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Abstract: This work proposes two different primal-dual splitting algorithms for solving structured
monotone inclusion containing a cocoercive operator and the parallel-sum of maximally monotone
operators. In particular, the parallel-sum is symmetry. The proposed primal-dual splitting algo-
rithms are derived from two approaches: One is the preconditioned forward-backward splitting
algorithm, and the other is the forward-backward-half-forward splitting algorithm. Both algorithms
have a simple calculation framework. In particular, the single-valued operators are processed via
explicit steps, while the set-valued operators are computed by their resolvents. Numerical exper-
iments on constrained image denoising problems are presented to show the performance of the
proposed algorithms.

Keywords: primal-dual algorithm; monotone inclusion; cocoercive operator; infimal convolution

1. Introduction

In the last decade, there has been great interest in primal-dual splitting algorithms
for solving structured monotone inclusion. The reason is that many convex minimization
problems arising in image processing, statistical learning, and economic management can
be modelled by such monotone inclusion problems. Based on the perspective of operator
splitting algorithms, these primal-dual splitting algorithms can be roughly divided into
four categories: (i) Forward-backward splitting type [1-4]; (i) Douglas-Rachford splitting
type [5-7]; (iii) Forward-backward-forward splitting type [8-12]; and (iv) Projective
splitting type [13-17]. In 2014, Becker and Combettes [11] first studied the following
structured monotone inclusion problem:

Problem 1. Let H be a real Hilbert space, z € H, and m > 0 be an integer. Let A : H — oH
be maximally monotone and C : H — H be monotone and L-Lipschitzian continuous, for some
L > 0. For every integer i = 1,...,m, let X; and G; be real Hilbert spaces, let B; : X; — 2% and
D;: Y — 2Yibe maximally monotone operators, and let K; : H — Xjand M; : H — Y be
nonzero linear bounded operators. The problem is to solve the primal inclusion

m
findx € H suchthatz € Ax+ Y ((K o B;oK;)O(Mj o D;o M;))x+Cx, (1)
i=1

together with its dual inclusion
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m
z— ) LiKip; € Ax+Cx,
piedX,i=1,...,m, i=1
find g €Yy, i=1,...,m, suchthat 3Ixe€H: K,-x—KiyieB;lpi,izl,...,m, (2)
vieEM,i=1,...,m, My, € D 'g;i=1,...,m,

Kz*Plez*%l:L,m

Based on the method of [10], they proposed a primal-dual splitting algorithm to solve
(1) and (2). Moreover, they applied the algorithm to solve an image restoration model
with infimal convolution terms mixing first- and second-order total variation, which was
initially studied in [18] and further explored in [19]. The advantage of this model is that it
can reduce the staircase effects caused by the first-order total variation. Furthermore, Bot
and Hendrich [4] studied a more general monotone inclusion problem as follows.

Problem 2. Let ‘H be a real Hilbert space, z € H, and m > 0 be an integer. Let A : H — oH
be maximally monotone and C : H — H be u~'-cocoercive operator, for some u > 0. For every
i=1,...,m,let G, X;, YV be real Hilbert spaces, let r; € G, let B; : X; — 2% and D; : Y — 27
be maximally monotone operators, and let L; : H — G;,K; : G; — Xjand M; : G; — Vi be
nonzero bounded linear operators. The problem is to solve the primal inclusion

m
find x € H  such that z € Ax + ZL:‘((K:‘ o B; o K;))O(M; o D; o M;))(Lix —r;) + Cx, (3)

i—1
together with its dual inclusion
m
z— Y LiKip; € Ax +Cx,
pi€eX,i=1,...,m, i=1
find q; €Vy,i=1,...,m, suchthat 3FxeH:{K(Lix—y;i—r)€ Bflpi,i =1,...,m, (4)
yi€G,i=1,...,m, MiyiEDflqi,i:Lm,m,

Kipi=Mq;,i=1,...,m.

It is easy to see that Problem 1 could be viewed as a special case of Problem 2 by
letting L; = [ and r; =0, forany i =1, - ,m. They proposed two different primal-dual
algorithms for solving the primal-dual pair of monotone inclusions (3) and (4). The first
algorithm is a forward-backward splitting type, which is defined as follows. Let xy € H,
and foranyi=1,...,m, p;g € X, qi0 € Viand z;0,yi0,vip € G;, and set

m
Xn = Jea(xn — T(Cxy + Z Liv;, —z))
i=1

fori=1,...,m

Pin = o, 51 (Pin +01,iKizin)

’71',?1 = ]92,inl (qi,n + 02,1’Miyi,n)

Ui = Zip + 71, (KS (Piyn — 2Pin) + vipn 4 07(Li (2% — xn) — 17))

Upin = Yin + V2,i (M (Giyn — 2Gin) + 0ipn + 07(Li(2%0 — xn) — 1))
1+0m, Tiv1,i

e e 0 BN 1 ¢ VR

1+0i(71,i +72,4) (b1 1+ 072, 2in)

(Vn > 0) 1 @)

Yin = (U2,in — 0i72,iZin)

Zinp =

1+ 0772,
(i = Vi + 0i(Li(2%n — Xn) — 1 — Zip — Yin)

Xpt1 = Xn + )Ln(fn - xn)
fori=1,...,m
Pip+1 = Pin + /\n(ﬁl,n - pi,n)
Jin+1 = Gipn + )\n(‘?i,n - qi,n)
Zin41 = Zip + An(Zin — Zin)
Yin+1 = VYin + /\n(?i,n - yi,n)
Vin+1 = Vi + An(Oin — Vin),
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where forany i = 1,...,m, 7,601,602, 71 Y2 and o; are strictly positive real numbers

such that L1 01 1 11
2y~ (1 —a) min { ——,—,— } >1 6)

i=Lm | T 01" 02" 71" 72, 03
2
M| }} @)

[ m
_ 2
N max{ T Z 0'l'||Li Hz, jI‘rl1axm{ \/91,]")/1’]' ’ \/62’]")/2”
i=1 T

In addition, {A,} C [¢,1], where ¢ € (0,1). The second algorithm is a forward—
backward—forward splitting type. Let xp € H, and forany i = 1,...,m, let p;¢g € A},
9i0 € Vi, Zio, Yi0, Vio € Gi, and set

for

K]

m
Xy = ]'ynA(xn - ')’n(cxn + Z L;‘kvi,n - Z))
i=1

fori=1,...,m

Pin = 1,51 (Pin + 1nKizin)

Gin = I, -1 (@in + TnMiYin)

Wi = Zig — Yn(K{ Pin — Vin — vu(Lixn —11))
Uin = Yin — Yn(M; qin — Oin — Yn(Lixn — 1))

O o I P
Gin = Thpgg (Min = T pz2in)
_ 1 -
(Vn 2 0) Yin = m (”2,i,n - ')’%Zi,n> ®

Uin = Vin+ Yn(LiXp — i —Zin — Yin)

m
Xpy1 = Xn + Yn(Cxy — CXy + Z Li (vin — Vi)
i=1

fori=1,...,m
Pint1 = Pip — Yn(Ki(zipm — Zin))
Qi1 = Gin — Yn(Mi(Yin — Gin))
Zint1 = Zip + Yu(
Yint1 = Jin +Tn

L L%n+1 = Oin — Tn

where {7, } C [8, %} with e € (0, ﬁ) and

2

7

Mj||2}}' ©)

The first algorithm (5) could be viewed as a preconditioned forward-backward split-
ting algorithm [20]. While the second algorithm (8) is an instance of the forward-backward-
forward splitting algorithm proposed by Tseng [21]. We can see that the operators B;l
and Di_1 are symmetry in both of algorithms. We call the first algorithm (5) the FB_BH
algorithm and the second algorithm, the FBF_BH algorithm.

In this paper, we continue studying primal-dual splitting algorithms for solving the
structured monotone inclusion (3) and (4). First, we establish a new convergence theorem
for the primal-dual forward-backward splitting type algorithm (5). We relax the limitation
of the iteration parameters as well as expand the selection range of the relaxation parameter.
Since the primal-dual forward-backward—forward splitting type algorithm (8) does not

m
B 12 .
p= V+\Jmax{i:21||b|| max {1
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make full use of the cocoercive operator, we introduce a new primal-dual splitting algorithm
for solving (3) and (4), which is based on the forward-backward-half-forward splitting
algorithm [22]. This new algorithm is not only less computationally expensive than the
original algorithm but also provides a larger range of parameter selection. To show the
advantages of the proposed algorithms, we apply them to solve image denoising problems.
This paper is organized as follows. In Section 2, we recall some preliminary results in
monotone operator theory. In Section 3, we present the main results. We study the conver-
gence of two primal-dual splitting algorithms for solving (3) and (4). Furthermore, we employ
the obtained algorithms to solve convex minimization problems. In Section 4, we perform
numerical experiments on image denoising problems. Finally, we present conclusions.

2. Preliminaries

Throughout this paper, H is a real Hilbert space, which is equipped with inner product
(-,-) and associated norm || - || = 1/{-,-). Let 2" be the power set of H. Let L : H — G be a
linear bounded operator, where G is another real Hilbert space, the operator L* : G — H
is said to be its adjoint if (Lx,y) = (x, L*y) holds for all x € H and all y € G. Most of the
definitions are taken from [23].

Let A : H — 2" be a set-valued operator. Let zer A = {x € H : 0 € Ax} be the set
of its zeros, ran A = {u € H : 3x € H,u € Ax}itsrange,and gra A = {(x,u) € H x H :
u € Ax} its graph. The inverse of A is defined by A~! : H — 2%, u — {x € H : u € Ax}.

Definition 1. Let A : H — 2™ be a set-valued operator. A is said to be monotone, if (x —
yu—v)y >0, V(x,u),(y,v) € graA. Furthermore, A is said to be maximally monotone if it is
monotone, and there exists no monotone operator B : H — 2" such that gra B properly contains
gra A.

Definition 2. Let T : H — H be a single-valued operator.
(i) T is said to be L-Lipschitzian, for some L > 0, if | Tx — Ty|| < L||x —y||, Vx,y € H.
(ii) T is said to be p-cocoercive, for some yu > 0, if (x —y, Tx — Ty) > u||Tx — Ty|?,
Vx,y € H.

Definition 3. Let A : H — 27, the resolvent of A with index A > 0 is defined by
Jaa = (Id+AA) 7, (10)
where 1d denotes the identity operator on H.

Definition 4. Let Ay, Ay : H — 2™ be two set-valued operators. The sum and the parallel sum of
A1 and Aj are defined as follows:

Ai+Ay - H— ZH, (Al + Az)(x) = Al(X) + Az(x)
" . Nl (11)
MDAz H = 2%, MDA, = (AT +47)

Let f : H — R := RU {£oo}. We denote its effective domain as dom f := {x €
M : f(x) < +oo}, fissaid tobe properif dom f # @ and f(x) > —ooforall x € H. Further-
more, we define To(H) := {f : H — R | f is proper, convex, and lower semicontinuous (lsc) }.

The conjugate function of f is defined by f* : H — R, f*(p) = sup{(p,x) — f(x) :
x € H}forallp € H.If f € To(H), then f** = f.

Let f € To(H), the subdifferential of f is defined by of : H — 2™ : x v {u € H |
MyeH)f(y) > f(x)+(u|y—x)}. If f € To(H), then df is maximally monotone.

Let two proper functions f,h : H — R,

fOh:H — R, (fOh)(x) = yig?g{f(y) +h(x—y)}, (12)
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denotes their infimal convolution.
Let f € To(H) and 7y > 0, the proximity operator of f is defined by

1
proxvf:”H%’H:xHargmin{f(y)+||xy|2}. (13)
yeH 2y
It follows from f € To(#) that prox, ¢(x) = Jya5(x).
The following lemma shows the relationship between the proximity operator of f and
its convex conjugate f*.

Lemma 1. (Moreau’s decomposition) Let v > 0 and f € To(#H), then
Loy =x vxen
prox, ¢(x) + ”yprox%f*(;x) =x, Vx € H.

Let C C H be a nonempty closed convex set, the indicator function of C is denoted by

0,ifxeC

+00, otherwise. (14)

§C:xv—>{

The orthogonal projection onto C is defined by P, which is Pc(x) = argmin||x — y||.
yeC

Let v > 0, prox,,;_(x) = Pc(x).

3. Main Results

In this section, we study primal-dual splitting algorithms for solving (3) and (4) and
discuss their asymptotic convergence. First, we provide a technique lemma, which shows
that the primal-dual monotone inclusions (3) and (4) are equivalent to the sum of three
maximally monotone operators. In the following, let H = H; @ - - - H;, be the direct sum
of real Hilbert spaces {#;}" ;. Letv = (v1,--- ,om) € Hand g = (q1,- - ,qm) € H, the
inner product and associated norm on ‘H are defined as

(0 q)n =) (0ia:), ol =/} ol
i=1 i=1

Lemma 2. Let H, A, C, X}, Vi, Gi, B, D, Li, K;, M, i = 1,--- ,m be defined as in Problem 2,
and let
X=X X, Y =01 SV G =G19 - BGu K=HaeXBYBGHGDG,
p= (p1/'~-/pm) € X/q = (QLH-/’]m) € y/z = (le-”/Zm) S gr
y=W1-- ¥ym) €Gv=(v1,...,0m) €G,r=(r1,...,"m) €G,
B: X _>2X Lp= (Blpll"' ,Bmpm)/D R —>2y,q — (D1q1/"' /DQO),
M:G =Y,y (Miyr,, Muym),K: G = X,y — (Kiy1, -+, Kuym), (15)
M: K — Z’C,(x,p,q,z,y,v) = (—z+ Ax) x B lpx D g x (—v,—v,r+z+y)
m ~ ~ o~ ~
S:K—=K,(x,p.9zy9) — <Z Ll’-‘vi,Kz,My,K*p,M*q,le,..,,me>
i=1
Q: K=K, (x,p92y,v)— (Cx,0,0,0,0,0)

Then the following conclusions hold:
(i) M is maximally monotone.
(ii) S is monotone and I-Lipschitzian, where

m
1
I = (max{ max |[Ki[*> max (M%) |[Li]*})>. (16)
i=1,--,m i=1,--,m i—1
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(iii) Q is p~'-cocoercive.
(iv) For any % € H, X is a solution to Problem 2, if and only if ¥ € zer(M + S + Q).

Proof. (i) Since A, B, and D are maximally monotone, it follows from [23] Proposition
20.22 and Proposition 20.23 that the set-valued operator M is maximally monotone.

(ii) By taking two arbitrary elements x = (x,p,q,z,y,v) and £ = (£,p,4,%,9,0) in I,
we obtain

(x — %, Sx — S®)
:<(X*J?,P1 7ﬁlr“‘/pm 7}'3}11/‘71 771/"'/‘11}1 7@”1721 721/"'/Zm 72mryl 7?1/“‘ rym 7yAWu

m
U1 =01, , U — ﬁm)r(Z L;F(‘D,' 7731'):7K1(Zl 721)/' o /7Km(zm 72m>r7Ml(yl 7?1)/' o /7Mn1(ym 791?1):
i=1

Ki(pr—=p1), Koo = o), Mi (0 = 1)+ M3y (G — ), =L (x = 2), -+, =L (x = %)) (17)
=Y (x— & Li(vi —0:)) = Y {pi — pi, Ki(zi — 2)) — Y _Aqi — Gi Mi(yi — 90)) + Y _(zi — 20, K; (pi — pi))
i=1 i=1 i=1 i=1
+ ) i = 90, M; (qi — §i) = ) _(vi = 0;, Li(x — %))
i=1 i=1

which means that S is monotone. It follows from the Cauchy-Schwarz inequality that
[[Sx — 2|
= H(:ZI% Li(vi =0i), —Ki(z1 = 21),- - =K (2m = Zm), =Ma(y1 = 1), -+, =M (Ym = Gm),
+Ki(p1 = p1)- o K (pm = o), Mi (g1 = 1), -+ My (g = ), =La(x = %), -+, =L (x = 2)|

m m m m
= (I L (i =017 + Y 1Ki(zi — 20117 + Y- IMiyi — 9017 + Y 1K (pi — p) 1P
i=1 i=1 i=1 i=

i=1

m m

~ % . 1

+ 3 IM; (i = d) P + Y IILE (x = )]1%)2
i=1 i=1

m m m m m
< (L) X Moi = 04017 + 30 Kl llzi — 2l + Y IMillPllys = gill* + 3 11Kl 1 pi — pill? (18)
i=1 i=1 i=1 i=1 i=1

i=

m m
~ o 1
+ 2 IMilPllgs = gll® + 3 Ll — 2]1%)2

i=1 i=
m 5 m 2 5 m 2 5 m 2
<L) Yo Mo = aall> + max [IKi|12 Y Mz — 1> + max [[M]1* Y [lyi — i
i=1 i=1 =L m i=1 =L m i=1
27 2 2y 2, v 2 2\ 1
+ max K[> Y [lpi = pill? + max [[M]12 Y llgi = @ill> + Y (I LillP[lx — £(1%)2
i=1,--,m i1 i=1,--,m i=1 i=1
2 m 2 m 5 m 2 m 5 m 2 l
<IU(llx = 2P+ Y i = pill> + Y N = 4ill® + Y Nz = 2>+ Y My — 2:ll> + Y o — 0:l1?) 2
=1 -1 -1 =1 i=1

=I||lx—2|.

Hence, S is monotone and I-Lipschitzian.
(iii) Let x = (x,p,q,z,y,v) € K and £ = (£,p,4,2,9,9) € K. Since C is u~!-
cocoercive, we have
(x—%Qx— Q) > (x—%,Cx—C%)
> Y|Cx = C2[> = 1| Qx — Q2% (19)

Then, the operator Q is u#~!-cocoercive.
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(iv) Let x € H, then

m
z— ¥ LiKip; € Ax+Cx,
i=1
Tsolves (3) < I(%,p,4.y) cHO XY g K(lix—y —r)€ B lpii=1,...,m
My € D 'g,i=1,...,m,
Kipi=M:q,i=1,...,m.
0c—z+Ax+ 3" Lio; +Cx

0€—Kiz+B; 'pi=1,...,m, (20)
o JEpeHoX0y 0€ —M7;+D; 'q,i=1,...,m,
Izg0)eGogeg | 0=K'pi—05,i=1,...,m,

Oszqi—ﬁi,izl,...,m,
O=ri+zi+y,—-Lix,i=1,...,m

3.1. Primal-Dual Forward—Backward Splitting Type Algorithm

In this subsection, we prove the convergence of the primal-dual forward-backward
splitting type algorithm (5). By Lemma 2, M + S is maximally monotone, and Q is
cocoercive. It is natural to use the forward-backward splitting algorithm. However,
the resolvent operator of M + S does not have a closed-form solution. To overcome this
difficulty, Bot and Hendrich [4] introduced a special precondition to the forward-backward
splitting algorithm and obtained the primal-dual splitting algorithm (5). In the following,
we present an improved convergence analysis of the primal-dual forward-backward
splitting type algorithm (5), which sharpens the selection of iterative parameters.

Theorem 1. Consider Problem 2, suppose that
m
zeran| A+ Y Li((K; o B;oK;)O(M; o Djo M;))(L;- —r;) + C |.
i=1

Foranyi=1,---,m,let 7,01, 02, 71 V2, and o; be strictly positive real numbers and {A,} C
[0,2— ﬁ}, satisfying the following conditions:

()28 > 1, where p = p~! (% -Y 0'i||Li||2>;
(ii) (1 —a) mini:L_“,m{l e e, l} > 0, where & is defined by

T/ 01,7 027 11,17 12,17 Oi
2 2
0| }} (21)

m
A = max T 0’1'||LiH2, ~max {\/91’]")/1,]‘
i—1 j=1,...m
Consider the iterative sequences generated by (5). Then, there exists a primal-dual solution

(i) 1% An(2 = 55 — An) = +oo.

K]

Uiy — Ojforanyi=1,...,masn — +oo.

Proof. LetH, A, C, X;, Y;, Gi, B;, D;, L;, K;, M;, i = 1,--- ,m be defined as in Problem 2.
Let the real Hilbert space K =H o X DY PGB G DG and

P:(Plr--~,Pm) z=1(21,---,2m)
q:(qll-”/an) and v:(vl,...,vm)
y:(yl/'-w]/m) T:(Tl,...,rm).



Symmetry 2021, 13, 2415 8 of 23

Define

VK 5K (pqz vm(uiflﬂy Y Lio, Rz, By, K p, M*q, —L1x, ..., —Lux
: (X p. 9.2y, 00 YT i=1“, My, K"p, M"q, —Lix,...,—Lux |.

Further, for positive real values 7,601,602, 71, V2,0 € Ryy,i = 1,...,m, define
the notations

P _ (PL P z — (2 Zm

t1 01,07 Oim 7 717 Ym v_(u Um
i: L Gm ’ l: i Ym ’ e Ul,...,am .
[ 0217 """ O 72 Y217 Yom

Then, (5) can be rewritten in the form of

~ m m
Xy — X _ _ _
oo - " =Y Li(0jp—Tin) —Cxn € —z+ AXy + )_ L{0;y
i—1 i=1

Fori=1,...,m

% + Ki(zip — Zin) € B 'Pin — KiZim
i
Qin — ﬁi,n M ~ D15 M
g T MiYin = Yin) € Di Gin — Miflin
(Vn Z O) 2'1~ (22)
Zip — Z; _ ~ e
% + Kz* (pi,n - pi,n) = —UOin + Ki Pin
S
ym,y% + M (qin = Gipn) = — i + M Gin
S
Vi — U; _ _ _ B
% - Li(x” - xﬂ) =71i+Zin +Yin— Lixy
- 1

[ X1 = Xn + A (X0 — xn).

Let
pn = (PLus---Pmn) € X Pn= Piyu---Pmpn) €X
qn = (qun, -+ Gmn) €Y Gn = Gun, - Gun) €Y
Zy = (ern, -1Zm,n) eg En: (zl,n/u-rgmn) cg
Yn = (yl,n/ -/]/m,n) €g Yn = (i/vl,n/ . -/gm,n) €g
On = (Ul,n/ -/Um.n) €eg Uy = (271.71/ rﬁm,n) €eg
and

{ x?’l = (xn/pi’l/qi’l/ zl’l/yi’l/vn) 6 ’C
fn = (5{7’1/ ﬁnz ‘Ajn/ En/]?n, 511) S ’C

Therefore, the iteration scheme in (22) is equivalent to

V(x, — %) — Qxp € (M + S)Xy

- (23)
Xpt1 = Xn + An (X — xn).

(Vn > 0){

We introduce the notations

A = Vﬁl(M—i— S) and By := VﬁlQ. (24)
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Then, for any n > 0, we have
V(x, —x,) — Qx, € (M + S)xy,
<Vx, — Qx, € (V+ M+ S)x,
=Xp — V_1an S (Id + V_l(M + S))fn (25)
-1
%= (d+VIM+8))  (x-V'Qw)
&%, = (Jd+ Ag) " (xn — Brxn),
which can be written as
Xp = IA;C (xn - Blen>‘ (26)
Thus, the iterative scheme in (23) becomes
Xy, = xn — Bix
(vn>0)|"" Ja (on = Bin) (27)
Xpi1 = X + Au (X — x5).

We then introduce the Hilbert space Ky with inner product and norm, respectively,
defined, for x,y € K, via

(x,y), = (x, Vy)c and [|x][c, = \/(x, Vx)k (28)

Since M + S and Q are maximally monotone on K, the operators Ax and By are
maximally monotone on Ky. Moreover, since V is self-adjoint and p-strongly positive,
one can easily see that weak and strong convergence in Ky are equivalent with weak and
strong convergence in K, respectively. In the following, we prove that By is -cocoercive
on Ky. In fact, let x,y € Ly, we have

IBicx — By, = (Qx— Qy, V_'Qx — V7 1Qy)x

1 UL o\
= (Cx —Cy, (;Id - ZUiLi L)~ }(Cx — Cy))

1 (29)
; ZalHLH YCx - Cy,Cx — Cy)
1 v 1 2
= (- = LalLl?)Hicx - cy|*
i=1
It follows from the above inequality that we obtain
(x =y, Brx — Bry), = (x —y,Qx — Qy)x
= (x—y,Cx—Cy)
>ptcx—C
> |[Cx = Cyll 30)

1,1 & 2
> 1(; — Y aillLil|®) | Bix — Beyllk,
i=1

2
= BlIBxx — Biyllk,,

where B =~ (2 — Ty o3| Lil?).
Since 2 > 1, so the iteration scheme (27) could be viewed as a special case of the
forward-backward splitting algorithm By Corollary 28.9 of [23], the iterative sequences

that zer(Ag + Bx) = zer(V-1(M+ S+ Q)) = Zer(M +S+ Q). Then, we obtain that



Symmetry 2021, 13, 2415

10 of 23

Xn — X, Pin — PirGin — GirZin — Zi,Yin — Yis and Vin — 0; for anyi =1,...,mas
n — +oo. This completes the proof. [J

Remark 1. Theorem 1 improves the FB_BH algorithm (5) in the following aspects:
(i) The parameter conditions of 7,601,602, 71, V2, and oy, forany i = 1,- - - ,m, are relaxed.
(ii) The range of relaxing parameters { A,, } has been expanded. We have improved the relaxation
parameter form {A,} C (0,1] to {A,} C[0,2 — %] Since 25 > 1, then 2 — ﬁ > 1.

3.2. Primal-Dual Forward—Backward-Half-Forward Splitting Type Algorithm

By Lemma 2, the primal-dual pair of monotone inclusions (3) and (4) are equivalent to
the monotone inclusions of the sum of M + S + Q, where M is maximally monotone, S is
monotone, Lipschitz, and Q is cocoercive. It is well-known that a ;Fl—cocoercive operator
is p-lipschitz continuous. The forward-backward-forward splitting type algorithm (8)
does not make use of the cocoercive property of Q. In the following, we propose a
forward-backward-half-forward splitting type algorithm for solving (3) and (4) and prove
its convergence.

Theorem 2. For Problem 3, suppose that

m
Z € ran <A + ZLT((KZ* o B;j o K;)O(M; o Djo M;))(L; - —r;) + C). (31)
i=1

-1

Let C [y, x — 1), where g € (0,x/2), 1 is defined by (16), and x 1= — 22—

{rn} S lnx =1l 1€ (0,x/2] fined by X e e

Let xo € H,and foranyi=1,...,m,let p;g € X;,qi0 € Vi,zig € Gi,yip € Giand v;y € G;.
Set

m
Xn = Joypua(Xn — Yn(Cxy + Z Livi, —z))
i=1

Fori=1,...,m
Pin = IrynB’fl (Pin + vuKizin)
qi,n = ],ynDIfl (qi,n + 'YnMiyi,n)

Utin = Zig — Yn(Kpin — Vi — yn(Lixn —17))
Upin = Yin — Yn(M; qin — 0in — Yu(Lixn — 1))

1472 7a
Zin = 1 +2’er1 U,in 1+ ’Y% U in
2 2
(vn>0)| |5 _ 17 <u. _ T u.) (32)
Yin 1_'_2,7% 2,in 1+ % 1,in

[Tin = Vin +Yn(LiXp — i —Zip — Yin)
m
Xp+1 = Xn + Tn Z L:'K(Ui,n - 27i,n)
i=1
Fori=1,...,m
Pint1 = Pin — YuKi(zin — Zin)
Tin+1 = Gin — YnMi(Yin — Yin)
Zin+1 = Zi,n + 'Yan(Pi,n - ﬁi,n)
Yiny1 = yvi,n + "YHM? (‘h’,n - ‘71;1)
| L9501 = Ui — YnLi(xn — Xn),

and fori=1,...,m,piy — Pi,Gin — JirZin — Zi,Yin — i, and v;, — 9; as n — —+oo.
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Proof. Notice that (32) is equivalent to

m
(= Yn(Cxn + Y Livi)) € (Id + (A - —2)) %y
i=1

fori=1,...,m

Pin+1nKizin € Ad+ vuB; ) Pin

in + ')/nMiyi,n € (Id + "YnDi_l)"ii,n

Zin — 'YnK;'k Pin = Ez',n - ’Yn’ai,n

Yip — YnM; qin = Yin — Ynlin

Vi + YuLixn = 0w + Yn(ri + Ziw + Yin)

(33)

m

Xp+1 = Xn + T Z L; (vin — Tipn)
i=1

fori=1,...,m
Pin+1 = ﬁi,n - 'YnKi<Zi,n - Zi,n)
din+1 = qi,n - 'YnMi(yi,n - 371',11)
Zin+1 = Zip + YuKi (Pin — Pin)
Yint1 = Yin + YnM; (qin — Gin)

Oin+l = 51‘,71 - 'YnLi(xn - fn)-

Using the notations in Theorem 1, the iteration scheme (33) could be equivalently

written as

(V}’l > 0) \‘xn - ’)’n(s + Q)xn € (Id + 'YHM)kVn (34)

Xpy1 = X+ 'Yn(sxn - Sin)/

which is equivalent to

(Vn > 0)

Fn = Ty (%0 = 1n(S + Q)xu) (35)

Xpt1 = Xn + Yn(Sxn — SXp).

Therefore, (35) is an instance of the forward-backward-half-forward splitting algo-
rithm in /C, whose convergence has been investigated in [22].

HOX Y SGPG PG is a primal-dual solution to Problem 1.1. By Theorem 2.3 of [22],
we have x, — %, and fori =1,...,m, Pin = Pis9in — GirZin — Zi,Yin — Vi, and OUipn — 0j
as n — +o0. This completes the proof. [

Remark 2. In contrast to the FBF_BH algorithm (8), the proposed algorithm (32) has two advantages:
(i) The calculation of the cocoercive operator in (8) requires twice, while it only requires once
in the proposed algorithm (32).
(i1) The range of the iterative parameter of the proposed algorithm (32) is larger than algorithm (8).

3.3. Applications to Convex Minimization Problems

In this subsection, we apply the proposed algorithms to solve the following convex
minimization problem.

Problem 3. Let H be a real Hilbert space, let z € H and h : ‘H — R is differentiable with
p-Lipschitzian gradient for some > 0. Let f € To(H). For everyi =1,--- ,m, let G;, X, V;
be real Hilbert spaces, r; € G;, let ¢; € To(X;) and I; € To(Y;) and consider the nonzero linear
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bounded operators L; : H — G;,K; : G; — X;and M; : G; — Y;. The primal optimization
problem is

min{f(x) + i((gi o K;i)O(lj o M;))(Lix — r;) 4+ h(x) — (x,2) } (36)

xeH i—1

together with its conjugate dual problem

(p.g) X DY K pi=M; q;,i=1,....m

max { th*< i K*ra) ig, (pi) + 1 (9:) + <PirKi7’i>]}- (37)

Let (%,7,9,9) € H® X &Y & G be a solution of the following primal-dual system
of monotone inclusions

m
z— ) LiKip; € of (%) + Vh(x
i; i Kipi € 9f (%) (%) 38)
and K;(L;x — i; —r;) € 9 (p;), Miiy; € ol (4;), K pi = M7 q;,i=1,...,m
which means that ¥ is an optimal solution to (36) and (7, §) is an optimal solution to (37).

For the primal-dual system (38), the iterative sequence proposed in (5) and (32) and
the corresponding convergence statements are introduced as follows.

Algorithm 1: Primal-dual forward-backward splitting type algorithm for solv-
ing (36)
Letxp € H,and foranyi=1,...

,m,let pjo € Xj,qi0 € Viand z; 0, Yi0, vip € Gi

Define
m
n = prox,s | xn — T Vh(xn) + ) Livi — 2
=1
Fori=1,...,m
Pin = ProXg, o« (Pin +61,Kizi )
i = PTOXg, - (qipn + 62,iMiyi )
w1,in = Zip + Y1, (K (Pin = 2Pipn) + Vin + 03(Li(2%0 — xn) —17))
Upin = Yin T ')/Z,i(M;F (q:‘,n - 2571‘,11) + 0y + Ui(Li(zfn —Xy) — ri))
2 = 1+ 0, (u oM )
14 03 (ra + v2,) R A
(Vn>0)]|]. 1 3 (39)
Yin = m (uz,z,n - ‘Tz’Yz,zZz,n)
| 0in = 0in + 0 (Li(2%0 — Xn) — 1i — Zin — Yin)

Xpt1 = Xn + /\n(fn - xn)
Fori=1,...,m
Pin+1 = Pin + )\n(~in - pi,n)
qin+1 = Gin + An (Lh n q:‘,n)
(2

Ziny1 = Zip + An in Zi,n)
Yin+1 = VYin + An (yz n yi,n)
L L% ,n+1 = Yin + An (Uz,n - vi,n)

The convergence of Algorithm 1 is presented in the following theorem.
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Theorem 3. For the convex optimization problem (36), suppose that

m
Z € ran <af + Z L;k((Kz* o agl (e] Kz)D(Mz* o all (e] Ml))(Ll . —1’1') + Vh> (40)
i=1

and consider the sequences generated by Algorithm 1. Forany i =1,...,m,let T,61;,02, 71, V2,
and o; be strictly positive real numbers and {A, } satisfy the conditions in Theorem 1. Then, there
exists an optimal solution % to (36) and optimal solution (p,q) to (37) such that x,, — X and for
i=1,...,mpi, = pi,and q;, = §; as n — +oo.

Proof. In Theorem 1, let
A:E)f,C:Vh, andBizagi,Di:BZi,izl,...,m. (41)

According to Theorem 20.25 of [23], the operators in (41) are maximally monotone.
On the other hand, we have B;l = dg; and lel =0l fori =1,...,m. Moreover, by the
Baillon-Haddad theorem, C = Vh is s~ !-cocoercive. By Theorem 1, we have x, — ¥ and
fori=1,...,m,pi, = pj,and q;,, = g;. O

The second algorithm is obtained from (32).

Algorithm 2: Primal-dual forward-backward-half-forward splitting type algo-
rithm for solving (36)

Let {v+} C [, x — 1], where y € (0, x/2], 1 is defined by (16), and
4;1’1

X=—F7————Letxo € H,andforanyi=1,...,m,let
14/ 1+16(p 1) 12
Pio € Xi,qi0 € Vi, zip € Gi,yio € Gi and v; € G;. Set

m
Xy = prox%f(xn — Y (Vh(xy) + E Livi, —z))
i=1

Fori=1,...,m

Pin = ProX, o« (Pin + 1nKizin)

Gin = ProXy, i+ (qin + YnMiYin)

Win = Zig — Yn(K{ Pin — Vin — yn(Lixn —1i))
W,in = Yin — Yn(Mi qin — Oin — Yn(Lixn — 1))
Zin = 11_:_2’2:21% (ul,i,n - 11%,)/2”2,1‘,71>

n

2 2
n>0) ||y 1tV (,  Ma (42)
Yin 1+ 2()/% Uin 1+ '7% Ulin

| Vin = Uip + r)’n(Lixn —Vi—Ziy — ]/i,n)

m
Xn+1 = Xn+ Yn Z L;k (Uz',n - 51‘,71)
i=1

1
Fori=1,...,m
Pin+1 = ﬁi,n - ')’nKi(Zi,n - Ei,n)
Fin1 = Gin — YnMi(Yin — Yin)
Zin41 = Zin + YK (Pin — Pin)
Yin+1 = Yin + 1aMi(Gin — Gin)
L [9ins1 = Oin — YnLi(xn — Xn).
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As a direct result of Theorem 2, we have the following convergence theorem for (42).
Since the proof is the same as Theorem 3, we omit it here.

Theorem 4. For the convex optimization problem (36), suppose that
m
z € ran (E)f + Y L{((Kf 09g; o K;)O(M] 00l; 0 M;))(L; - —r;) + Vh), (43)
i=1

and consider the sequences generated by Algorithm 2. Then, there exists an optimal solution X to
(36) and optimal solution (p,q) to (37) such that x, — X and fori =1,...,m,p;, — p;, and
Qin — giasn — +oo.

4. Numerical Experiments

In this section, we present some experimental results on image denoising problems
under Gaussian noise. We compare the proposed algorithms with the FB_BH algorithm (5)
and the FBF_BH algorithm (8). We call Algorithm 1 the FB algorithm. On the other hand,
we refer to the proposed Algorithm 2 as the FBHF algorithm. All numerical experiments
were implemented on Matlab R2016b on a Lenovo laptop with Intel i7-6700 CPU 3.40 GHz
and 4 GB memory.

4.1. Image Denoising Problems

In this subsection, we show how the proposed algorithms could be applied to solve
image denoising problems.

Let b € R”" be the observed and vectorized noisy image of size M x N (withn = MN
for greyscale and n = 3MN for colored images). Let k > 1, and define

(-1 1 0 0 -+ 0]
0 -1 1 0 -0

Dii=| L | e R, (44)
0 -~ 0 -1 10
0 -~ 0 0 -11
L 0 -~ 0 0 0 0|

which models the discrete first-order derivative. We denote by A ® B the Kronecker product
of the matrices A and B and define

Dy = Iy ®Dpm,Dy = Dy ® Iy and Dy = l:gx:| (45)
y
where Dy and Dy, represent the vertical and horizontal difference operators, respectively,
and Iy and Iy are the identity matrices of sizes N and M, respectively. Further, we define
the discrete second-order derivatives matrices

D
Dyy = IN ® (_D{ADM)’ Dyy = (_DK]DN) & IM/DZ = l: D;x :|/ (46)
Y
and T
-D 0
Ll:{ b: —DT} 47)
Y

We mainly consider the following two constrained image denoising models:

(1) min{ 3lx ~ b2+ (@l Lo D)0l - oD@},
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and
(Mi0) mind Jllx — b2+ (@l )0l o L)@}, 69

where a1 > 0,ap > 0 are the regularization parameters, and C is a nonempty closed convex
set. By using the indicator function, both of the constrained ¢,-IC and E% — MIC can be
reformulated as the following unconstrained optimization problem,

(t210) mind 3llx = b2+ (@] o PODaa - o D)) 0 ), G0
and
(M0) min{ 3 1x = bIE + ((all - ID(oal - o L) Py + (v | (6D

It is easy to see that (50) and (51) are special cases of the general convex minimization
problem (36), respectively. In fact, let m = 1,z = 0, and r; = 0. For the (,-IC, let f(x) =
dc(x), g1(x) = alx[[1, li(x) = az]|x|l1, Ky = D1, My = Dy, Ly = L, and h(x) = j|x - b||%;
for the fz-MIC, let f(x) = (Sc(x), gl(x) = oc1||x||1, ll(x) = 062”3(”1, Kl =1, M1 = L],
Ly = Dy, and h(x) = 1||x — b||%.

4.2. Numerical Settings

The test images are shown in Figure 1. In our experiments, the test image is added by
Gaussian noise with zero mean and standard deviation cy. In the following experiment,
we set C = {x € R"|0 < x; < 255}.

(a) (b)
Figure 1. Test images. (a) 481 x 321 “Castle” image, (b) 493 x 517 “Building” image.

We use the peak-signal-to-noise (PSNR) and the structural similarity index (SSIM) [24]
to evaluate the quality of the restored images, which are defined by

2
PSNR = 20log,, ||5; o

x|
and

(2p1p2 + c1) (2012 + ¢2)

SSIM = 7
(2u3ud +c1) (07 + 02 +c2)

where x € R" is the original image, X € R" is the restored image, c; > 0 and ¢, > 0 are
small constants, y#1 and yy are the mean values of x and X, respectively; 77 and o3 are the
variances of x and X, respectively; and o7, is the covariance of x and x.

The criterion for stopping all algorithms is that the relative error of two consecutive
iterations satisfies the following inequality

%011 = %l

<E&
2| '

where ¢ > 0 is a given small constant.
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We tune the regularization parameters a1 and &, so as to maximize the PSNR values
of the restored images. The choices of &1 and «; are presented in Table 1.

Table 1. The regularization parameters selection of the ¢»-IC and ¢,-MIC.

oc=15 oc=25 o =150
Image Model
1 2 &1 &2 &1 &2
4,-IC 77 21.2 14.7 29.7 35.5 123.9
Castle
£r-MIC 7.6 21.1 14.8 50.8 35.7 115.9
. £-IC 6.1 25.3 12.4 33 31.3 87.8
Building
£r-MIC 6.1 27.8 12.5 49.4 31.8 140

4.3. Numerical Results and Discussion

In the first experiment, we discuss the influence of the selection of iterative parameters
on the convergence speed of the compared algorithms. According to the convergence
theorems, the parameter selection of these algorithms is shown in Table 2. For the £,-IC
and £,-MIC, let h(x) = ||x — b||?, then, Vi(x) = x —b,and p = 1.

Table 2. The parameter selection of the compared algorithms.

Model Method Parameter
A€ (01,201 —m)min{L, 1, 4, L, L 1; >1,

00 o
x = max{ \/10,2.80724/6171,5.6133/67>
FBF_BH Tn € (0,0.1512)

FB_BH

0,-IC
1 P : 1 1 1 1 1 1
g ME02-8)28>1(1-amin{l, L, i 1 1 1150,
& = max{+/70,2.8072/0171,5.6133/0, 12}, =1 — 0
FBHE v € (0,0.1704)
P : 11 1 1 1 1
FB_BH A€ (0,1),20 —a)min{ 1, 4, &, L L 11 >,
& = max{2.8072/70, /0171,1.99261/60,7,
FBF_BH € (0,0.2627
EZ'MIC — ’)/1'1 ( )
1 = : 11 1 1 1 1
FB A”6(O'Z_E)'Z‘b1'<1_"‘)mm{?f§'@'ﬂ'%'5}>0’
& = max{2.8072\/70, \/B171,1.9926\/0,7;}, p = 1 — 7.8798¢
FBHE 7 € (0,0.3259)

We chose Castle in Figure 1 as the test image, and the Gaussian noise level o = 15.
The numerical results of the FBF_BH algorithm and the FBHF algorithm with a different
selections of the parameters {7, } are reported in Table 3. It can be seen from Table 3 that
both the FBF_BH algorithm and the FBHF algorithm gradually reduced the number of
iterations as the step size parameter increased.

For the FB_BH algorithm and the FB algorithm, we selected several combinations of
the parameters in Table 4.

According to the iteration parameters in Table 4, the obtained numerical results are
shown in Table 5.
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Table 3. Numerical results of the FBF_BH algorithm and the FBHF algorithm with different selections
of parameters in terms of the PSNR, SSIM, and number of iterations (Iter).

e=10"5 e=10""°
PSNR SSIM Iter PSNR SSIM Iter

0.03 30.5138 0.8410 1791 30.5346 0.8409 6572
0.05 30.5225 0.8410 1411 30.5356 0.8409 5203
0.07 30.5287 0.8410 1227 30.5361 0.8409 4445
£-1C 0.09 30.5309 0.8410 1103 30.5370 0.8409 3994
0.11 30.5317 0.8410 1003 30.5379 0.8409 3730
0.13 30.5323 0.8410 946  30.5386 0.8409 3560
0.15 30.5330 0.8410 888  30.5391 0.8409 3372

Method Model Yn

FBF_BH
0.03 30.5330 0.8384 2287 30.5434 0.8391 4984
0.07 30.5358 0.8386 1126 30.5451 0.8392 2824
0.11 30.5378 0.8387 796  30.5460 0.8393 2207
0,-MIC 0.15 30.5390 0.8388 634  30.5365 0.8393 1896
0.19 30.5400 0.8388 538  30.5467 0.8393 1686
023 305409 0.8389 474 30.5468 0.8393 1518
026 30.5414 0.8389 439  30.5470 0.8393 1456
0.03 30.5138 0.8410 1790 30.5346 0.8409 6474
0.05 30.5225 0.8410 1411 30.5356 0.8409 5203
0.07 30.5287 0.8410 1227 30.5361 0.8409 4449
0,-IC 0.09 30.5309 0.8410 1103 30.5370 0.8409 3994
0.11 30.5317 0.8410 1003 30.5379 0.8409 3729
0.13 30.5323 0.8410 946  30.5386 0.8409 3561
0.15 30.5330 0.8410 887  30.5391 0.8409 3371
—— 0.17 30.5336 0.8410 837 30.5393 0.8409 3169

0.03 30.5330 0.8384 2286 30.5434 0.8391 4983
0.07 30.5358 0.8386 1126 30.5452 0.8392 2824
0.11 30.5378 0.8387 796  30.5460 0.8393 2207
0.15 30.5390 0.8388 633  30.5465 0.8393 1896
6H-MIC 019 305401 0.8388 538  30.5467 0.8393 1686
023 30.5410 0.8389 474 30.5468 0.8393 1519
027 305416 0.8389 428  30.5470 0.8393 1432
031 30.5421 0.8390 394 30.5471 0.8394 1346
032 305422 0.8390 387 30.5471 0.8394 1317

According to the results of Tables 3 and 5, we chose the following parameters of the
compared algorithms for the following experiments.

(1) For the FBF_BH algorithm, the best parameter of ¢»-IC was y,, = 0.15, and the best
parameter of £,-MIC was 7, = 0.26.

(2) For the FBHF algorithm, the best parameter of ¢,-IC was y,;, = 0.17, and the best
parameter of £,-MIC was 7, = 0.32.

(3) For the FB_BH algorithm, the best parameters of /,-IC were 6; = 0.3,
71 = 03,0 = 015,72 = 0.15,A, = 1,7 = 0.3, and ¢ = 0.3, and the best parameters
of {r,-MIC were 61 = 04,71 =0.3,00 =02,7 =02,A, =1, 7T=0.2,and 0 = 0.3.

(4) For the FB algorithm, the best parameters of ¢,-IC were 6; = 0.3,7; = 0.3,
0 = 02,72 = 0.1,A, = 1.8,7 = 0.2, and ¢ = 0.2, and the best parameters of ¢,-MIC
were 01 = 0.3,71 = 03,0, =02,7 =02,A, =18, 7=0.2,and ¢ = 0.2.

In the second experiment, we tested the performance of the compared algorithms for
solving £>-1C and ¢,-MIC. We present the numerical results by each algorithm in Table 6.
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Table 4. Parameter selection of the FB_BH algorithm and the FB algorithm.

Method Model Case 01 0, T Y2 T Lo An
1 03 015 03 015 0.3 0.3 1
2 02 015 02 015 0.3 0.3 1

£r-1C

3 0.2 0.1 0.2 0.1 0.2 0.2 1
4 0.2 0.2 0.2 0.1 0.1 0.3 1

FB_BH
1 03 015 03 015 0.3 0.3 1
2 0.4 0.2 0.3 0.1 0.2 0.3 1

£r-MIC
3 0.1 0.2 0.1 0.2 0.3 0.2 1
4 0.1 0.1 0.1 0.1 0.2 0.4 1
1 03 015 03 015 0.3 0.3 14
2 0.2 0.1 0.3 0.2 0.3 0.4 15
£r-1C
3 0.3 0.2 0.3 0.1 0.2 0.2 1.8
4 0.2 0.2 0.2 0.1 0.1 0.3 1.3
FB
1 0.5 0.4 0.5 0.4 0.3 0.3 14
2 0.4 0.3 0.4 0.4 0.25 0.25 1.5
£r-MIC

3 0.3 0.2 0.3 0.2 0.2 0.2 1.8
4 0.2 0.3 0.2 0.3 0.3 0.3 14

Table 5. Numerical results of the FB_BH algorithm and the FB algorithm with different parameters
in terms of the PSNR, SSIM, and number of iterations (Iter).

e =105 e=10""°
PSNR SSIM Iter PSNR SSIM [Iter

Method Model Case

1 30.5386 0.8411 753  30.5405 0.8409 2846
0,-1C 2 30.5361 0.8411 824  30.5399 0.8409 3117
3 30.5379 0.8411 885  30.5397 0.8409 3277
B BH 4 30.5369 0.8409 818  30.5395 0.8408 3087
- 1 30.5386 0.8411 657  30.5411 0.8409 2481
£,-MIC 2 30.5412  0.8389 534  30.5468 0.8393 1632
3 30.5253 0.8408 930  30.5364 0.8409 3603
4 30.5313 0.8410 1034 30.5375 0.8309 3875
1 30.5387 0.8411 701  30.5408 0.8409 2640
0,-IC 2 30.5382 0.8412 754  30.5419 0.8410 2514
3 30.5389 0.8409 601  30.5407 0.8409 2242
- 4 30.5377 0.8409 735  30.5398 0.8408 2725
1 30.5442 08391 292  30.5475 0.8394 1047
£,-MIC 2 30.5435 0.8391 321  30.5474 0.8394 1140
3 30.5447 0.8392 285  30.5476 0.8394 980
4 30.5435 0.8391 372 30.5474 0.8394 1121
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Table 6. Numerical results of the compared algorithms in terms of the PSNR, SSIM, and number of
iterations (Iter).

FBF_BH FBHF
PSNR SSIM Iter PSNR SSIM Iter

15 305330 0.8410 888 305336 0.8410 837
6AC 25 279370 07799 786  27.9376 0.7798 736

50 249407 07027 1364 24.9427 0.7026 1315

Image Model oy

Castle

15 30.5414 0.8389 439  30.5422 0.8390 387

6H-MIC 25 279352  0.7796 665 279379 0.7798 615

50 249332 0.7010 1169 249380 0.7014 1093

15 283617 0.8404 1365 28.3612 0.8404 1339

05-1C 25 255939 07333 1020 25.5943 0.7333 971

50 22.6506 0.5558 1100 22.6510 0.5558 1045

Building

15 283663 0.8405 492  28.3665 0.8405 431
6H-MIC 25 255997 0.7332 623  25.6001 0.7332 570
50 226716 0.5565 1146  22.6724 0.5565 1070

FB_BH FB
PSNR SSIM Iter PSNR SSIM Iter

15 30.5386  0.8411 753  30.5389 0.8409 601
05-1C 25 279398  0.7799 691 279452  0.7797 548

50 249415 0.7027 1321 249485 0.7013 1039

Image Model oy

Castle
15 305412 0.8389 534  30.5426 0.8391 398
(-MIC 25 279330 07795 734 279400 0.7799 601
50 249278 0.7707 1243 249418 0.7017 1085
15 283635 0.8405 1047 283634 0.8404 906
05-1C 25 25,5952 0.7333 832 255956 0.7334 719
o 50 22,6051 05563 1018 22.6521 0.5564 849
Building

15 28.3664  0.8405 623 283668 0.8405 420
6H-MIC 25 255822 0.7329 584  25.6005 0.7322 554
50 226629 05577 1043 22,6653 0.5578 856

From the experimental results of Table 6, we can see that the proposed FBHF algorithm
converged faster than the FBF_BH algorithm in terms of the number of iterations while
ensuring higher PSNR and SSIM values. Meanwhile, the proposed FB algorithm also
converged faster than the FB_BH algorithm. The obtained results verify that the proposed
algorithms are better than those in [4]. Some of the recovered images are shown in Figure 2
and Figure 3, respectively.
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(m) (n) (0)

Figure 2. Noisy and restored “Castle” images. (a) cg = 15. (b) 0y = 25. (c) 0 = 50. (d) £-IC/FBF_BH. (e) £»-IC/FBF_BH.
(f) £,-IC/FBF_BH. (g) {,-IC/FB_BH. (h) £,-IC/FB_BH. (i) £,-IC/FB_BH. (j) £,-IC/FBHEF. (k) ¢,-IC/FBHF. (1) {,-IC/FBHF.
(m) £,-IC/FB. (n) ¢,-IC/FB. (o) ¢,-IC/FB.
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(b) (©)

(d)

(n) (0)
Figure 3. Noisy and restored “Building” images. (a) 0 = 15. (b) og = 25. (c) gg = 50. (d) £»-IC/FBF_BH. (e) {-IC/FBF_BH.
(f) £,-IC/FBF_BH. (g) £»-IC/FB_BH. (h) ¢»-IC/FB_BH. (i) ¢,-IC/FB_BH. (j) {,-1C/FBHEF. (k) ¢,-IC/FBHE. (1) {,-IC/FBHEF. (m) ¢,-IC/FB.
(n) ¢,-IC/FB. (o) £,-IC/FB.
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5. Conclusions

In this paper, we studied the convergence of two different primal-dual splitting algo-
rithms for solving monotone inclusions (3) and (4). Firstly, we proved the convergence of
the forward-backward type algorithm (5). Our parameter conditions improved the results
of Bot and Hendrich [4]. Secondly, we proposed a new forward-backward-half-forward
type algorithm (32). In contrast to the forward-backward—forward type algorithm (8), the
iterative sequences in the proposed forward-backward-half-forward type algorithm (32)
used the cocoercive operator only once via the forward step. Finally, we applied the pro-
posed algorithms to solve image denoising problems (48) and (49). The numerical results
demonstrated the advantages of the proposed algorithms.
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