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Abstract: Fuzzy graphs (FGs) can play a useful role in natural and human-made structures, including
process dynamics in physical, biological, and social systems. Since issues in everyday life are often
uncertain due to inconsistent and ambiguous information, it is extremely difficult for an expert to
model those difficulties using an FG. Indeterminate and inconsistent information related to real-
valued problems can be studied through a picture of the fuzzy graph (PFG), while the FG does not
provide mathematically acceptable information. In this regard, we are interested in reducing the
limitations of FGs by introducing some new definitions and results for the PFG. This paper aims
to describe and explore a few properties of PFGs, including the maximal product (MP), symmetric
difference (SD), rejection (R]), and residue product (RP). Furthermore, we also discuss the degree
and total degree of nodes in a PFG. This study also demonstrates the application of a PFG in digital
marketing and social networking.

Keywords: PFG; RP; MP; SD; RJ; application

1. Introduction

In 1965, Zadeh [1] presented the fuzzy set (FS) as an extension of the crisp set to deal
with imprecise and unclear information in ambiguous situations, and it is effective and
acceptable. It can be characterized by a true membership function similar to a probability
function having ranges in [0, 1]. These concepts successfully depict complicated events that
cannot be adequately stated using classical mathematics and are also useful to understand
approximate reasoning problems. Rosenfeld [2] studied various fuzzy graph-theoretical
ideas such as cycles, connectedness, and path. The FG has many applications in topological
space and algebra, among other areas. Bhattacharya [3] discussed the association of the
fuzzy group with fuzzy graphs. Bhutani [4] worked on automorphism in FGs. Gani and
Latha [5] introduced the irregularity of FGs. Gani and Ahmad [6] defined the degree
and size of FGs. Morderson and Peng [7] defined the join, Cartesian product, union,
and composition of fuzzy subgraphs of graphs. Mathew and Sunitha [8] discussed the
basic applications of FGs. It is not necessarily true that the membership degree is 1, as
non-membership degrees also exist, and indeterminacy occurs in an intuitionistic fuzzy
set. Shao et al. [9] described new concepts of the bondage number in the intuitionistic
fuzzy graph (IFG). Rashmanlou et al. [10-12] studied a bipolar fuzzy graph. Rashmanlou
et al. [13-16] also studied interval-valued fuzzy graphs. Gulzar et al. [17] described the
novel application of a complex intuitionistic fuzzy set. Gulzar et al. [18] worked on the
class of the t-intuitionistic fuzzy subgroup. Bhunia [19] briefly studied the algebraic
characteristics of fuzzy sub-e-group. Smarandache [20] introduced the theory of the
neutrosophic set involving indeterminacy and inconsistent data. Hassan and Malik [21]
presented the classification of the bipolar single-valued neutrosophic graph.

Zuo et al. [22] introduced the idea of the PFG. Some operations on PFGs, namely,
Cartesian product, composition, join, lexicographic product, strong product, and direct
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product, are discussed. The PFG is a generalization of the FG and IFG. The PFG is an
efficient tool to handle uncertain issues in everyday life, in which an IFG may not provide
exact answers. A PFG is very helpful in addressing uncertain problems that consist of
multiple answers, such as no, yes, refusal, and abstain.

The main contributions of this paper are as follows:

* In this study, we establish some new properties of the PFG, including MP, SD, RP, and
RJ, which may be suggestive of some aspects of network design because it contains
the additional neutral grade, while the FG and IFG may fail in networking due to lack
of information.

*  We explore some of the properties of the resultant picture fuzzy graphs, especially the
degree of vertices and total degree as a modification, acquired from the given picture
fuzzy graphs using these operations.

e The picture fuzzy graph is more adaptive and generalized than the FG and IFG. The
application of picture fuzzy graphs is widely applicable in networking and enables
solving three-dimensional problems. We apply the concept of picture fuzzy graphs to
a decision-making problem.

The layout of this paper is as follows:

We describe a few fundamental notions in Section 2 that are helpful for understanding
this paper. Section 3 presents a few properties of the PFG, including MP, SD, RP, and R]. We
define the degree of a vertex and the total degree of a vertex with examples. In Section 4, we
describe the application of a PFG in networking. Finally, we provide concluding remarks
and some future directions in Section 5.

2. Preliminaries

This section involves some basic definitions. We recall some important definitions and
discuss them in depth to illustrate the notion of the vertex degree. The symbols V and A
represent max and min, respectively.

Definition 1 ([22]). Picture fuzzy set (PES) is defined as:

U=<p:xulp) ¢ulp) ulp)peX>
which follows:

0 < xu(p) +¢ulp)+vulp) <1

where xy; : V — [0, 1] represents the degree of the true membership function, ¢y :V — [0,1]
represents the degree of the neutral membership function, and ;- V — [0, 1] represents the degree
of the falsity membership function.

The refusal membership degree is defined as follows:

mu(p) =1—xu(p) +¢ulp) +vulp)

Definition 2 ([22]). A PFG on a non-empty set V is a pair G = (U, W), where U is a picture
fuzzy set on 'V, and W is a picture fuzzy relation on V. It is expressed as follows:

xw(pq) < Mxu(p), xu(q)},
ow(pq) < Mou(p), du(q)},
bw(pq) = V{du(p), vu(q9)}

where xy, ¢pu, and Py = V — [0, 1] denote the degree of the truth membership function, neutral
membership function, and falsity membership function of the element p € V, respectively.



Symmetry 2021, 13, 2400 3 of 35

In the function xw :EC VxV— [0,1], ¢pw :EC VxV— [0,1], and ¢y :EC VXV —[0,1],
0 <xu(p) +¢u(p) +¢ulp) < 1.
VpeV, and
0 < xw(pa) +¢wlpq) +yw(pqg) < 1.
Example 1. Let a graph with three vertices p, q, and r and three edges pq, qt, and rp as shown in

Figure 1 such thi;thqr: ir(%,pﬁ,qﬁ),pr%, %i %%P),pr%, o5 1) > be the picture fuzzy vertex
setand N = < (55,02, 03) (53 03 (03), ($3/ 027 52) > be the picture fuzzy edge set.

p(0.5,0.3,0.1)

* —»

4(0.2,0.4,0.2) (0.2,0.3,0.2) r(0.3,0.5,0.1)

Figure 1. PFG.

3. Operations on PFG
Definition 3. A PFG G is said to be strong if

xw(uw) = AMxu(u), xu(w),
Pw (uw) = NMpu(u), pu(w),
pw(uw) = V{pu(u), pu(w),

S

Vuwe V.
Definition 4. A PFG G is said to be complete if

xw (ww) = A xu(u), xu(w),

ow (uw) = AN pu(u), pu(w),

pw(uw) = V{pu(u), pu(w),
Yu, wekE.

Definition 5. The MP G1 * Gy = (Uy * Uy, Wy * W) of two PFGs Gy = (U, Wy) and G, =
(Up, Wa) is defined as:

(i)
(xu, * xu,) (w1, u2)) = V{xu, (1), xu, (u2) },
(Puy * pu,) ((u1,u2)) = V{pu, (u1), pu, (u2)},
(uy * Yu,) (11, u2)) = ANMppu, (1), Yu, (u2) }
V (u1,uz) € (V1 x V).
(ii)

(xu, * X)) ((m, uz) (m, wa)) = V{xu, (m), xw, (42w2) },
(Pu, * Pu,) ((m, uz) (m, wa)) = V{gu, (m), pw, (u2w2)},
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($uy * Yu,) ((m, uz) (m,wa)) = ANy, (m), pw, (uaw2) }.
VYV m € Vyand upw, € Ej.
(iii)
(Xuy * Xup) (w1, 2) (w1, 2)) = V{xw, (mw1), xu,(2)},
(Pu, * pu,) ((u1,2) (w1, 2)) = V{pw, (m1w1), ¢u,(2)},
(Pu, * Pu,) ((u1,2) (w1, 2)) = Mypw, (u1w01), Pu, (2) }-

forall z € Vpand uywy € Eq.

Example 2. Suppose that G1 = (U3, Wq) and Gy = (Up, W) are two PFGs, which are shown in
Figures 2 and 3. Their MP G * Gy is shown in Figure 4.

For vertex (e,a), we find the membership value (Mv), indeterminate value (IDv), and non-
membership value (NMv) as follows:

(xu, * xu,)((e,a)) = V{xu, (), xu,(a)}
=v{0.1,02} = 0.2,
(Pu, * pu,)((e,a)) = V{gu, (e), pu,(a)}
=v{0.2,0.1} =02,

(pu, * Pu,) ((e,a)) = My, (e), pu,(a)}
— 7{03,03} = 0.3

fore e Vianda € V,.
For edge (e,a) (e,b), we find Mv, IDv, and NMuv.

(Xuy * xu,)((e,a) (e, b)) = V{xu, (e), xw,(ab)}
=v{0.1,0.1} = 0.1,

(P, * pu, ) ((e,a) (e, b)) = V{du, (e), pw, (ab) }
=v{02,0.1} =02,

(Yuy *pu,)((e,a)(e, b)) = Ny, (), Yw, (ab) }
= 7{0.3,03} =0.3

for e € Vi and ab € E,.
For edge (e, a) (f,a):

(xuy * xu,) ((e,a)(f,a)) = V{xw, (ef), xu,(a)}
=v{0.1,02} =02,

(Pu, * pu,) ((e,a)(f,a)) = V{gw, (ef), pu,(a)}
=v{02,0.1} =02,

(Yu, * puy) ((e,a)(f,4)) = Mpw, (ef), pu, (a) }
=03

fora c Voyandef € Ey.
Mou, IDv, and NMv can be similarly calculated for all other nodes and edges.

-

P
e{0.1,0.2,0.3) (0.1,0.2, 0.3} F{0.2,0.4,0.2)

Figure 2. G1.
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a(0.2,0.1,0.3) (0.2, 0.1, 0.3) d(0.2,0.8,0.2)

()
i) .
T Q. A

0.4, 0.4)
(0.1, 0.2, 0.3)

0.1

(0.1,0.2,0.3)

(0.1,0.2,0.3)

5(0.1,0.3,0.2)

Figure 3. G,.

Figure 4. G1 * Gy.

Proposition 1. The MP of two PFGs Gq and G, is a PFG.

Proof. Suppose that G; = (U;, W;) and G, = (Up, W,) are two PFGs on crisp graphs
G1 = (V4,E1) and G, = (V,, Ep), respectively, and ((uq, up) (w1, wy)) € Ey x Ej.

By using Definition 5:

) IHfu =w =m,

(xw, * xw,) ((m, uz) (m, w2)) = V{xu, (m), xw, (u2w2) }
< V{xu, (m), Mxu, (u2), xu, (w2) } }
= MV{xu, (m), xu, (u2)}, V{{xu, (m), xu, (w2) } }
= Mxu, * xup) (m, u2), (Xu, * xu,) (m,w2)},

(Pw, * pw, ) ((m, u2) (m, w2)) = V{¢pu, (m), pw, (u2w2)}
< v{(PUl (m)/ A{(PUz(uZ)' (PUz(wZ)}}
= MV{{¢u, (m), pu, (u2) }, V{{pu, (m), pu, (w2) } }
= M(pu, * pu,) (m, u2), (Pu, * pu, ) (m,wa)},

(P, * Pw,) ((m, u2) (m, w2)) = N{ypu, (m), pw, (u2w2) }
= Ny, (m), V{gpu, (u2), Yu, (w2) }}
= V{A{yu, (m), pu, (u2) }, A{{gpu, (m), pu, (w2) } }
= V{(Yu, * pu,) (m, u2), (Pu, * Pu,)(m,wa)}.
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(1) If up = wy = z,

(xw, * xw,) ((u1,2) (w1, 2)) = V{xw, (w1w1), xu, (2) }
< v{n{xw, (m1w1), xu,(2)}
= MV{H{aw, (1), xu, (2) } V{{xu, (1), xu,(2) }}
= M xuy * xuy) (11, 2), (xuy * xup) (w1,2) },
(Pw, * dw, ) (1, 2) (w1, 2)) = V{pw, (m1w1), du,(2)}
< VAN Pw, (maw1), Pu, (2)
= MV{{pu, (n), pu, (2)}, V{{pu, (w1), ¢u, (2) } }
= M(pu, * pu,) (u1,2), (puy * Pu, ) (w1,2)},
(Pw, * Pw,) ((u1,2) (w1, 2)) = Mpw, (m1w1), Yu, (2) }
> MVAYw, (u1w1), ¥u,(2)
= V{A{yu, (u1), u, (2) }, A{H{ypu, (w1), Yu,(2) }}
= V{($u, *pu,) (11, 2), (Yu, * Yu,) (w1, 2) }-

We conclude that Gq * G, is a PFG. [
Theorem 1. The MP of two strong PFGs Gy and G, is a strong PFG.

Proof. Suppose that G; = (U;, W;) and G, = (Uy, W) are two strong PFGs on two crisp
graphs and ((u1, u2)(wy, wz)) € Ey x Es.

By using Proposition 1, we obtain:

) Ifu; =w; =m,

(xw, * xw,) ((m, uz) (m, w2)) = V{xu, (m), xw, (2w
= V{xu, (m), M xu, (u2

}
Xu,(w2) }}
= MVv{{xu, (m), xu, (u2) }, V{{xu, (m), xu, (w2) } }
= M(xu, * xu,) (m,u2), (xu, * Xu,) (m,w2)},
(Pwy * pw, ) ((m, u2) (m, wa)) = V{¢pu, (m), pw, (u2w2)}
= V{¢u, (m), NM{pu, (u2), pu, (w2) } }

)
),

= MV{{pu, (m), pu, (u2) }, V{{pu, (m), pu, (w2) } }
= M(pu, * pu,) (m, u2), (Pu, * pu, ) (m, wa)},

(Pw, * Pw,) ((m, u2) (m, w2)) = A{tpu, (m), Yw, (u2w2) }
= NMypu, (m), V{yu, (u2), Yu, (w2) } }
= V{A{ypu, (m), pu, (u2) }, AN{{9pu, (m), pu, (w2) } }
= V{(Yu, * Yu,) (m,u2), (Yu, * Yu,) (m,w2) }.

(1) If up = wy = z,

(xw, * xw,) (w1, 2) (w1, 2)) = V{xw, (maw1), xu,(2) }
= V{N{xw, (u1w01), xu, (2)}
= MV {{xw, (u1), xu, (2) 1, V{H{xu, (w1), xu, (2) }}
= M (xuy * xu,) (11, 2), (xuy * xu,) (w1,2) },

(Pwy * pw, ) (11, 2) (w1, 2)) = V{gw, (1w1), pu, (2) }
= V{N{¢w, (m1w1), ¢u,(2) }
= MV{{¢u, (m), pu, (2) }, V{H{pu, (w1), pu, (2) }}
= M(¢u, * ¢u,) (u1,2), (Pu, * Pu,)(w1,2)},
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(Pw, * Pw,) ((u1,2) (w1, 2)) = Mpw, (w1w1), Yu, (2) }
= MV{pw, (mw1), Yu,(z) }
= Vin{{yu, (u1), Yu, (2) b, AM{{ypu, (w1), $u, (2) }H
= V{($u, *Yu,) (11, 2), (Yu, * Yu,) (w1, 2) }-

Hence, Gq * Gy is a strong PFG. O

Example 3. Suppose that Gy and Gy are two strong PFGs, as shown in Figure 5.
Hence, Gy * Gy is also a strong PFG.

(a,¢)(0.2,0.3,0.2) (a,d)(0.2,0.3,0.3)
a(0.2,0.3,0.3) ¢(0.1,0.3,0.2) (0.2.0.3.0.2)
) ) N 2
e o =i o
L
e e (0.1,0.3,0.2)
b(0.1,0.3,0.3)  4(0.2,0.3,0.3)
(b, ¢)(0.1,0.3,0.2) (b,d)(0.1,0.3,0.3)
Gy + Gy

G 1 G 9
Figure 5. PFGs.

Remark 1. If the MP of two PFGs Gy = (U1, W) and Gy = (Up, W) is strong, then Gy =
(U, Wy) and G, = (Up, Wa) are not required to be strong, in general.

Example 4. Suppose that Gy and G; are two PFGs, as in Figures 6 and 7. We can see the MP of
the two PFGs Gy and Gy, that is, G1 * Gy, in Figure 8.

Then, Gy and Gq * Gy are strong PFGs, but G, is not strong.

Since xw, (12, w2)=0.2, on other hand, N{xu, (u2), xu, (w2}=/{0.2,0.1}=0.1.

Hence, xw, (uz, w2) # NMxu, (u2), xu, (w2}-

(0.2,0.3,0.3)

a(0.2,0.3,0.3) 5(0.3,0.3,0.3)

Figure 6. G;.
(0.2,0.3,0.3)

¢(0.2,0.3,0.3) d(0.1,0.3,0.3)

Figure 7. G,.
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(a.c)(0.2,0.3,0.3)

(0.2,0.3,0.3) (a,d)(0.2,0.3,0.3)
5 o
< &
(b,€)(0.3,0.3,0.3) (0.3,0.3,0.3) (b,d)(0.3,0.3,0.3)

Figure 8. G1 * Gy.
Remark 2. The MP of two complete PEGs may or may not be a complete PFG.

Definition 6. Suppose that Gy = (Uy, Wy) and G, = (Uy, Wy) are two PFGs. ¥V (u1,up) €
V1 X Vz,

(dy)GyxG, (U1, u2) = ) (xw, * xw,) ((u1, u2) (wy, ws))

(uq,up) (wy,wy)EE, X Ey.

- Y. V{xu, (u1), xw, (u2w2)}

up=w1,UupwyEE;

+ Z V{xw, (mw1), xu, (u2) },

uywy €Eq,upy=wy

(dp)Gy#G, (U1, U2) = )y (pw, * pw,) (w1, u2) (w1, w2))

(u1,12) (wy,wy) EEy X Ep.

= Z v{¢U1(u1)/ ¢W2 (Msz)}

Uy =wi,upwo€Ey

+ )3 V{pw, (n1w1), pu, (u2) },

uyw1 €Eq,up=wy

(dy)Gy 56, (U1, u2) = Y (P, * Pw,) (w1, u2) (w1, w2))

(ug,up) (wy,wy)EEL X Ey.

= Y Myu, (u1), Pw, (uaws) }

Uy =w1,UpwrEEy
+ B NMyw, (n1w1), pu, (u2) }-

ujwi €Eq,up=wy

Theorem 2. Suppose that G; = (Uy, Wq) and Gy, = (Up, Wy) are two PFGs. If xu, >

XW214)U1 > ¢W2/lpul < lsz and XU, > Xle(PUz > 4)W1/ll]u2 < 1PW1/ thenfor every
V(uy,up) € Vi x Vp,

(dx) Gy 56, (U1, u2) = (d)g, (u2) xu, (u1) + (d) g, (u1) xu, (u2),
(dg)G,+G, (U1, u2) = (d)c, (u2)pur, (u1) + (d) g, (u1)Pu, (u2),
(dy) G, xc, (U1, u2) = (d)g, (u2) P, (u1) + (d), (u1)pu, (u2).



Symmetry 2021, 13, 2400 9 of 35

Proof.

(dx)GyxG, (U1, U2) = ), (xw, * xw,) (11, u2) (w, wz))

(u1,uz)(wy,wy) €EE X Ey.

= Z \/{Xul (ul)IXWQ(uZwZ)}

Uy =w1,Uupwr€Ey

+ ) V{xw, (w1w1), xu, (u2) }

uywy €Ey,up=wp

= ) Xw, (uowy) + ) xw, (urwr)

upwy € Ep,ug =wq uyw €Eq,up=wy

= (d)g, (u2) xu, (u1) + (d) g, (u1) xu, (u2),

(dg)G,+G, (U1, u2) = Y (Pw, * pw, ) ((uq, uz) (w1, w2))

(uq,up) (wy,wy)€EL X Ep.

= ) V{gu, (u1), w, (u2w2) }

Uy =wi,Uupwr€E;

+ Z \/{(I)w1 (lel)/ ¢U2(”2)}

uywy €Ey,up=wy

= Z Pw, (u2ws) + Z Pw, (uwq)

upwy € Ep, uq=wq ugwi €Eq,up=wy

= (d)g, (u2)¢u, (u1) + (d)c, (u1)Pu, (u2),

(dtp)Gl*Gz(ulruz) = Z (¢w1 * P, ) (11, u2) (wy, wy))

(u1,12) (wy,wy) €EE1 X Ey.

= Y Mpu, (u1), Yw, (ugw2) }

Uy =w1,Uupwr€Ey

+ ) MNMw, (uywr), Pu, (u2) }

ujwy €Eyup=wp

= Z Py, (upwy) + Z P, (urwr)

upw € Ep iy =wy uywy €Ey,up=wy

= (d)c, (u2)pu, (1) + (d), (u1) Pu, (u2).

O

Example 5. Tuking PFGs Gy, Gy, and Gy = Gy, as in Figure 9, since xu, > Xw,, u, = Pw,,
Yu, < Ywy, Xu, = Xwy Pu, = Pw,, and Yy, < Pw,, by Theorem 2, we have:

(dy)c G, (a,d) = (d)c,(d) xu, (a) + (d), (a) xu, (d) =
(d¢)G1*G2 (ll, d) = (d)Gz(d)‘PUl (a) + (d)Gl (a)(Pllz (d)
(dlp)Gl*Gz (ll,d) =0.3.

1-(0.3)+1-(0.3) = 0.6,
1-(02)+1-(0.2) = 0.4,
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From direct calculations:

(dy)Gy+G, (b, d) = 02+ 0.3 =05,
(dg)Gy+G, (b,d) = 0.3+0.2 =05,
(dg) 26, (b,d) = 0.3+0.2 =05,
(dy)G,+c,(a,c) = 0.5,
(dp)G,+c,(a,¢) = 0.5,
(dy)c,«c,(a,c) =04,
(dx)Gl*Gz (a,d) =0.6,
(dp)GyxG,(a,d) =04,
(dp)G,«c,(a,d) = 0.3,
(dy)GyxG, (b, c) =04,
(dp)G,«G, (b, c) = 0.6,
(dy)G,+c,(b,c) = 0.6

We conclude from the above calculations that “the degrees of nodes determined by using the formula

of the above theorem and by the direct method are equal”.

(a,¢)(0.3,0.3,0.1) (a,d)(0.3,0.2,0.1)
a(0.3,0.2,0.1)  ¢(0.2,0.3,0.3) (0.3,0.2,0.1)

(0.2,0.2,0.3)
(0.2,02.0.3)
(0.2,0.3,0.3)
(0.3,0.2,0.2)

L
, (0.2,0.3,0.3)
b(0.2,0.3,0.3)  d(0.3,0.2,0.2)

Gl Gg G-I*G—g

Figure 9. PFGs.

Definition 7. Let G; = (U, Wq) and G, = (Up, Wa) be two PFGs. V(uq,up) € Vi x Vs,

(tdy)G,+G, (U1, u2) = Y (xwy * xw,) (11, u2) (w1, w2)) + (xu, * xXu, (41, 12)

(lll,uz) (wl,wz)GEl XEy.

= ). V{xu, (u1), xw, (u2w2) }

Uy =wi,UupwrEEy

+ ) V{xw, (u1w1), xu, (u2) }

uywy €E1,up=wy

+ V{xu, (u1), xu, (u2)},

(tdp)GyxG, (U1, U2) = Y. (pw, * Pw,) (w1, u2) (w1, w2)) + (Puy * Pu, (U1, u2)

(u1,u2) (101 ,w2)6E1 XEj.

= Z v{¢U1(”1)/ ¢W2 (u2w2)}

Uy =w1,Uupwr€Ey

+ Y V{gw (rwr), pu, (u2)}

uyw €Ey,up=wy

+ \/{47111 (ul)/ 4)112 (uZ)}/
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(tdy)G,sG, (11, 12) = Y. (Pw, * Pw,) (w1, u2) (w1, w2)) + (P, * Yu, (w1, uz)

(u1,u2)(wy,wp) €EE X Ey.

= Y My, (ur), Pw, (ugw2) }

Uy =wq,UupwyrE€Ey

+ ) NMpw, (1w, Pu, (u2) }

ugwi €Eq,up=wy

+ A{¢u1 (“1)r lPllz (MZ)}'

Theorem 3. Suppose that Gy = (U3, Wy) and G, = (U, Wa) are two PFGs. If xu, >
X Puy = Pwy Pu, < Yw, and xu, > xw Pu, = Pw Pu, < Yw,, then for every
V(ug, up) € Vi x Vp,

(tdy )Gy xG, (U1, u2) = (d)c, (u2) xu, (u1) + (d)c, (u1)xu, (u2) + Vi{xu, (u1), xu, (42) },
(tdp) G+, (11, u2) = (d)G, (u2)pu, (1) + (d) g, (u1)pu, (12) + V{pu, (u1), pu, (12) },
(tdy) G, +c, (U1, u2) = (d)c, (u2)pu, (u1) + (d) g, (u1)Pu, (u2) + AMpu, (u1), pu, (u2) }-

Proof.

(tdy )Gy s, (U1, u2) = Y. (xw, * xw,) (g, u2) (wy, w2)) + (xu, * xu,) (1, )

(u1,12) (w1,w2) EEq X Es.

= Y V{xu, (u1), xw, (uws) }

Uy =wi,Upwr€E,

+ Z V{xw, (wiwr), xu, (u2)}
uyw1 €Ey up=w»,
+ Vi{xu, (m), xu, (u2)}
= ) xw, (Uowy) + ) xw, (uwy)
Uswr € Ey, uy=wn uywi €E,upy=w,
+ max{xul (Ml),Xuz(MQ)}
= (d) G, (u2)xu, (u1) + (), (1) xu, (u2) + max{xu, (u1), xu, (u2) }

(tdp)G,+G, (U1, u2) = Y (Pw, * dw,) (11, u2) (w1, w2)) + (du, * du,) (11, uz2)

(u1,u2) (wy,w7) EEy X Ey.

= )3 VA{pu, (u1), pw, (uaw2) }

Uy =wq,Uywr€E,

+ ) V{ow, (urwr), u, (u2) }

uywy €E1,up=w,

+V{pu, (u1), ¢u, (u2) }

= Yo dw,(uawr) + Y. ¢w(wwr)
uywy € Ey, u1=wq uyw1 €Ey up=w»

+ V{pu, (u1), pu, (u2) }

= (d)c, (u2)pu, (u1) + (d)g, (1) ¢u, (u2)
+V{¢u, (u1), pu, (u2) }
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(tdy)G, G, (41, U2) = Y (bw, * Pw,) (11, u2) (wy, w2)) + (Pu, * Pu,) (U1, u2)

(u1,u2) (w1,wp) EE1 X Es.

= Y M, (1), pw, (uow2)

Uy =w1,Upwr €E;

+ Y NMpw, (n1w1), Yu, (u2) }

uyw1 €EEy up=w»
+ Myu, (u1), Yu, (u2) }
= ) Py, (upw2) + Y P, (u1w1)

Uywa € Epty =t0n wwr € Ergiz=tw,
+ M, (u1), Yu, (u2)
= (d)G, (u2)pu, (u1) + (d)c, (u1)pu, (u2)
+ Mpu, (1), Yu, (u2) }

O

Example 6. Let Gy = (Uy, Wy) and Gy = (U, Wa) be two PFGs, with xu, > Xw,, ¢u, =

Pw,, Pu, < Pw, and xu, > xwy, Pu, = Pwy Pu, < Pw,-
In Example 2, we calculate the total degree of nodes of G1 * G by using Figures 6-8. We
calculate the total degree of nodes in MP for node (e,a).

d)c, (a)xu,(e) + V{xu, (), xu,(a)}
(0.2,0.1) = 0.1+ 0.6+ 0.2 = 0.9,

d)c, (a)pu, () + N{¢u, (), pu, (a) }
(0.1,02) =02+03+02 =07,

(tdy)c, G, (e,a) = (d)c,(e)xu, (a) +
=1(0.1) +3(0.2) +

(tdp)c,«c, (e, a) = (d)g,(e)pu, (a) +
= 1(0.2) +3(0.1) +

<A</—\

(tdy)G,xG, (e,a) = (d)c,(e)pu, (a) + (d)c, (a)pu, (e) + AM{pu, (e), pu,(a) }
=1(0.3) +3(0.3) 4+ A(0.3,0.3) = 0.3+ 0.9 + 0.3 = 1.5.

We can calculate it similarly for other nodes.

Definition 8. The R] Glle = (U1|UZ, W1|W2) of two PFGs G = (ul, Wl) and G, =
(Up, Wa) is defined as:

(i)
(xu Ixuy) (w1, u2)) = AMxu, (1), xu, (u2) },
(¢U1‘¢U2)((u1/u2)) = A{(I)U](ul)/ (PUQ(uZ)}/
(u, Yu,) (w1, u2)) = V{pu, (u1), Yu, (u2) }-
\ (u1,u2) S (Vl X Vz),
(i1)
(xwn [xws, ) ((m, u2) (m, w2)) = AN xu, (m), xu, (42), Xu, (w2) },
(pw, [pw, ) ((m, uz) (m, wa)) = AN{pu, (m), pu, (u2), pu, (w2) },
(Pw, [Pw,) ((m, u) (m, w)) = V{yu, (m), u, (u2), pu, (w2) },
Vm e Vyand uyw, ¢ E>.
(1ii)

(xwy [xw,) ((m, u2) (m, w2)) = A xu, (m), xu, (u2), xu, (w2) },
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(¢W1|¢Wz)((mr ”2)(”1/ wZ)) = /\{qbul (m), ¢Uz(u2)r (PUZ (wZ)}/
(Y, [Pw,) ((m, u2) (m, w2) ) = V{ypu, (m), Yu, (u2), Pu, (w2) },

Vz €& Vyand ugw, & Eq.
(iv)

(Xw1\sz)((uhuz)(wl,wz)) = /\{Xul(“l)r?(ul (wl)/XUZ(MZ)'XUQ(wZ)}/
(Pw, [pw, ) (w1, u2) (w1, w2)) = Mu, (1), pu, (w1), Pu, (u2), dw, (w2) },
(P, [Pw,) (w1, u2) (wr, w2)) = V{pu, (u1), Pu, (w1), Pu, (u2), Pu, (w2) },

v uiw §f E1 and 175X %) g Ez.

Example 7. Suppose that G and G, are two PFGs, as in Figures 10 and 11. We can see the R] of
the two PFGs Gq and Gy, that is, G1|Gy, in Figure 12.
For node (e, a), we calculate Mv, IDv, and NMo as follows:

(xuy [xu,)((e,a)) = AMxu, (e), xu,(a) }
=An{0.1,0.1} = 0.1,

(Puy [, ) ((e,a)) = NMpu, (e), pu, (a) }
= n{0.3,02} =0.2,

(1/)111 |¢Uz)((era)) = \/{l[lul (e)r lPuz(ﬂ)}
=Vv{0.2,0.3} =03

forae Viande € V.
For arc (e, c)(e, a), we calculate Mv, IDv, and NMv as follows.

(owy xewy ) (e, €) (e,a)) = AMxu (), xu, (€), xuy (a) }
= 7{0.1,0.1,0.1} = 0.1,

(Pw, [Pw,) ((e,c) (e, a)) = NMu, (e), pu, (c), pu, (a) }
= 7{0.3,02,02} =02,

(Yw, [pw, ) ((e,c) (e, ) = V{gpu, (e), Yu, (c), Yu, (a)}
=v{0.2,0.3,03} = 0.3

fore € Vyand ac ¢ Eq.
We can calculate Mv, IDv, and NMv for all other nodes and edges.
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a(0.1,0.2,0.3)

0.1, 0.2,0.3)

i

| ]
h{D.2, 0.3, 0.2) [0.1,0.2,0.3) ef0.1, 0.2, 0.3)

Figure 10. G;.

d(0.1, 0.3, 0.2)

) =
= 2
o =
= 5
i =
= =
I e

=

£(0.1,0.2,0.3) (0.1,0.2,0.3) a(0.2, 0.3, 0.1)

Figure 11. G,.

Figure 12. G |Go,.

Proposition 2. The R] of two PFGs Gy and G, is a PFG.
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Proof. Suppose that G; = (U, W;) and G, = (Up, W,) are two PFGs on crisp graphs
G1 = (W1, Eq) and Gy = (V,, Ep), respectively, and ((uq, up)(wq,w;)) € E1 X E;. Then, by
Definition 8, we have:

(@) If uy = wy, upwy ¢ Eo,

(ewy [xwy ) ((ur, u2) (wr, w2)) = A{xu (1), xu, (42), Xu, (w2) }
= MM xu, (n), xu, (u2) b A{xu, (w1), xu, (w2) }}
= M Ixw,) (w1, u2), (xu [xu,) (w1, w2) },

(Pw, [pw,) (w1, u2) (w1, w2)) = AN Ppuy (1), Pu, (u2), Pu, (w2) }
= MM pu, (u1), pu, (u2) }, AM{pu, (w1), pu, (w2) }}
= M (¢u, lPu,) (11, u2), (Pu, [Pu, ) (w1, w2) },

(wy [pw, ) (w1, u2) (w1, w2)) = V{gpu, (u1), Yu, (u2), Pu, (w2) }
= V{V{yu, (1), Yu, (u2) }, V{pu, (w1), Yu,(w2) } }
= v{(¢ul |¢7U2)(u1/ uZ)/ (¢U1 |¢U2)(w11w2)}'

(i) If up = wyp, uqwy & Ey,

(o, [xws) (1, u2) (wy, w2)) = AMxa, (u1), xu, (w1), Xu, (42) }
= MM {xuy (1), xu, (u2) b, A xu (w1), xu, (w2) 1}
= M 1xw,) (w1, u2), (xu, [xu,) (w1, w2) },

(Pw, [Ppw,) (w1, u2) (w1, w2)) = AN Ppuy (u1), puy (w1), pu, (u2) }
= MMu, (1), pu, (u2) }, A pu, (w1), pu, (w2) }}
= M(Pu, [P, ) (w1, u2), (Pur, [Pu, ) (w1, w2) },

(B, [Pw,) (11, u2) (w1, w2)) = V{u, (1), Yu, (w1), Yu, (u2) }
= V{V{yu, (1), Yu, (u2) }, V{pu, (w1), Yu, (w2) } }
= V{(Yu, [Yu,) (u1, u2), ($u, [$u,) (w1, w2) }.

(iii) If uqwy € E1and upwy & E,

(xew, [xw, ) (g, u2) (wy, w2)) = AMxu, (1), xu, (w1), xu, (42), xu, (w2) }
= MM xu, (1), xu, (u2) b, AMxu (w1), xu, (w2) }}
= M Ixw,) (ur, u2), (xu, Ixu,) (wy, w2) },

(Pw, [Ppw,) (w1, u2) (w1, w2)) = AN Puy, (u1), puy (w1), pu, (u2), Xu, (w2) }
= MM ¢u, (1), ¢u, (u2) }, AM{pu, (wr), pu, (w2) }}
= M (¢u, lPu,) (11, u2), (Pu, |Pu, ) (w1, w2) },

(wy [pw, ) (w1, u2) (w1, w2)) = V{pu, (u1), Yu, (w1), Yu, (u2), Pu, (w2) }
= V{V{yu, (1), Yu, (u2) }, V{pu, (w1), Yu, (w2) } }
= V{(u, [Yu,) (w1, u2), (Yu, [Pu,) (w1, w2) }.

Therefore, G1|G, = (Uq|Uy, Wy |W,) isa PFG. O

Remark 3. The R] of two complete PFGs Gy = (Uy, Wy) and Gy = (Up, W,) is a complete PFG.
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Definition 9. Suppose that Gy = (Uy, Wy) and G, = (Uy, W,) are two PFGs. For any node
(u1,up) € Vq X Vo, we have:

(dx)G, |6, (U1, u2) = ) (xwy [xws ) (1, u2) (wq, w2))

(ul,uz)(w1,w2)€E1 XEj.

= ), Mxu, (u1), xu, (u2), xu, (w2) }

up=wy,upwr Ey

+ ). AMxa, (u1), xu, (w1), xu, (u2) }

Up =Wy, U1Wq ¢E1

+ ) Ao, (1), xu, (1), xu, (2), xu, (w2)
uywi €Erand upywyr €Ey
()G, |G, (U1, u2) = ) (P, lpws, ) (11, u2) (w1, w2))

(uq,up) (wy,wp)EE X Ep.

= Y Mou, (u1), pu, (u2), du, (w2) }

ur=wy,uywr Ey

+ Y Mew (m), duy (wr), pu, (u2)}

Uy =Wy, U1Wq ¢E1

+ Y NMeu, (u1), pu, (w1), u, (u2), pu, (w2) },
uywy €Erand uyw, €Ey
(dy)cy|c, (u1,u2) = Y (Pw, [P, ) (w1, u2) (wy, wo))
(u1,u2) (w1, w2) €E1 X Ea.

= Z \/{l[Ju1 (ul),lpuz (u2), Yu, (w2)}

up=wy,uywr £Ey

+ Y VA, (u1), Yu, (w1), $u, (u2) }

Uy =wy,u w1 ¢Eq

+ Y V{Yu, (1), Yu, (w1), $u, (42), Pu, (w2) }-

uywy €Erand uyw, €Ey

Definition 10. Suppose that G; = (Uy, Wy) and G, = (Uy, Y>) are two PFGs. ¥(u1,up) €

Vi x Vs,
(tdx)g,|c, (M1, u2) = Y. (ewy 1wy ) ((ua, u2) (w1, w2)) + (xuy [xuy) (11, 12)

(u1,u2) (w1,w7) €E1 X Ey.
= )3 Maxuy (1), xu, (u2), xu, (w2) }
uy=w upwr €Ey

+ Y. AMxu, (1), xu, (w1), xu, (u2) }

up=ws, w1 E;
+ Z /\{XU1 (ul)/XLh (wl)rXuZ(VZ)/XUZ(WZ)}/

ujwq §E1und Urwoy gEz

2 ((PW1 |4)W2)((ulr MZ) (w1/w2)) + (‘Plll |¢U2) (ull Mz)

(uq,up) (wy,wy)EE X Ey.

= Y Mo, (u1), pu, (u2), u, (w2) }

uy=wy upwr Ey

+ Y Mew (1), duy (wr), pu, (u2)}

Uy =Wy, U1Wq ¢E1

+ ). Mou, (u1), puy (1), pu, (12), du, (w2) },

uqwq gEl and Uxwy gEz

(tdp)g, |G, (U1, u2) =



Symmetry 2021, 13, 2400 17 of 35

(tdy)g, |G, (11, u2) = Y. (Pw, [, ) ((u1, uz) (w1, w2)) + (Yo, [Pu, ) (w1, u2)

(1/[1 ,uz) (wl ,wz) €E1 X Ej.

= Z v{lpU1 (ul)/¢U2(u2)rlpUz(w2)}

uy=w upwr €Ey

+ ). V{yu, (u1), u, (w1), Yu, (u2) }

uy=wy w1 Eq
+ )y V{Ypu, (1), Yuy (w1), $u, (12), Pu, (w2) }-
ujwq eElund [Z5X1%) QEZ

Example 8. We calculate the degree and the total degree of node (d,a) in Example 7.

(dy)e,(6,(d,a) = Mxu, (d), xuy (), xu, (€) } + Mxw, (d), xu, (@), xu, (f), xuy (€}
+ Mxu, (d), xu, (@), xu, (8), xuy ()}
= A{0.1,0.1,0.1} + A{0.1,0.1,0.2,0.1} + A{0.1,0.1,0.1,0.1}
=014+01+0.1
—03,

(dp)cy |, (d,a) = NMu, (d), pu, (a), pu, (¢) } + A Pu, (d), pu, (a), Pu, (f), Puy (c) }
+ /\{‘pLIz (d), du, (a), du, (g)/ du, (o)}
— 7{02,02,02} + 7{0.2,02,02,02} + A{0.2,02,03,0.2}
=02402+0.2
= 0.6,

(dy)g, e, (d a) = V{pu, (d), pu, (), pu, ()} + V{yw, (d), pu, (a), pu, (f), Yu, (€)}
+ V{pu, (d), Yu, (), Pu, (), Yu, (0)}
=v{0.2,0.3,0.3} +v{02,0.3,0.3,0.3} + v{0.2,0.3,0.3,0.3}
—03+03+03
=13.

Hence, dGl‘Gz (a,¢)=(0.3,1.0,1.3).
For the total vertex degree,

(tdx),|c,(d, a) = NMxu,(d), xu, (a), xu, (€)} + AMxu, (d), xu, (@), xu, (f), xuy (€) }
+ AMxu, (4), xu, (a), xuy (8), xuy (€) } + AMxu, (d), xu, (a)
= A{0.1,0.1,0.1} + A{0.1,0.1,0.2,0.1} + A{0.1,0.1,0.1,0.1} + A{0.1,0.1}
=014014+01+4+0.1
=04,

(tdp)g, |, (4 a) = V{u,(d), pu, (), pu, (¢) } + V{Pu,(d), pu, (a), pu, (f), Pu, (c) }
+ V{¢pu,(d), pu, (a), pu, (), pu, () } + V{pu,(d), pu, (a)}
=v{0.2,02,0.2} +v{0.2,0.2,0.2,02} + v{0.2,0.2,0.3,0.2} + v{0.2,0.2}
=02+02+402+0.2
= 0.,
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(tdy)c,|c,(d, a) = V{Yu,(d), Yu, (a), pu, ()} + V{pu, (d), Yu, (a), Yu, (f), Yu, (c) }
+ \/{IIJUZ (d)r Yu, (a)/ Yu, (g)r Yu, (C)} + \/{lpuz (d)' Yu, (a)}
= \/{0.2, 0.3,0.3} + \/{0.2,0.3,0.3, 0.3} + \/{0.2, 0.3,0.3, 0.3} + \/{0.2, 0.3}
=03+03+034+0.3
=1.2.

Hence, tdg, g, (a,c) = (0.4,1.3,1.7).
We can calculate the degree and the total degree of all nodes in G1|G, in the same way.

Definition 11. The SD G1 & G, = (Uy @ Uy, Wy @ Wa) of two PFGs G = (U, W) and G, =
(Ua, Wy) is defined as:

(1)
(Xuy ® xu,) ((u1,u2)) = AMxu, (u1), xu, (42) 3,
(Pu; ® du,) (w1, u2)) = N{pu, (u1), pu, (u2)},
(bu, ® $u,) (w1, u2)) = V{u, (u1), pu, (u2)}.
V(uy, up) € (V1 x V).
(ii)
(xw, © xw,) ((m,uz) (m,w2)) = AN xu, (m), xw, (h2w2)},
(Pw, © Pw,) ((m, uz) (m, w2)) = AN Pu, (m), pw, (u2w2)},
(lPWl D I/JWZ)((M, MZ)(mr wZ)) = v{¢U1 (m)/ ¢W2(u2w2)}~
Vm e Vyand uyw, € E,.
(iii)
(xw, @ xw,) ((u1,2)(w1,2)) = Maw, (maw1), xu,(2) },
(Pw, ® dw,) (11, 2) (w1, 2)) = M pw, (m1w1), Pu,(2) },
(P, ® ¥w,) ((u1,2) (w1, 2)) = V{w, (m1w1), Yu, (2) }-
Vz € Vpand uywy € Eq.
(iv)

(XW] D xw,) (w1, u2)(wy, wa)) = /\{Xul(”l)rXul(wl)rXWZ(“2w2>}
forall uywy ¢ Eq and upw, € Ey,
or

= Mxu, (u2), xu, (w2), xw, (uaw) }
forall uywq € Eq and upw, ¢ Es.

(pw, ® pw,) (11, u2) (w1, w2)) = Mu, (u1), pu, (w1), Pw, (u2w2) }
forall uywy ¢ Eq and upw, € Ey,
or

= Mou, (12), pu, (w2), pw, (u1w1) }

forall uywy € Eq and upwy & Ej.
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(bw, @ ¥w,) (11, u2) (w1, w2)) = V{pu, (u1), pu, (w1), Pw, (u2w2) }
forall uywy ¢ Eq and uyw, € Ey,
or

= V{yu, (u2), Pu, (w2), pw, (ugwy) }

forall uywy € Eq and upyw, ¢ Es.

Example 9. Taking Gq and Gy as PFGs, as shown in Figures 13 and 14, we can see the SD of the
two PFGs G1 and Gy, that is, Gy & Gy, in Figure 15.

[ =il

a0, 0.9, 0.4) (0.2, 0.4, 0.4) D03, 0.4, 0.4)
Figure 13. G;.

€{0-1,0.2,0.3) (0.1, 0.9, 0.9) a2, 0.9, 0.1}
L ]
=
- 2

Ji0.4,0.2,0.1) (0.3, 0.3, 0.1) e(0.3, 0.2, 0.1)
Figure 14. G;.

{0.1,0.4, 0.4 (0.2,0.4,0.4) {0.2,0.4,0.4) 2,0.9,0.4

e (0.1,0.5,0.4) (@, (0.2, 0.3, 0.4) {a, €} [0.2,0.3,0.4] ‘,:
. .
{4-(,...(‘.““ = . \h\ “.“\ p A
o :
IUQ - Q.
o, 2 4
|"G"
.
o .c'.'
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Figure 15. G; @ G».

For node (a, f), we calculate Mv, IDv, and NMv as follows:

(xu, ® xwp)((a, £)) = Maxu, (a), xu, (f) }
= 7{0.2,04} =02,

(Pu, @ Pu,)((a, f)) = V{pu, (a), ¢u,(f)}
—v{03,02} =03,

(bu, © Yu,)((a, f)) = V{yu, (a), pu,(f) }
= v{04,0.1} =04
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forae Viand f € V,.
For arc/edge (a,d)(a,e), we calculate My, IDv, and NMv.

(xw, © xw,)((a,d)(a,e)) = AM{xu, (a), xw, (de) }
= 7{0.2,02} =02,

(Pw, @ pw,) ((a,d)(a,e)) = V{pu, (a), pw, (de) }
= v{0.3,0.3} = 0.3,

(Yw, ® pw,) ((a,d)(a,e)) = V{u, (a), pw, (de) }
=Vv{04,0.1} =04

fora € V] and de € E,.
Now, for edge (a,d)(b,d), we have:

(xw, ® xw,)((a,d)(b,d)) = A{xw, (ab), xu, (d)}
= A{0.2,02} =02,

(¢w, @ Ppw,)((a,d) (b, d)) = V{pw, (ab), pu,(d)}
=Vv{0.4,03} = 0.4,

(Yw, ® Pw,)((a,d)(b,d)) = V{pw, (ab), Yu,(d)}
=v{0.4,01} =04

forab € Eyand d € V5.
Finally, for edge (a,c)(b, f), we find My, IDv, and NMv as follows:

(xw, © xw,) ((a,¢) (b, £)) = Mxu, (), xu, (), xw, (ab) }
= A{0.1,04,02} = 0.1,

(Pw, @ pw,) ((a,¢) (b, f)) = V{¢u,(c), Yu, (f), pw, (ab) }
=v{0.2,0.2,04} =04,

(¥w, ® Pw,) ((a,¢)(b, f)) = V{vu, (c), Pu, (f), Yw, (ab) }
=v{0.3,0.4,0.4} = 04.

forab € E; and cf ¢ E».
We can calculate My, IDv, and NMv for all other nodes and edges in the same way.

Proposition 3. The SD of two PFGs G1 and Gy is a PFG.

Proof. Suppose that G; = (U3, Wp) and G, = (Up, W,) are two PFGs on two crisp graphs,
and ((uq,uz)(wy,wy)) € E; x E;. Then, by Definition 11:
) Ifug =w =m,

(xwy ® xw,) ((m, u2) (m,wa)) = N{xu, (m), xw, (u2w2) }
< Maxu, (m), min{xu, (u2), xu,(w2) } }
= MM {{xu, (m), xu, (u2) }, AM{{xu, (m), xu, (w2) }}
=M @ xw,)(m,u2), (xu, © xu,)(m,w2)},
(Pw, ® dw,) ((m, uz) (m, wa)) = NMu, (m), pw, (u2w2) }
> Mo, (m), N{pu, (u2), pu, (w2) }}
= MA{pu, (m), pu, (u2) }, AM{{Pu, (m), pu, (w2) }}
= M(¢u, ® Pu,) (m, u2), (Pu, ® pu,)(m, w2)},
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(Pw, © Yw,) ((m, uz) (m,w2)) = V{pu, (m), pw, (u2w2) }
> V{ypu, (m), V{yu, (u2), Yu, (w2) } }
= V{V{{yu, (m), pu, (u2) }, V{{gpu, (m), Yu, (w2) } }
= V{(Yu, ® Yu,)(m, u2), (Yu, © Yu,)(m,w2)}.

(1) If up = wy = z,

(xw, @ xwy) ((u1,2) (w1, 2)) = Maw, (u1w1), xu, (2) }

< MM {xw, (m1w1), xu, (2) }

= MA{xu, (1), xu, (2)  AM{xu, (1), xu, (2) 1

= Mxu, ® xu,) (11, 2), (Xuy ® xu,) (w1,2) },
(Pw; © Pw,) ((u1,2) (w1, 2)) = N pw, (maw1), pu, (2)}

> MM ow, (w1w1), ¢u, ()}

= MA{pu, (n), pu, (2) }, A{{pu, (w1), pu, (2) } }

= M(Pu, & ¢u,) (u1,2), (Pu, & Pu,)(w1,2)},
(Pw, ® Pw,) ((u1,2) (w1, 2)) = V{gpw, (1w1), Yu,(2)}

> V{V{pw, (mw1), xu, ()}

= V{V{{yu, (1), pu, (2) }, V{H{ypu, (w1), Yu, (2) } }

= V{(Yu, ®Yu,)(u1,2), (Yu, ® Yu,)(w1,2)}.

(iii) If uqwy & Erandurw, € Ep,

(xw, @ xwy) ((u1, u2) (w1, w2)) = A{xu, (u1), xuy (1), xw, (vawa2) }
< M (ua), xuy (wr), min{ xu, (u2) xu, (w2) } }
= MA{xu (1), xu, (u2) } {xu, (u1), xu, (w2) }
= Mxu, © xu,) (w1, u2), (Xu, © xu,) (w1, w2)},
(P, © Ppwy) (w1, u2) (w1, w2)) = A{¢pu, (1), puy (w1), pw, (u2w2) }
> Mou, (u1), pu, (w1), M, (u2)pu, (w2) }}
= MM ¢u, (1), pu, (u2) }, {pu, (11), pu, (w2) }
= M(pu, © Pu,) (w1, u2), (puy © Pu,) (w1, w2) },
(Pw, © Yw,) (11, u2) (w1, w2)) = V{pu, (u1), Yu, (w1), Pw, (u2w2) }
> VA, (1), Yu, (w1), V{pu, (u2)pu, (w2) } }
= V{V{yu, (n1), Yu,(u2) }, {$u, (u1), Yu, (w2) }
= V{(Yu, ®Yu,) (11, u2), (Yu, ® Yu,) (w1, w2)}-

(iv) If uqwy € Eq and upwy € Ey,

(xw; @® xw,) (w1, u2) (w1, w2)) = AMxu, (42), Xu, (w2), xw, (u1w1) }
< Maxu, (u2), xu, (w2), A xu, (u1) xu, (w1) 3}
= MM xu, (1), xu, (u2) }, {xu, (w1), xu, (w2) }
= M xuy, ® xu,) (w1, u2), (xu, © xu,) (w1, w2) },
(Pw, © pw, ) (11, u2) (w1, w2)) = A{Pu, (u2), pu, (w2), Pw, (w1w1) }
> Mo, (u2), pu, (w2), M Puy (u1)puy (w1) }}
= MM pu, (u2), puy (1)}, {Pu, (u2), pu, (w1) }
= M(Pu, © ¢u,) (11, u2), (Pu, © du,) (w1, w2)},
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(Pw, © Yw,) ((u1, u2) (w1, w2)) = V{vu, (u2), Yu, (w2), Ppw, (w1w1) }
> V{pu, (12), Yu, (w2), V{pu, (u1)pu, (w1) }}
= V{V{yu, (u2), Yu, (m1) }, {u, (u2), $u, (w1)}
= V{(Yu, ® Yu,)(u1,u2), (Yu, ® Pu,) (w1, w2)}

Hence, G1 @ G, isa PEG. O

Remark 4. The SD of two connected PFGs G1 = (U1, Wy ) and Gy = (Up, W) is connected. The
main reason is that we include the cases (my,my) € Eq and (nq,ny) € E; in the definition of the
5D of two PFGs.

Definition 12. Suppose that Gy = (Uy, Wy) and G, = (Uy, Wy) are two PFGs. For any node
(u1,up) € Vq X Vo, we have:

(dy)G, @, (U1, u2) = ) (xw, @B xw,) (11, u2) (wy, wy))

(ul,uz)(wl,wz)EEl XEy.

= ). Mxu, (u1), xw, (u2w2) }

Uy =wi,Uupwr€E;

+ Z /\{xwl(mwl/?(uZ(uZ)}

uyw €Ey,up=wy

+ ). Mxu, (u1), xu, (w1), xw, (vowz) }

uywy €Erand upywo €EEy
+ Z /\{le (ulwl)/XUQ(MZ)/XUz(wZ)}/

u Wy GEltIYld UpwWy éEz

(dp)c, @G, (11, u2) = Y (P, B dw, ) (w1, uz) (wq, ws))

(u1,u2)(w1,w2)€E1 X Ey.

= ). Mo, (u1), pw, (uaws) }

uy=w1,Uupwr €EEy

4 Z NMew, (urwy, ¢y, (u2) }

urwy €Eq,up=wy
+ ). Mou, (u1), gu, (w1), pw, (u2w2) }

ugwy ¢Erand upwo €Ey

+ ). MNow, (u1w1), Pu, (42), pu, (w2) },

uiwy €Ejand upywy ¢Ey

()G, @G, (11, u2) = )y (w, €D ¥, ) ((u1, uz) (wq, ws))

(ul,uz) (?Ml ,ZUz)EEl X Ep.

= Y. V{vu, (u1), Pw, (vowy) }

Uy =w,upwr€Ey

+ Y V{gw, (o, pu, (u2)}

urwy €Eq,up=wy
+ Y V{u, (1), pu, (w1), pw, (2w2) }

uywi €Ejand upywy€Ey

+ > V{w, (u1w1), Yu, (u2), Pu, (w2) }-

ujwi €Erand uywy&Ey

Theorem 4. Suppose that G; = (Uy, W) and Gy = (U, Y>) are two PFGs. If xuy, >
Xy, Uy < Owy, Py, < Y, and xu, > xXwy Pu, < Pwys Pu, < Py, then V(ug, up) € Vq x
Va, (d)c, @G, (41, u2) = q(d)g, (1) +5(d)g, (u2), where s = | V1 | —(d)g, (u1) and g =| V2 |
—(d)cz(uz) .
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Proof.
(dx)G, @G, (11, u2) = Y (xw; @ xw,) (w1, u2) (w1, w2))
(ul,uz)(wl,wz)eElez.
= Y NMaxu, (1), xw, (u2w2) }
Uy =w,upwr€Ey
+ Y. ANMxw, (wiwr), xu, (u2) }
ugwy €Eq,up=wy
+ Z /\{XU1 (ul)/?(ul (wl)rXWZ (MZZUZ)}
wywy ¢Ejand uywy €Ey
+ ). AMxw, (u1w1), xu, (42), xu, (w2) }
uywy €Erand upywy €E,
= Z Xw, (t2w2) + 2 xw, (u1w01)
upwy€Ey uywr €E¢
+ Y. xw, (Hawa) } + Y xw, (u1ws)
uywy ¢Ejand uywy €Ey wywy €Ejand upwy ¢Ey
= q(dy)g, (1) +s(dy)g, (u2),
(dg)G, @G, (11, 12) = ) (Pw, €D dw,) (11, u2) (w1, w2))
(uq,up) (wy,wy)EEL X Ey.
= Y. AMou (u1), dw, (n2w)}
Uy =w1,Uupwr€Ey
+ Y. Mow, (uiwr), u, (u2)}
uywq €Eq,upy=wy
+ 2 /\{(Plll (ul)/ (Pul (wl)r (PWZ(MZWZ)}
lelgElﬂﬂd upwy€Ey
+ Y NMew, (urw1), pu, (u2), pu, (w2) }
uywy €Erand uywy €Ey
= Y. ow(mw)+ Y ¢w (mwr)
upwy€Ey ujwy €Eq
+ Y Pw, (u2wz) } + Y Pw, (u1w1)
u w1y ¢E1und upwy€Ey ujwi€Ejand quQ¢E2
= q(dg)c, (u1) +s(dg)g, (u2),
()G, @G, (11, u2) = Y (Yw, B ¥w,) (1, u2) (w1, w2))

(u1,u2)(w1,w2)€E1 X Ey.

= ). V{vu, (u1), Pw, (vowy) }

Uy =wi,upwo€Ey

+ 2 \/{I,UW1 (u1w1),¢u2(”2)}

urwy €Eq,up=wy

+ ) V{pu, (1), pu, (w1), pw, (uow) }

uywy €Ejand upwy€Ey

+ Y V{pw, (mw1), Yu, (42), Pu, (w2) }

uywy €Ejand upyw, ¢Ey

= ) ¢wlww)+ ) pw (mw)

uprwy€E w1 €E;

+ ) Pw, (u2w2) } + Y Pw, (urwy)

uywy €Erand upwo €E; wuywy €Erand uywy €Ey

=q(dy)g, (u1) +s(dyp)g, (u2).
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We conclude that (d)g, gy, (41, 42) = q(d)g, (1) + s(d)g, (142), where s = | V; | —
(d)G,(m) and g =| V2 | — (d)g,(u2). O

Example 10. In Figure 16, xu, > Xw,, Yuy, < Ywy, Xu, = Xwy, and Py, < Pw,. Then, the
total degree of the vertex in SD is calculated by using the following formula:

(d1)G @6, (m1,mp) = q(dr)c, (m1) + s(dr)c,(m2),
(d1)Gye6, (M1, ma2) = q(d1)c, (m1) +s(dr)g, (m2),

(dr)cyec, (m1,m2) = q(dr)g, (m1) + s(dp)c, (m2).
(d1)G,06,(a,¢) =1-(02) +1-(0.2) =04,
(d1) a6, (a,¢) =1-(04) +1-(05) =09,
(dF)clq;cz( a,c)=1-(04)+1-(05) =09,
(d7)6,06,(a,d) =1-(0.2) +1-(0.2) =04,
(d1)cyac,(a,d) =1-(0.4) +1-(05) = 0.9,
(dr) a6, (a,d) =1-(0.4) +1-(05) = 0.9

Thus, (d)G,ec,(a,c) = (0.4,0.9,0.9) and (d)G,ec,(a,d) = (0.4,0.9,0.9).
Applying the same technique, we can obtain (d)c, e, (b, ¢) = (d)6,sc, (b, d) = (0.4,0.9,0.9).
Now, from direct calculations, we have:

(dr)c,s6,(a,c) =02+02 =04
(d1)G,ac,(a,¢) = 0.4+0.5 =09,
(dr)G,e6,(a,¢) = 04+0.5 = 0.9,
(d1)c,06,(a,d) = 0.2+ 0.2 = 04,
(d1),m6,(a,d) =04+ 0.5 = 0.9
(dF)G,ac,(a,d) =04+ 0.5 = 0.9
(d1)G,06,(b,c) =02+02 =04
(d1)G,06,(b,c) =04+ 05 =09
(dr)G w6, (b,c) = 04+05=09
(A1) 06, (b,d) =02+02 =04
(d1)cy06,(b,d) = 04+0.5 =09
(dF)G,@c,(b,d) = 04+0.5=0.9

From the calculated degree of nodes, we conclude that there is no difference in the answer when
utilizing the formula or the direct technique.

(a,¢)(0.2,0.4,0.4) (a,d)(0.3,0.4,0.4)

a(0.3,0.4,0.4) c(0.2,0.3,0.3) (0.2,0.5,0.5)

p

= 5 5 5

L

, (0.2,0.5,0.5)
b(0.2,0.3,0.3)  4(0.3,0.4,0.4)
(b (_,_) ({)_2_ 0.3. []3) [f) (f}i:[].l'[).*i—. []'.'—1}

Figure 16. Symmetric difference.
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Definition 13. Let Gy = (Uy, Wy) and G, = (Up, W,) be two PFGs. For any vertex (uq,uy) €
V1 X Vs, we have:
(tdx)Gl@Gz(ulruZ) = Z (Xw1 @XWZ)((”lruZ)(WLWZ)) + (Xul @Xuz(ul,uz)

(u1,u2)(w1,wy) EE1 X Ey.
= Z /\{XU1 (ul)rXWZ (u2w2>}

Uy =wq,UupwyEE

+ ) NMaxw, (uiwr, xu, (u2) }

uyw €Eq,up=wy

+ Y M, (u1), xu, (w1), xw, (u2w2) }
uywy €Eyand upw, €E;

+ Y AMxw, (wiwr), xu, (u2), xu, (w2) }

uywy €Ejand upwy €Ey

+ Mxu, (1), xu, (42) },

(tdg)G, @G, (U1, u2) = )3 (pw, D dw,) (11, u2) (w1, w2)) + (pu, P Pu, (11, u2)

(u1,u7) (wy,wy) EE X Ey.

= Y Mou(m), pw, (uawn)}
ulzwl,u2w2€E2

+ ) Nepw, (urwy, ¢y, (u2) }

ugwy €Eq,up=w,

+ Y Meu, (u1), pu, (w1), Pw, (u2w2) }

ugwy ¢Erand upywo €Ey

+ Y MNow, (u1w1), pu, (u2), pu, (w2) }

ujwi €Ejand uywy ¢E2

+ N{pu, (1), pu, (u2) },

(tdy)c, @, (1, u2) = Y (Yw, D vw,) ((u1, u2) (wr, w2)) + (Yu, P Yu, (w1, u2)

(u1,u2)(wy,wy)€E X Ey.

= Y V{vu, (u1), pw, (uowz) }

Uy =wi,Uupwr€Ey

+ Y V{pw, (maws, Yu, (u2) }

uywq €Eq,upy=wy

+ ) V{gpu, (u1), Yuy (w1), w, (uaw2) }

ujwy ¢Erand upywy €Ey

+ Y V{pw, (mw1), Yu, (42), Yu, (w2) }

uywy €Ejand upywy €Ey

+ V{pu, (u1), pu, (u2) }-

Theorem 5. Suppose that G; = (Uy, Wy ) and G, = (Uy, Y>) are two PFGs. If
(i) xu, > xwyandxu, > xw,, then ¥(uy,up) € Vi x V,

(tdy)G, @G, (11, u2) = q(tdy)c, (1) + s(tdy)g, (12)
— (g —Dxg, (u1) — V{ixe, (u1), xc, (1)},

(ii) pu, < pw,andpy, < pw,, then V(uy,up) € Vi x V,

(tdp)G, @G, (11, u2) = q(tdp)c, (u1) + s(tdy)c, (u2)
= (9= Dog, (u1) — V{pg, (u1), dg, (u1)},
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(ii1) Yu, < ¢W2and¢u2 > Pw,, then Y(ui,up) € Vi X Vs

(tdy)G, @G, (U1, u2) = q(tdy)c, (u1) + s(tdy)c, (u2)
—(q =Dy, (u1) — Mg, (u1), ¥g, (u1)},

V(uy,up) € Vi x Vo, s=|Vp | —(d)g,(ur) and g =| Vo | —(d)g, (u2).
Proof. V(uq,up) € Vi x Vs,

(th)Gl @Gz(ull le)

= Y (xw, B xw,) (1, u2) (w1, w2)) + (xuy, P xu,) (41, u2)

(lll,uz) (wl,ZUZ)EEl XEy.

= ). Mxu, (u1), xw, (u2w2) }

Uy =wi,Uupwr€Ey

+ 2 ANMaxw, (uaw1), xu, (u2)

uywy €E1,up=wy

+ ). AMxu, (u1), xuy (w1), Xw, (h2w2) }

uywy €Ejand upwy €Ep

+ Z /\{XWI(ulwl)rXuZ(uZ)IXuZ(wZ)}
wywy €Ejand upwy ¢Ey

+ V{xu, (1), xu, (u2) }

= Y xwm@w)+ Y xw,(mwr)

uywyr€Ey ujwi €Ey

+ ), xw, (2w2) } + Y. xw, (t1107)
uywy ¢Ejand upwy €Ep uywy €Erand upywy ¢Ey
+ V{xu, (1), xu, (u2) }
= Y xwm(w)+ Y xw (mwr) + ) Xw, (uowa) }

upwy€Ey ujwi€Ey uywy €Erand upw,o €E;

+ Y xw, () + xu (u1) + xu, (u2) — Vi{xu, (u1), xu, (u2) }

uywy €Ejand uywy €Ey
= q(td)()(Gq (ul) + S(th)Gz(u2)
= (9= Dxe, (u1) = Vi{xe, (u1), xc, (1)},



Symmetry 2021, 13, 2400 27 of 35

(tdg) G, @G, (U1, U2)

= Y (¢w, D dw,) ((u1, u2) (wy, w2)) + (¢, P ¢u, ) (w1, u2)

(uq,12) (wq,wp) €Eq X Ey.

= )3 Meu, (u1), w, (u2ws) }

U =w1q,upwy€Ey

+ Y NMow, (u1w1), pu, (u2) }

u 1wy GEl,uzsz

+ 2 Mou, (u1), pu, (wr), pw, (uowz) }

u W ¢E1and upwy€Ey

+ ) MNMew, (wrwr), du, (u2), pu, (w2) }

uywi €Ejand upwy €Ey

+ A{¢U1 (”1)’ gbuz (uZ)}

= Y ow(wow)+ Y. ow (uwr)
upwr €Ep uqwy €E;

+ )3 Pw, (uzw2) } + Y Pw, (ugw1)
uywy €Erand upwy €Ep uywy €Ejand upywy €Ey

+ /\{47111 (ul)/ 47112 (MZ)}

= Y ow(ww)+ Y ow, (wwr)+ Y Pw, (u2w2)}
upwr€Ey ujw1 €E uywy €Ejand uywo€Ey

+ Y. Pw, (maw1) + du, (u1) + u, (u2) — V{pu, (11), pu, (u2) }
uywy €Ejand upywy €Ey
= q(tdy)g, (u1) +s(tdy)c, (u2)
— (9 —D¢g, (u1) — V{¢g, (u1), ¢g, (1)},
(tdy)c, @G, (U1, u2)
= Y. (w, B vw,) (11, u2) (w1, w2)) + (Yu, P Yu,) (1, u2)

(ul,uz)(wl,wz)eEl XEj.

= Z \/{l,bul(ul), ¢W2(”2w2)}

uy=wq,upwr €E»

+ Y VA{yw, (urw1), pu, (u2) }

uyw €Ey,up=wy

+ ) VA, (u1), Yu, (w1), pw, (vawa2) }

uywy €Ejand uywy €Ey

+ 2 \/{lpwl (M1W1), IIJUZ (UZ)r lPuz (w2)}

ujwy €Eq and upwy ¢E2

+ AMyu, (1), u, (u2) }

= Z Pw, (u2w2) + Z P, (uqwy)
upwy €y uywy €Eq

+ Y Pw, (u2w2) } + Y P, (urwr)
uywy EErand uywy€Ep uywy €Eyand upwy €Ep

+ AMypu, (1), u, (u2) }

= Z ¢W2<u2w2) + Z Yw, (ulwl) + Z Pw, (Mzwz)}
upywr €Ep uwy €Eq uywy ¢E1and upw,€E)

+ Y. P, (urw1) + Yu, (u1) + pu, (u2) — Mpu, (u1), pu, (u2) }

uywy €Ejand uywy ¢Ey
=q(tdy)g, (u1) +s(tdy)g, (u2)
= (0= Vg, (1) — My, (11), ¥, (1)},

where the values of s and g are as follows: s = | V; | — (d)g, (1) and g =| V5 | —
(@), (uz) O
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Example 11. We find the total degree of nodes by using Example 9.
(dX)Gl D G, (ﬂ, 6) = q(dX)Gl (Cl) + S(dX)Gz (e)

s=| V1| =(d)g,(a)
=2-1=1

Now,

q=| V2| —=(d)c,(e)
=4-2=2

(tdy)G, @G, (a,e) = q(tdy)g, (a) + s(tdy)c, (e)
— (s = Dxg,(e) — (9 — Dxg, (a) — V{xe, (a), xc,(e)}
=2(02+02)4+1(034+03+02) — (1—1)(0.3) — (2—1)(0.2) — v{0.2,0.3}
2(04) +08—02—03=1.1,
(td¢)G1@G2 (a,e) =1.6,
(tle)Gl@Gz (a,e) =0.6,
(td)G, @G, (a,e) = (1.1,1.6,0.6).

We conclude from the calculations that the total degrees of nodes calculated by the formula of
the above theorem and by the direct method are equal.

Definition 14. The RP G1 @ G, = (U; e Uy, W1 @ W;) of two PFGs Gy = (Uy, Wy) and G, =
(Up, Wy) is defined as:

(i)
(xu, ® xu,) (w1, u2)) = V{xu, (u1), xu,(u2) },
(¢U1 .(Puz)((”l/uZ)) = v{(PUl(”l)f (PUZ(UZ)}/
(Pu, @ pu,) ((u1,u2)) = ANy, (u1), Yu, (u2) },
V(uy,up) € (V1 x V).
(i1)

(le 'sz)((ulluz)(wl,wz)) = le(u1w1),
(Pw, ® dw, ) (w1, u2) (w1, w2)) = Pw, (u1w1),
(P, @ pw,) (w1, u2) (w1, w2)) = P, (urws),

Yuiwy € Eq, up # wo.

Example 12. Taking two PFGs Gy and Gy, as in Figures 17 and 18, we can see the RP of two
PFGs G1 and Gy, that is, Gy e Gy, in Figure 19.
For node (b, e), we find Mv, IDv, and NMuv as follows:

(xu, ® xu,)((be)) = V{xu, (b), xu,(e) }
= v{02,01} = 02,

(Pu, ® pu,)((b,e)) = NMu, (D), pu,(e)}
— 7{0.4,02} =02,

(Yu, @ Yu,) ((b,€)) = M, (D), us, (e) }
= 7 {04,04} =04

forbe Viande € V,.
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For arc (a,c)(b,d), we find Mv, IDv, and NMv.

(xw, ® xw,)((a,¢)(b,d)) = xw, (ab) = 0.1,
(Yw; ® Yw,)((a,¢)(b,d)) = Yw, (ab) = 05,

(w, ® pw,)((a,¢)(b,d)) = pw, (ab) = 0.4

forab € Eyandc # d.
Hence, we can calculate Mv, IDv, and NMv for other nodes and arcs.

afl.l, 0.4, 0.5)

o)

(oL, oLE,

d(0.3,0.2, 0_3)

Figure 18. G,.

Figure 19. G, ¢ G,.

Proposition 4. The RP of two PFGs Gy and G, is a PFG.

Proof. Suppose that G; = (U, W;) and G, = (Up, W,) are two PFGs on crisp graphs
G1 = (V4,E1) and G, = (V,, Ez), respectively, and ((uy, up) (w1, wy)) € Ey x Ep. If uqwq €
Eq and up # w,, then we have:

(xw, @ xwy) ((u1,12) (w1, w2)) = xw, (u1w1)
< M (ua), xu, (wr) }
< V{A{xu, (1), xu, (w1) 1, AMxu, (u2), xu, (w2) }}
= MV{xu, (u1), xu, (w1) }, V{xu, (42), xu, (w2) } }
= M(xu, ® xup) (11, u2), (xu, ® xu,) (w1, w2)},
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(Pw, ® pw,) (w1, u2) (w1, w2)) = Ppw, (w11
> Meu, (u1), pu, (w1) }
> V{Npu, (1), pu, (w1) }, AM{pu, (12), pu, (w2) }}
= MV{gu, (1), u, (w1) }, V{pu, (u2), pu, (w2) }}
= M (Pu, ® pu,) (11, 12), (Pu, ® pu,) (w1, w2) },
(Pw, @ Pw, ) ((u1, u2) (w1, w2)) = Pw, (w1w1)
> V{pu, (u1), Yu, (w1) }
> M VA, (u1), Yu, (w1) }, V{vu, (12), pu, (w2) } }
= Vi {yu, (n1), pu, (w1) }, My, (u2), pu, (w2) }H}
= V{(Yu, ® Yu,) (u1, u2), (Pu, ® Ppu,) (w1, w2)}.

O

Definition 15. Suppose that G; = (Uy, Wy ) and G, = (Up, Wa) are two PFGs. For any node
(u1,uz) € Vi x Va, we have:

(dx)G oG, (U1, u2) = ) (xw, ® xw,) ((u1, u2) (w1, w2))

(uq,up) (wy,wy)EEL X Ey.

= ) xw; (uwy)

u1w €Eq,up #wy

= (dx)((}l (u1),

(dg)G,eG, (U1, u2) = Y. (pw, ® Pw,) (w1, u2) (wy, w2))
(u1,u2) (wy,wy) EE X Ep.

= 2 Pw, (lel)

uywy €E1,upFwy

= (dg)g, (u1),

(d¢)<g1.@2(u1,uz) = Z (llﬂwl o Py, ) (11, u2) (wr, wy))

(u1,u2)(wy,wp) €E X Ey.

= Z P, (urw1)

uywy €E, Uy #wy

= (dy)g, (u1)-

Definition 16. Suppose that G; = (Uy, Wy ) and Gy = (Uy, Wa) are two PFGs. For any node
(u1,up) € Vi x Va, we have:

(th)Gl.Gz(ul,uz) = Z (le o xw,) ((u1, u2) (wy, w2)) + (X, ® Xu,) (41, 42))

(u,u2)(wy,wy)EE; X Ey.

= ). xw, (wwr) + AMxu, (u1), xu, (42) }

uywy €E,up #wy

= ) xw, (uawr) + xu (1) + xu, (u2) — V{xu, (u1), xu, (42) }

uywy €Eq,up#wy

= (tdy)g, (u1) + xu, (u2) — V{xu, (u1), xu, (u2) },
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(tdp)G e, (U1, U2) = Y (Pw, ® Pw,) (w1, u2) (w1, w2)) + (Pu, ® Pu, (11, u2))

(Ml,uz) (wl ,w2)€E1 XEj.

= Y. ow, (u1w1) + AN{Pu, (u1), Pu, (u2) }

uwy €E1,up #wy

= Yoo ¢w (mawr) + ¢u, (1) + u, (u2) — V{gu, (1), pu, (u2) }

uywy €Eq,up#wy

= (tdp)c, (u1) + Pu, (u2) — V{gpu, (u1), u, (u2)},
(tdy)Gyec, (U1, U2) = Y. (Pw, @ Pw,) (w1, u2) (w1, w2)) + (Yu, ® Yu, (11, u2))
(u1,u2)(wy,wp) €EE X E3.

= ) P, (urwr) + V{yy, (u1), Yu, (u2) }

ulwleEl,M27éwz
= Yoo v (mwr) + v, (1) + du, (u2) — My, (1), Yu, (u2) }
uwy €Eq,up#wy
= (tdy)g, (u1) + Pu, (u2) — Mpu, (u1), Pu, (u2) }-
Example 13. We calculate the degree and the total degree of node (b, e) by using Example 12.

(dx)G,eG, (b, e) = (dy)g, (b)

=0.1,

(dp)c,ec, (b e) = (dg)c, (b)
=0.5,

(dy)G,eG, (bre) = (dy)g, (b)
0.4.

Therefore,

(d)G,eG,(b,€) = (0.1,0.5,0.4)
Additionally, the total degree of vertex (a,e) can be determined as follows:

(tdx) Gy oG, (a,€)
= (tdy)g, (a) + xu,(e) — Vi{xu, (), xu,(e)}
= (02+40.1) +0.1 — v(0.2,0.1)
=02,
(tdp),ec, (a,e)
= (tdy)g, (a) + du, () — AM{¢u, (a), Pu, (e)}
= (0.4+0.5) +0.2 — A(0.4,0.2)
=0.9,
(tdy)GyeG,(a€)
= (tdy)g, (a) + pu,(e) — AM{ypy, (a), Yu,(e)}
= (0.4+0.4) +0.4 — A(0.4,0.4)
=0.8.

Thus,

(td)GloGz (a,e) = (0.2,09,0.8)

We can calculate these for all other nodes.
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4. Application of PFG in Networking
Definition 17 ([23]). Let X, Y € R be a universal set; then,

R={((x,y), xr(x,¥), $r(x,¥), Yr(x,y)) : (x,y) € X x Y}

is called a picture fuzzy relation from X to Y, where

xr(x,y) : X xY,
Pr(x,y) : X XY,
Pr(x,y) : X XY

satisfy the condition 0 < xr(x,y) + ¢r(x,y) + Yr(x,y) < 1 forevery (x,y) € X X Y.
A picture fuzzy relation (PFR) is called a directed picture fuzzy relation (directed PFR) if the
ties are oriented from one vertex to another vertex.

Marketing comprises the activities and processes for creating, delivering, communicat-
ing, and exchanging offerings that are important to clients and partners. Digital marketing
is a component of marketing that uses the internet and online-based digital technologies,
such as mobile phones, desktop computers, and other digital media and platforms, to
promote products and services. The popularity of social networks such as Google, YouTube,
Facebook, Twitter, WhatsApp, and Research Gate is growing daily. They have widely used
business platforms. In social networks, we commonly exchange many types of information
and problems. These exchanges facilitate online business (e-commerce and e-business),
political campaigns, future developments, and customer interaction. Digital marketing
plays an important role in raising public awareness by rapidly communicating information
about natural disasters and terrorist/criminal attacks to a crowd. The development of
digital marketing is effectively a result of technology development. The first key event
happened in 1971 when Ray Tomlison sent the first email, and his technology continues to
help people to send or receive files through different machines. Digital marketing is online
marketing. A social network is a collection of vertices and edges. The vertices are used to
represent cities, groups, countries, institutions, places, etc., and edges are used to describe
the relationships between vertices. A social network is represented by a classical graph, in
which actors are represented by vertices and connections between nodes are represented
by edges. Fuzzy graphs, on the other hand, can correctly model social networks. Since
all nodes in a classical graph have the same importance, all social units in history’s social
networks are equally represented. Moreover, in actuality, not all social units are of equal
importance. In other words, in a classical graph, all edges have the same strength. In
all existing social networks, the strength of the relationship between two social units is
assumed to be the same, but this may be false in real life.

In a picture fuzzy social network (PFSN), an account of an individual or company,
i.e., a social unit, is defined by nodes, and if two social units have a relationship, they are
joined by a single arrow. In reality, each vertex, i.e., a social unit, engages in some negative,
neutral, and positive activities. The bad, neutral, and good membership values of the
vertices are used to demonstrate the bad, neutral, and satisfactory initiatives, and the bad,
neutral, and good membership degrees of the edges can be used to describe the strength
of the relationship between two vertices. For example, three people have an extensive
understanding of educational activities and teaching methods. We can describe these three
types of vertex and edge membership degrees using PFS, which has three membership
values for each element. This form of social network is a functional example of a PFG. The
centrality of a vertex is more central than that of another vertex. A central person is closer
than another person and can convey or access more information. The diameter of a social
network is defined as the largest distance between two vertices in the network.

Let Gy, = (V, E ;) represent an undirected PFG. We can define an undirected PFSN
as a picture fuzzy relational structure G, ; = (V, E/ ;), where V = {v1,0,, ..., v;} denotes
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/

/
€11

€1i
non-empty picture fuzzy vertices, and E) =| . . . | denotes an undirected
/ /
N
picture fuzzy relation on V. An example of an undirected PFSN is shown in Figure 20. For
an undirected PFSN, arcs are simply an absent or present undirected PFR, with no other
information attached.
Let G), = (V,E},) represent a directed PFG. We can describe a directed PFSN as a
PFRal structure G,’ﬂ- =(V, E;ﬂ.), where V = {v1, 0, ..., v;} denotes non-empty picture fuzzy
ey - - . ey

vertices,and E},, = | . . . | represents an undirected PFR on V.

/
eil P 4

[Crali= IRrali)]

(0.35,0.15,0.25)

(0.35,0.15,0.15)

Figure 20. Undirected PFSN.

The directed PFR is considered in a directed PFSN. A directed PFG is more efficient for
modeling the social network because arcs that are considered with a directed PFR contain
more information. The values of e;k and e;(j are equal in an undirected PFSN. However, e;k
and ¢; j are not equal in a directed PFSN.

A small example of a directed PFSN is shown in Figure 21. Let G;; =(V,E},) be a
directed PFSN, and PFS is used to describe the arc lengths of Gj.. The sum of the lengths of

the arcs that are adjacent to social vertex v is called the picture fuzzy in-degree centrality
(PFIDC) of node v;. The PFIDC of node v;,d’(vi) is described as:

d/I(Uj): Z e;q'

k=1,..nk#]f

The sum of the lengths of the arcs that are adjacent to social vertex v; is called the
picture fuzzy out-degree centrality (PFODC) of node v;. The PFODC of node v;,d}(vi) is
described as:

dy(vj) = ), 'f—’llq
k=1,..n,k#j
The symbol }_ represents the addition operation of PFS. e;(]- is a PFS associated with

arc (j k). The sum of PFIDC and PFODC of vertex v; is called the picture degree centrality
(PDC) of v;.

d'(vj) = dj(v)) © dy(v;)
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where @ is an addition operation of PFS.

Let G,’17 = (V,E},) be a directed PFSN of a research team, where V = {vy, vy, ..., v7}
denotes a group of items of seven researchers, and Ej 4 represents a directed PFR between
the seven researchers. This social network is shown in Figure 21. Directed PFSN is shown
in Figure 22. We determine the PFIDC, PFODC, and PFDC of the researchers. The three-
degree values are listed in the table below. To compare the different degree values, we
apply PFS’s ranking methods [24,25]. According to the PFS ranking, researcher (node) 4
has the highest PFIDC score value. In the network, this suggests that researcher 4 has
a greater level of acceptance and a positive interpersonal relationship. PFODC’s score
value for researcher 2 is the highest. This indicates that node 2 can nominate many other
researchers.

Researchers PFIDC PFODC PFDC
A (0.0,0) (0.3,0.2,03) (0.3,0.2,0.3)
B (0.3,02,0.3) (03,0.3,0.3) (0.3,0.3,0.3)
' (0.3,0.1,0.1) (0.3,0.4,0.3) (0.3,04,0.3)
D (0.3,0.2,0.3) (0,0,0) (0.3,0.2,0.3)
F (0.3,04,0.3) (04,0.2,0.3) (0.3,04,0.3)
F (0.0,0) (0.4,0.2,0.2) (0.4,0.2,0.2)
G (0.3,0.3,0.3) (0,0,0) (0.3,0.3,0.3)

Figure 21. PFDC of a research team.

(0.25,0.15, 0.25)

(ez0's8°0 sz 0)

(0.35,0.15,0.25)

(0.35,0.15,0.15)

Figure 22. Directed PFSN.

5. Conclusions

PFG is a generalization of the FG and IFG. The flexibility and comparability of PEGs
are much higher than those of FGs and IFGs. A PFG can deal with uncertain problems,
whereas an FG and IFG may not be effective in such contexts. In this paper, we describe and
explore the MP, SD, R], and RP of the PFG. Furthermore, we also discuss the degree and
total degree of nodes in the PFG. We present the application of a PFG in digital marketing
and social networks. In future work, we will define the following concepts associated with
PFGs:

(1) Lower and upper truncation;
(2) The degree of lower and upper truncation.
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