 in (10), then we obtain that

[, - (1 k)

Remark 4. If f is a symmetric function—that is, F (s) = F (11p + 11 — ), for s € [y, 10a]—then

we have 1-p)
prT —-p) T,
/ ’ 1]-"(s)nlalp/qs :/ ’ F(s)dpgs.
m pmi+(1-p)m
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Lemma 1 ([35]). We have the following equalities

o (7_[2 _ 7_[1>7T1+1

o —x) Mg, x =~ 11
T2 (7‘[2 — 7'(1)7T1+1

X — 7T & dyx = e — 12

where 1 € R — {—1}.

Recently, M. Vivas-Cortez et al. [35] proved the following HH-type inequalities for
convex functions using the (p, q)-integral.

Theorem 5 ([35]). For a convex mapping F : [rr1, 2] — R, which is differentiable on [r1y, 712],
the following inequalities hold for the (p, q) -integral:

7T
f(pnl +’77T2> < 1 / 2 .F(X) ﬁzdp,qx < pf(nl) +qF(7T2), (13)
P

[Z]p,q P(ﬂfz - 7-[1) m+(1-p)m {z]p,q
where0 < g <p <1

Theorem 6 ([35]). For a convex function F : 11, 73] — R, the following inequality holds:

T + 7o 1 /P”er(l*P)?Tl s -
F < F d F 2d 14
< 2 > - 2p(m—m) [ M *) mfpa +- pri+(1-p)m *) pat ( )
< Flm)+F(m)
< 5 ,

where0 < g <p <1

4. An Identity

In this section, we deal with an identity that is required to reach our major estimates.
In the following lemma, we first build an identity based on a two-stage kernel.

Lemma 2. Let F : [y, m2] — R be a differentiable function on (71, 72). If 7 DpqF is
continuous and integrable on 711, 73], then one has the identity

[6}; [p#(nz) +q(15],,4 1)]-"(%) +q.7-"(m)} (15)

1 pra+(1-p)m
/ F(5) mdpgs

(m—m) Jm

1
= pq(ty — m11) /A(s) m DpgF (st + (1 —s)my) dpgs ,
0

where
1 o
ag=] P
) o Bl .
@, °€|m,, !
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Proof. Using the fundamental properties of (p, q)-integrals and the definition of function
A(s), we find that

1
/A m Dy, q]-" sty + (1 —s)m) dp,qs (16)
0

T Dy F 1 d
- W / i DpgF (st + (1 —8)7m1)  dpgs
/ 0

; 5
+O/<s - M) m DpgF (s + (1 —s)mm1) dpys .

According to Definition 6, one must also have

F(psma+ (1 —ps)my) — F(gsmp + (1 — qs)nl).

w1 DpgF (s2 4+ (1 —s)m1) = (v —q)(m — m)s

Now, if we substitute the above equation into (16), we obtain

1
/A(s) 1 DpgF (st 4+ (1 —s)mm1)  dpgs (17)
0

q / (psmp + (1 — ps)m1) — F(gsma + (1 —gs)mq) I
P4

(p—q)(m2 —m1)s

0

1
+/]—" psty + (1 — ps)my) — F(gsmp + (1 — gs) ) p
qs
) (p—q)(m2 — 111)

5
6

dpgs

/1]-"ps7rz+ (1—ps)m) — F(gsmo + (1 — gs)7mq)
J (1= q)(m—m)s

&J:x

When the first integral on the right-hand side of (17) is calculated using Definition 8,
it is discovered that

F(psmro + (1 —ps)my) — F(qsma + (1 —gs)my)
o/ (p—q)(m2—m1)s dpqs (18)

1 o g p? ¢ P
- - Fl| —— m+ | 1-—= T
(7_(2 _ 7.[1) {kz(:) <pk+1 [z]p,q 2 pk+1 [Z]P,q 1
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If we look at the other integrals on the right-hand side of (17), we obtain

jﬂmm+ﬂ—whﬂ—ﬂwm+ﬂ—%hﬂ

(p—q)(m2 — 1)

dp,qs (19)
0
1 1 pre+(1-p)m

1
= F(s dpqas + =F(m
(m2 —my) | pq(m2 — 1) () mdpq q (7m2)

and

jﬂmm+umwnﬂwm+mwwa

(p—q)(m2—m)s

dpgs (20)
0
1

= m{f(ﬂz) — F(m)}

Substituting the expressions (18)—(20) into (17), and later multiplying both sides of the
resulting identity by pg(m, — 711 ), the equality (15) can be captured. [

5. Main Results

For (p, q)-differentiable convex functions, we prove some new Simpson’s formula
type inequalities in this section. For the sake of brevity, we start this section with certain
notations that will be utilized in our new results.

2123, (18,0 = 21,,5) + P21615, (P16, = 8],
PENEGES
pa - [3] 6] pa - [

P4 [
2114031546154

4 <p2 [3]p,q [6] pa p[Z} f},q [3]p,q - p3 [6] P4 + pZ [3] P4 ) )
1213,4131,,4161,.5
[5]:;,11 - [z]pq[5]2,q i p3 [6]p,q - pZ [3] P4 [S]p,q + [2]:;’7,17 [6] pa - [z]fz,q [3] P4

/!

A1(p,q) = , (21)

By(p,q) 5 Zp4l3lpql0] 3], + 2]

pA [ pA

AﬂnWZZWM . = ,
[2] P4 [B]p,q [6 p.q [2] pq [3] pAq [6] P4

2
By(p,q) =2 15159 (21p

121,431,461,
_ (p[S]p,q [z]i,q [3]p,q - pZ [3]p,q [6} pa - pZ [S]p,q [3] P4 + p3 [6] p,q)

21,481,061,

( [3]p,q [6] pg [5} P4 [2] p.q [3} pg [z]p,q [6] p.q + [5} P4 [3] p,q) (24)

" 2],,,13],,,[6]

pAatip4g
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Theorem 7. Assume that the conditions of Lemma 2 hold. If |, Dp,qF| is convex on [y, 72,
then we have following inequality for (p, q) . -integrals:

p p7‘[ +q7'[
G [P (ra) (Bl — 1) (P2EL ) b g ()| 25)
1 pm—(1-p)m
_m F(s) mdpg8

m

< pg(ma — ) {| 7 DpgF (m2)|[A1(p. 9) + A2(p,@)] + | 7 DpgF (7r1)|[B1(p. ) + Ba(p,9)]},

where 0 < q < p < land A1(p,q), A2(p,q), B1(p,q), B2(p, q) are given as in (21)—(24), respec-
tively.

Proof. We observe that when we take the modulus in Lemma 2, because of the modulus’
characteristics, we have

1 5 _ prta + 497
i PP F () ([l = 1) (P2 ) 4 g ()| 26)
1 pra—(1-p)m
G ] O
p
[ 1
< pg(my—m) /O[Z]M s — G | 7, Dpg F(s72 + (1= s)711) |dp,qs
Pa
1 [5]
+pq(nz—n1)/p s—[ﬂﬂ |11 DpgF (5702 + (1 — s)711) | dpqs
Bpq P

)

Using the convexity of |, Dy, F
of (26) as follows:

, we may calculate integrals on the right-hand side

P
[ 1
/m”’“ s — ———|| mDpgF (5724 (1 —3s)m1) |dp,gs
0 [6],,4
e e
< | mDpaF )| [ sls — | dpas + | DpaF ()| [P (1= 8)]s — — 1|y s
>~ mYp.q 2 Jo [6]pq P.q m~pq 1 Jo [6}pq p.g°-

When we apply the equality (12) idea to the aforementioned post-quantum integrals,

we obtain
Blpq 1 By 1
s — dpgs = / ”'H(—s)d s+ ”"’s(s—)d s
pPAa |20 [
0 [6],,4 iy [6],9

/u e 1
0 [6],,4
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and

= 2

[ Iy, [3

<P2[3]pq[ Jpg P[2 (6,4 + P7[3] )

+ oL :
[2]5,4[31,,4 (619

Thus, we obtain
| 71 Dpg F(s72 + (1 —s)711) |dpqs (27)

Boa
J

2213, (18,0 = 21,,0) + PP1615, (P16, = 3],
‘ m Dp'qf<n2)’ ( [2}3[3] [6}3

1
[6]5,4

qt-qt-iq

[Z]p,q [3] P4 [6} g - [3]p,q [6] P4 - [3]p,q + [Z]p,q
i DpgF 2
o mm( 21,081,068,
4 (pZ [3]p,q [6] pg p[Z} ?J,q [3] pg p3 [6] pq + pZ [6] P4 ) )
1213,,13],,4 61,4 '
Similarly, we have
/[21],; s— E]:’Z |71 Dpg F(s702 + (1= s)711) | dpgs (28)
3 3 p3[6]p,q - Pz[s}pq[3]pq+ [z]i,q[6]p,q
< | mDpyF(ma)] 2[3]pq[5]pq [S]p,gq[z]p,q N —[52,;{4[2] aBlpg
2],,4031,,4061,,4 21;,481,,416],4

[S]M[ P o A O P P P O P
2 }M[3]pq[ ]iq
[ PB]pal23 4Bl PP Bl 6] P Blpg Blpg P61
12154 (8],,16],4
4 { 3119615 = 51,0 21,913 p.g = (21,9 (615,451 Blpg }
21,,4081p,416]p4

‘H ﬂlDP/'i}—(nlﬂ

We obtain the inequality (25) by placing (27) and (28) in (26). This completes the
proof. [



Symmetry 2021, 13, 2419

11 0of 17

Corollary 1. In Theorem 7, if we set p = 1, then we have the following new Simpson’s type
inequality for q-integrals:

) + 47
1449

) +arm)| -

7T2—7T1

a7+ a8, 1) 7 / F(s) mdgs

< q(m — m){| m DgF (m2)|[A1(1,9) + A2(1,9)] + | m Dy F( 1)\[B1(1,q)+Bz(l,q)]}.

Remark 5. In Theorem 7, if we assume p = 1 and later take the limit as ¢ — 1=, then we obtain
the following Simpson’s type inequality:

H )+4f(”1;”2>+f(n2)]—n1 /:f(s)ds

2 — 70

< A7 )|+ () )

This is proven by Alomari et al. in [2].

Now, we can see how the inequalities appear when we utilize maps with convex
g"™2-derivative powers in an absolute value.

Theorem 8. Assume that the conditions of Lemma 2 hold. If |z, Dp g F ]p ! is convex on 111, 715
for some p1 > 1, then we have following inequality for (p, q)nl—integmls:

o [P Fe a8, 1) PP ) gm0
rAa

1 pre+(1-p)m
_m F(s) mdpgs

< pg(my —my) {®%(PI¢7)

1

P, - A
X 3 | 1 DpgF () [P + #) i DpgF (1) [P
2154 21,4
+®W(M)
23 2B, -2, P2, + A\
2 ‘mqu]: ’P pA P‘i3 pA ‘mDp,q]:(nl)’p ,
[2] 21,4
where0 < g <q<1, pi—i—}—land
o 1 |"
2
O1(p.q) = /0 s G dpqs
q
1 5], "
©a(p.q) = S| s
Rlpg q

Proof. When the integrals on the right-hand side of (26) are subjected to the well-known
Holder’s inequality for post-quantum integrals, it is discovered that



Symmetry 2021, 13, 2419 12 of 17

pr+(1-p)m

ﬁ {P5]:(7T2) - q([5]p,q - 1)‘7(’771;71[37“) +q}'(m)} - ﬁ Z F(s) i pqS

_r n %
< pq(me —m) (/O[Z]M dp,qs)

1
_r 2%
X (/0 Plpa | 70, DpgF (52 + (1 —5)m7) |p1dp/qs> }

1
n la
dp,,,s)

. i
x /L|711D;,,(,]-'(s7'rz-i-(1—s)7rl)|"’1 dpgs .

1

S—m

B
By using the convexity of |, Dy 4| P, we obtain

o [P Fe) = (5]~ 1) (P2 ) g ) ©0)

pA

1 pra+(1—p)m
- F(s) mdpgs
T

(7T2 - 7T1)
P n %
< pq(my— ) ( /Om”’q s — de)
1
By o [y
’ mDp,qF(”Z)‘pl/O P sdp,gs + ’ mDer(”l” /0 P (1= s)dp,gs
1
1 " r
+pq(m — m) (/p dms)
1

Plog
1 1 P
| i DpaF (m2)[" /L sdpgs + | m Dy F ()| /L(l—s)dplqs :

2] rq (] p4q

1

Blpg
o

Using equality (12), we see that, for the other integrals on the right-hand side of (30),

o 2
/[ I sdpgs = —pa , (31)
0 [z]m
o 25, — 1
[2p,q 1—=38)d, s = M 32
7 = s)dg o ©2)

pA
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Similarly, we obtain

22
/iLs@Ws = Eﬁﬂ4J; (33)
(] pAq ( [2] p,q)
3 2 o2 2
/ (- = Py~ g =P £2]”"7 o (34)
B (1215

We obtain the desired inequality (29) by inserting (31)—(34) into (30), which completes

the proof. [
Corollary 2. In Theorem 8, if we set p = 1, then we obtain the following new Simpson’s type

inequality for g-integrals:

[f(nz) +4q(5), —1)?(”21:‘7;1) +qf<m)} — (nzinl)/}'(s) oy

L
(6],

1
1

< q(m—m)[® (Lq)

22 -1 n
1123 ‘ﬂlDli}—(”l)‘pl

- ]: p 1
<H” T ) 213

+®“11(1,q)
2 3 1912 o2 7
X([zL,31|nquf(n2)|pl+[z}q 2R |p1>
[}q [2]‘7

Theorem 9. Assume that the conditions of Lemma 2 hold. If |z, Dp g F ]p ! is convex on 111, 715
for some p1 > 1, then we have following inequality for (p, q)nl—integmls:

ﬁ {zﬁf(nz) —q(lpg—1)F (P ”; - Zm) +qf(m>} (35)
rAq
1 pro+(1-p)m
_m F(s) mdp,g8
1—L
2(2,,—1) P26l — P22,
< - + - -
it =) ( Al T 6l
X<A1 qu}—(”2)| ! +Bl(p1‘7)’ 7T1Dprq]:(n1)|pl)p
+G Ekkl _mw_pmmmasﬁww>“%
2,y (6l [6,,4(2]9

X(Az p, ’nleq]: 7T2 ’}71 +B2 pr ’ﬁleq]: Us ’pl)pl

where 0 < q < p < land A1(p,q), A2(p,q), B1(p.q), B2(p,q) are given as in (21)—(24)

respectively.
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Proof. Using the conclusions obtained in the proof of Theorem 7 after applying the well-
known power mean inequality to the integrals on the right-hand side of (26), we discover

that, due to the convexity of |, Dy 4 F }pl,
P | s . B pr2 +q9m
g [P F ) o) (T ) er)| 69
1 pra+(1-p)m
7@ F(s) mdp,q8

T

p
< pg(mp — m) [(/0[21,7»1 5 —

p
Plha 1
X (‘nle/q]:(sz)‘pl /O A S’S - W
q

61,

dpgs

1 Bop 1 0
+’7{1Dp,qf<7fl)‘ /0 A (1 - S) S — W dp’qs

pa
1—- 1
1 [5];7,11 n
+pq(my — ) / , 15— G dp,qs
oyl [l
1 (5]
X |H1Dp,q]:(ﬂ2)’pl/ ) S—Mﬂ dp g8
ol pa
1
(5],

o Dpg F ()| /;(1—5)

Clyq

p 1-5-
o o Rlpq d
= pq(m2 —m) (/o 5 MS>

1
% (A1(p.0)]  DpaF (72)|" + Br(p )| 7 Dy F ()" }

1—-L
1 n
+pq (”2—”1)(/p s dp,qs)

2lpq
1
% (A2(p,0)| Dy F (72)|"* + Ba(p, )| 7, DpF ()| m]

1

61,

(51,4

%l

We also observe that

/[Zf’;/qs—l dyas 2/[6];" 1 —s|d S_'_/[Z]’;,q S—Ld s (37)
0 (6,01 " 0 [6],,0 P o (6,0 ) "
2
N ) G P
[2} r4q [6] r.4q [6] p.4q [2} p.q

and by using similar operations, we have

2]

pallog =Bl | 1 Blpg Pl — P[0l

21,4161, 2, (6], 6],,,22,

§— —|dpgs =2 (38)

pA
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We obtain the needed inequality (35) by swapping (37) and (38) in (36). As a result,
the proof is complete. [

Corollary 3. In Theorem 9, if we set p = 1, then we obtain the following new Simpson’s type
inequality for the g-integral:

Ty + g4y

ol (55 o] - T

Rl -5, 1 B muu) ;
+<2 62 B, M, 6], 1217
X (A2<1/q>| 1 DgF (702) | + Ba(L,9)| nquf(nl)m)ﬁ

Remark 6. In Theorem 9, if we set p = 1 and later take the limit as g — 17, then we have the
following Simpson’s type inequality:

1 7T + 7 1 2
’6[f(m)+4f<2 )+}'(7T2)] S— /n1 F(s)ds
1 5\ 15
s ——l5 (12 — 1)

(1296) 71
1 1
X [61]F (711) [ + 29| F (72) [P * + [29] F/ ()| + 61| F () [P .
This is given by Alomari et al. in [2].

6. Conclusions

In this investigation, we have proven different variants of Simpson’s formula type
inequalities for (p, q)-differentiable convex functions via post-quantum calculus. We con-
clude that the findings of this research are universal in nature and contribute to inequality
theory, as well as applications in quantum boundary value problems, quantum mechanics,
and special relativity theory for determining solution uniqueness. The findings of this
study can be utilized in symmetry. Results for the case of symmetric functions can be
obtained by applying the concept in Remark 4, which will be studied in future work. Future
researchers will be able to obtain similar inequalities for different types of convexity and
co-ordinated convexity in their future work, which is a new and important problem.
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