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1. Introduction

We denote a set of all probability distributions by

∆n :=

{
p = {p1, p2, · · · , pn} | pj > 0, (j = 1, 2, · · · , n),

n

∑
j=1

pj = 1

}
.

In this manuscript, for mathematical simplicity we remove the case pj = 0 for j =
1, 2, · · · , n. For any p ∈ ∆n, Shannon entropy H(p), Rényi entropy Rq(p) and Tsallis
entropy Hq(p) are defined as [1–3]

H(p) := −
n

∑
j=1

pj log pj, Rq(p) :=
1

1− q
log

(
n

∑
j=1

pq
j

)
, Hq(p) := −

n

∑
j=1

pq
j lnq pj.

where lnq(x) :=
x1−q − 1

1− q
is q-logarithmic function defined for x > 0 and q > 0 with q 6= 1.

It is known that lim
q→1

Rq(p) = lim
q→1

Hq(p) = H(p). An interesting differential relation of the

Rényi entropy [4] is
dRq(p)

dq
= − 1

(1− q)2

n

∑
j=1

vj log
vj

pj
,

which is proportional to Kullback–Leibler divergence, where vj = pq
j / ∑n

j=1 pq
j .

In [5], the Fermi–Dirac-Tsallis entropy was introduced by

IFD
q (p) :=

n

∑
j=1

pj lnq
1
pj

+
n

∑
j=1

(1− pj) lnq
1

1− pj
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for p ∈ ∆n and the Bose–Einstein–Tsallis entropy was given in [6] as

IBE
q (p) :=

n

∑
j=1

pj lnq
1
pj
−

n

∑
j=1

(1 + pj) lnq
1

1 + pj
.

In the limit of q→ 1, we have

lim
q→1

IFD
q (p) = IFD

1 (p) := −
n

∑
j=1

pj log pj −
n

∑
j=1

(1− pj) log(1− pj)

and

lim
q→1

IBE
q (p) = IBE

1 (p) := −
n

∑
j=1

pj log pj +
n

∑
j=1

(1 + pj) log(1 + pj),

where IFD
1 (p) and IBE

1 (p) are the Fermi–Dirac entropy and the Bose–Einstein entropy,
respectively. See [6] and references therein for their details.

In [7], we used the expression that describes the difference between the arithmetic
mean and the weighted geometric mean:

dp(a, b) := pa + (1− p)b− apb1−p, (a, b > 0, p ∈ [0, 1]).

It is well known that dp(a, b) ≥ 0 as Young inequality or the weighted arithmetic–
geometric mean inequality.

Next, we consider dp(a, b) for p ∈ R. We easily find that the following properties:

dp(a, b) ≥ 0 (when p ∈ [0, 1]),

dp(a, a) = d0(a, b) = d1(a, b) = 0, dp(a, b) = d1−p(b, a) (1)

and

dp

(
1
a

,
1
b

)
=

1
ab

dp(b, a), dp(a, 1) + dp(b, 1)

= dp(a + b, 2) + 2
{(

a + b
2

)p
− ap + bp

2

}
. (2)

In [8] Sababheh and Choi prove that if a and b are positive numbers with p /∈ [0, 1],
then d1−p(a, b) ≤ 0.

Some important results [9–11] on the studies used to estimate bounds on several
entropies have been established, recently, via the use of mathematical inequalities. We
provide some results on several entropies, applying new and improved inequalities in
this paper.

2. Bounds of d·(·, ·) and Inequalities for Entropies

We first rewrite the Tsallis entropy, Rényi entropy, the Fermi–Dirac-Tsallis entropy,
and the Bose–Einstein-Tsallis entropy by the use of the notation d·(·, ·).

Lemma 1. For p ∈ ∆n and q ≥ 0 with q > 1, we have

(i) Hq(p) = n− 1− 1
1− q

n
∑

j=1
dq(pj, 1),

(ii) Rq(p) =
1

1− q
log

{
n(1− q) + q−

n
∑

j=1
dq(pj, 1)

}
,

(iii) IFD
q (p) = n− 1

1− q

n
∑

j=1

{
dq(pj, 1) + dq(1− pj, 1)

}
,
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(iv) IBE
q (p) = n− 1

1− q

n
∑

j=1

{
dq(pj, 1)− dq(1 + pj, 1)

}
.

Proof. The proof can be done by the direct calculations.

(i) Simple calculations

1 + Hq(p) = −
n

∑
j=1

(
pj − pq

j

1− q
− pj

)
= −

n

∑
j=1

qpj − pq
j

1− q
= n−

n

∑
j=1

(
qpj − pq

j

1− q
+ 1

)

= n− 1
1− q

n

∑
j=1

dq(pj, 1)

show the statement in (i).
(ii) Since we have the relation:

exp
(
(1− q)Rq(p)

)
= 1 + (1− q)Hq(p),

we have

exp
(
(1− q)Rq(p)

)
= n(1− q) + q−

n

∑
j=1

dq(pj, 1)

which implies the statement in (ii).
(iii) We can calculate as

n

∑
j=1

(1− pj) lnq
1

1− pj
=

n

∑
j=1

(1− pj)
q − (1− pj)

1− q

=
n

∑
j=1

{
(1− pj)

q − (1− pj)

1− q
+ 1− pj

}
− n + 1

=
n

∑
j=1

{
(1− pj)

q − q(1− pj)

1− q
− 1
}
+ 1

= 1− 1
1− q

n

∑
j=1

{
q(1− pj) + 1− q− (1− pj)

q} = 1− 1
1− q

n

∑
j=1

dq(1− pj, 1).

Thus, we have with the result of (i),

IFD
q (p) =

n

∑
j=1

pj lnq
1
pj

+
n

∑
j=1

(1− pj) lnq
1

1− pj

= n− 1− 1
1− q

n

∑
j=1

dq(pj, 1) + 1− 1
1− q

n

∑
j=1

dq(1− pj, 1)

= n− 1
1− q

n

∑
j=1

{
dq(pj, 1) + dq(1− pj, 1)

}
.
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(iv) We can calculate as

n

∑
j=1

(1 + pj) lnq
1

1 + pj
=

n

∑
j=1

(1 + pj)
q − (1 + pj)

1− q

=
n

∑
j=1

{
(1 + pj)

q − (1 + pj)

1− q
+ 1 + pj

}
− n− 1

=
n

∑
j=1

{
(1 + pj)

q − q(1 + pj)

1− q
− 1
}
− 1

= −1− 1
1− q

n

∑
j=1

dq(1 + pj, 1).

Thus, we have

IBE
q (p) =

n

∑
j=1

pj lnq
1
pj
−

n

∑
j=1

(1 + pj) lnq
1

1 + pj

= n− 1− 1
1− q

n

∑
j=1

dq(pj, 1) + 1 +
1

1− q

n

∑
j=1

dq(1 + pj, 1)

= n− 1
1− q

n

∑
j=1

{
dq(pj, 1)− dq(1 + pj, 1)

}
.

We give relations on d·(·, ·).

Lemma 2. Let a, b > 0. If p ∈ R, then the following equalities hold:

dp(a, b) = p
(√

a−
√

b
)2

+ d2p

(√
ab, b

)
and

dp(a, b) = (1− p)
(√

a−
√

b
)2

+ d2p−1

(
a,
√

ab
)

.

Proof. We note that apb1−p = (ab)1−pa2p−1 =
(√

ab
)2−2p

a2p−1 =
(√

ab
)2p

b1−2p.

(i) Then,

dp(a, b) = pa + (1− p)b−
(√

ab
)2p

b1−2p

= pa + (1− p)b− 2p
√

ab− (1− 2p)b + 2p
√

ab + (1− 2p)b−
(√

ab
)2p

b1−2p

= p
(√

a−
√

b
)2

+ d2p

(√
ab, b

)
(ii) We also have

dp(a, b) = pa + (1− p)b−
(√

ab
)2−2p

a2p−1

= pa + (1− p)b− 2(1− p)
√

ab− (2p− 1)a

+2(1− p)
√

ab + (2p− 1)a−
(√

ab
)2−2p

a2p−1

= (1− p)
(√

a−
√

b
)2

+ d2p−1

(
a,
√

ab
)

.
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In several papers [7,12–14], we find estimations of the bounds of dp(a, b). For this
purpose, we use the following inequalities from (a) to (d).

(a) Kittaneh and Manasrah gave in [12]:

r(p)
(√

a−
√

b
)2
≤ dp(a, b) ≤ R(p)

(√
a−
√

b
)2

(3)

where a, b > 0, 0 ≤ p ≤ 1 and r(p) = min{p, 1− p}, R(p) = max{p, 1− p}, whose
notations are used throughout this paper without mention.

(b) Cartwright and Field proved the inequality (see, e.g., [14]):

1
2

p(1− p)
(a− b)2

max{a, b} ≤ dp(a, b) ≤ 1
2

p(1− p)
(a− b)2

min{a, b} (4)

for a, b > 0 and 0 ≤ p ≤ 1.
(c) Alzer, da Fonseca, and Kovačec obtained the following inequalities (see, e.g., [13]):

1
2

p(1− p)min{a, b} log2 a
b
≤ dp(a, b) ≤ 1

2
p(1− p)max{a, b} log2 a

b
(5)

and

min
{

p
q

,
1− p
1− q

}
dq(a, b) ≤ dp(a, b) ≤ max

{
p
q

,
1− p
1− q

}
dq(a, b), (6)

for a, b > 0 and 0 < p, q < 1.

Taking into account (1), (2) and taking b = 1 and changing p by q in the above
inequalities given in (a)–(c), we obtain the following.

(a1)

r(q)
(√

a− 1
)2 ≤ dq(a, 1) ≤ R(q)

(√
a− 1

)2 (7)

where a > 0 and 0 ≤ q ≤ 1.
(b1)

1
2

q(1− q)(a− 1)2 ≤ dq(a, 1) ≤ 1
2

q(1− q)
(a− 1)2

a
(8)

for 0 < a ≤ 1 and 0 ≤ q ≤ 1.
(c1)

1
2

q(1− q)a log2 a ≤ dq(a, 1) ≤ 1
2

q(1− q) log2 a (9)

and

min
{

q
p

,
1− q
1− p

}
dp(a, 1) ≤ dq(a, 1) ≤ max

{
q
p

,
1− q
1− p

}
dp(a, 1)

for 0 < a ≤ 1 and 0 < p, q < 1.

If we take a = pj < 1, for all j ∈ {1, ..., n}, in the above inequalities (a1)–(c1) and
passing to the sum from 1 to n, we deduce the following inequalities (a2)–(c2) on d·(·, ·).
(a2)

r(q)
n

∑
j=1

(√
pj − 1

)2
≤

n

∑
j=1

dq(pj, 1) ≤ R(q)
n

∑
j=1

(√
pj − 1

)2

where 0 ≤ q ≤ 1.
(b2)

1
2

q(1− q)
n

∑
j=1

(
pj − 1

)2 ≤
n

∑
j=1

dq(pj, 1) ≤ 1
2

q(1− q)
n

∑
j=1

(
pj − 1

)2

pj

for 0 ≤ q ≤ 1.
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(c2)
1
2

q(1− q)
n

∑
j=1

pj log2 pj ≤
n

∑
j=1

dq(pj, 1) ≤ 1
2

q(1− q)
n

∑
j=1

log2 pj

and

min
{

q
p

,
1− q
1− p

} n

∑
j=1

dp(pj, 1) ≤
n

∑
j=1

dq(pj, 1) ≤ max
{

q
p

,
1− q
1− p

} n

∑
j=1

dp(pj, 1)

for 0 < p, q < 1.

Using the point (i) from Lemma 2 and inequalities (a2)–(c2), we deduce a series of
inequalities for the Tsallis entropy Hq(p) in the following (A)–(C) as the theorem.

Theorem 1. Let 0 < p, q < 1. Then we have the following (A)–(C).

(A)

n− 1− R(q)
1− q

n

∑
j=1

(√
pj − 1

)2
≤ Hq(p) ≤ n− 1− r(q)

1− q

n

∑
j=1

(√
pj − 1

)2
. (10)

(B)

n− 1− q
2

n

∑
j=1

(
pj − 1

)2

pj
≤ Hq(p) ≤ n− 1− q

2

n

∑
j=1

(
pj − 1

)2. (11)

(C)

n− 1− q
2

n

∑
j=1

log2 pj ≤ Hq(p) ≤ n− 1− q
2

n

∑
j=1

pj log2 pj (12)

and

(n− 1)
(

1− 1− p
1− q

max
{

q
p

,
1− q
1− p

})
+

1− p
1− q

max
{

q
p

,
1− q
1− p

}
Hp(p) ≤ Hq(p)

≤ (n− 1)
(

1− 1− p
1− q

min
{

q
p

,
1− q
1− p

})
+

1− p
1− q

min
{

q
p

,
1− q
1− p

}
Hp(p).

If p ≤ q, then we have min
{

q
p

,
1− q
1− p

}
=

1− q
1− p

and max
{

q
p

,
1− q
1− p

}
=

q
p

, then we

obtain

(n− 1)
p− q

p(1− q)
+

q(1− p)
p(1− q)

Hp(p) ≤ Hq(p) ≤ Hp(p),

which implies that Hq(p) is decreasing related to q.
In the limit of q→ 1, we find some bounds for Shannon entropy as a corollary of the

above theorem.

Corollary 1. We have the inequalities for Shannon entropy H(p).

H(p) ≤ n− 1−
n

∑
j=1

(√
pj − 1

)2
= 2

n

∑
j=1

(√
pj − 1

)
, (13)

n− 1− 1
2

n

∑
j=1

(
pj − 1

)2

pj
≤ H(p) ≤ n− 1− 1

2

n

∑
j=1

(
pj − 1

)2, (14)

n− 1− 1
2

n

∑
j=1

log2 pj ≤ H(p) ≤ n− 1− 1
2

n

∑
j=1

pj log2 pj (15)

and
H(p) ≤ Hp(p), (0 < p < 1).
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Using the points (ii) and (iii) from Lemma 2 and inequalities (a2)–(c2), we deduce
several inequalities for Rényi entropy Rq(p) and for the Fermi–Dirac–Tsallis entropy IFD

q (p)
in the following:

Theorem 2. Let 0 < q < 1. Then we have

(A1)

1
1− q

log{n(1− q) + q− R(q)(n + 1− 2
n

∑
j=1

√
pj)} ≤ Rq(p)

≤ 1
1− q

log{n(1− q) + q− r(q)(n + 1− 2
n

∑
j=1

√
pj)},

(B1)

1
1− q

log{n(1− q) + q− 1
2

q(1− q)(1− 2n +
n

∑
j=1

1
pj
)} ≤ Rq(p)

1
1− q

log{n(1− q) + q− 1
2

q(1− q)(n− 2 +
n

∑
j=1

p2
j )},

(C1)

1
1− q

log{n(1− q) + q− 1
2

q(1− q)
n

∑
j=1

log2 pj} ≤ Rq(p)

1
1− q

log{n(1− q) + q− 1
2

q(1− q)
n

∑
j=1

pj log2 pj},

(A2)

n− R(q)
1− q

{3n− 2
n

∑
j=1

(
√

pj +
√

1− pj)} ≤ IFD
q (p)

n− r(q)
1− q

{3n− 2
n

∑
j=1

(
√

pj +
√

1− pj)},

(B2)

n− q
2

(
n

∑
j=1

1
pj(1− pj)

− 3n

)
≤ IFD

q (p) ≤ n− q
2

(
n− 2 + 2

n

∑
j=1

p2
j

)

(C2)

n− q
2

n

∑
j=1

(
log2 pj + log2(1− pj)

)
≤ IFD

q (p) ≤

n− q
2

n

∑
j=1

(
pj log2 pj + (1− pj) log2(1− pj)

)
.

In the limit of q→ 1, we find some bounds for the Fermi–Dirac–Tsallis entropy as a
corollary of the above theorem.
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Corollary 2. We have the following inequalities for the Fermi–Dirac entropy IFD
1 (p):

IFD
1 (p) ≤ 2

n

∑
j=1

(
√

pj +
√

1− pj − 1),

1
2

(
5n−

n

∑
j=1

1
pj(1− pj)

)
≤ IFD

1 (p) ≤ 1
2

(
n + 2− 2

n

∑
j=1

p2
j

)

and

n− 1
2

n

∑
j=1

(
log2 pj + log2(1− pj)

)
≤ IFD

1 (p) ≤

n− 1
2

n

∑
j=1

(
pj log2 pj + (1− pj) log2(1− pj)

)
.

Theorem 3. Let 0 < q < 1. Then,

(A3)

(2n + 1)r(q)− (n + 1)R(q) + 2R(q)
n

∑
j=1

√
pj − 2r(q)

n

∑
j=1

√
1 + pj

≤ (1− q)
(

IBE
q (p)− n

)
(16)

≤ (2n + 1)R(q)− (n + 1)r(q) + 2r(q)
n

∑
j=1

√
pj − 2R(q)

n

∑
j=1

√
1 + pj,

(B3)

n +
q
2

(
n−

n

∑
j=1

1
pj(pj + 1)

)
≤ IBE

q (p) ≤ n +
q
2
(2− n) (17)

(C3)

n

∑
j=1

(
log2(pj + 1)− log2 pj

)
≤ 2

q

(
IBE
q (p)− n

)
(18)

≤
n

∑
j=1

(
(pj + 1) log2(pj + 1)− pj log2 pj

)
.

Proof. From inequality (7), we find

r(q)
(√

pj − 1
)2
≤ dq(pj, 1) ≤ R(q)

(√
pj − 1

)2
(19)

and

r(q)
(√

pj + 1− 1
)2
≤ dq(pj + 1, 1) ≤ R(q)

(√
pj + 1− 1

)2
. (20)

Using inequalities (19), (20) and the definition of the Bose–Einstein–Tsallis entropy
IBE
q (p), given above, we find

n +
1

1− q

(
r(q)

n

∑
j=1

(√
pj + 1− 1

)2
− R(q)

n

∑
j=1

(√
pj − 1

)2
)
≤ IBE

q (p)
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≤ n +
1

1− q

(
R(q)

n

∑
j=1

(√
pj + 1− 1

)2
− r(q)

n

∑
j=1

(√
pj − 1

)2
)

,

which implies inequality (16). From inequality (8), we have:

1
2

q(1− q)
p2

j

pj + 1
≤ dq(pj + 1, 1) ≤ 1

2
q(1− q)p2

j

and
1
2

q(1− q)
(

pj − 1
)2 ≤ dq(pj, 1) ≤ 1

2
q(1− q)

(
pj − 1

)2

pj
.

Summing from 1 to n, we deduce inequality (17).
We apply inequality (9) in the following way:

1
2

q(1− q) log2(pj + 1
)
≤ dq(pj + 1, 1) ≤ 1

2
q(1− q)

(
pj + 1

)
log2(pj + 1

)
and

1
2

q(1− q)pj log2 pj ≤ dq(pj, 1) ≤ 1
2

q(1− q)pj log2 pj.

Summing from 1 to n, we deduce inequality (18).

Corollary 3. We have the following inequalities for the Bose–Einstein entropy IBE
1 (p):

3n−
n

∑
j=1

1
pj(1 + pj)

≤ 2IBE
1 (p) ≤ n + 1

and

n

∑
j=1

(
log2(pj + 1)− log2 pj

)
≤ 2

(
IBE
1 (p)− n

)
≤

n

∑
j=1

(
(pj + 1) log2(pj + 1)− pj log2 pj

)
.

3. New Characterizations of Young’s Inequality

The inequality of Young is given by:

pa + (1− p)b ≥ apb1−p, (a, b > 0, p ∈ [0, 1]),

which means dp(a, b) ≥ 0.
In this section, we give further bounds on d·(·, ·).

Lemma 3. Let a and b be positive real numbers, and let p ∈ R. Then,

dp(a, b) = p
n

∑
k=1

2k−1 2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2

+ d2n p(
2n√

ab2n−1, b) (21)

and

dp(a, b) = (1− p)
n

∑
k=1

2k−1 2k−1√
a2k−1−1

(
2k√

a− 2k√
b
)2

+ d2n(p−1)+1(a,
2n√

a2n−1b). (22)

Proof. Using Lemma 2 for p ∈ R, then

dp(a, b) = p(
√

a−
√

b)2 + d2p(
√

ab, b).
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We replace p by 2p and a by
√

ab, then we get

d2p(
√

ab, b) = 2p( 4√ab−
√

b)2 + d4p(
4√ab3, b).

If we inductively repeat the above substitutions, for k ≥ 1, then we have

d2k−1 p(
2k−1√

ab2k−1−1, b) = 2k−1 p(
2k√

ab2k−1−1 −
√

b)2 + d2k p(
2k√

ab2k−1, b).

Therefore, summarizing the above relations for k ∈ {1, ..., n}, we obtain the relation of
the statement. Applying equality (21) and taking into account that dp(a, b) = d1−p(b, a),
we deduce equality (22).

Remark 1. From [8], if a, b > 0 and p /∈ [0, 1], we have d1−p(a, b) ≤ 0, so, we deduce

d2n p(
2n√

ab2n−1, b) ≤ 0, for p /∈ [0, 1
2n ] and d2n(p−1)+1(a, 2n√

a2n−1b) ≤ 0, for p /∈ [1− 1
2n , 1].

Using the above equalities, we deduce the inequalities:

dp(a, b) ≤ p
n

∑
k=1

2k−1 2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2

(23)

when p /∈
[

0,
1
2n

]
and

dp(a, b) ≤ (1− p)
n

∑
k=1

2k−1 2k−1√
a2k−1−1

(
2k√

a− 2k√
b
)2

. (24)

when p /∈
[

1− 1
2n , 1

]
. These inequalities are given by Furuichi et al. in ([15], Theorem 3). We also

find that inequality (23) when p ≤ 0 and inequality (24) when p ≥ 1 are given by Sababheh–Choi
in ([8], Theorem 2.9) and by Sababheh–Moslehian ([16], Theorem 2.2).

Proposition 1. Let a and b be positive real numbers. We then have the following bounds on d·(·, ·).

(i) For p ∈
[

0,
1
2n

]
, we have

r(2n p)
(

2n+1√
ab2n−1 −

√
b
)2

+ p
n

∑
k=1

2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2
≤ dp(a, b)

≤ R(2n p)
(

2n+1√
ab2n−1 −

√
b
)2

+ p
n

∑
k=1

2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2

.

where r(·) and R(·) are defined above,

(ii) For p ∈
[

0,
1
2n

]
, we have

2n−1 p(1− 2n p)

(
2n√

ab2n−1 − b
)2

max{ 2n√
ab2n−1, b}

+ p
n

∑
k=1

2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2
≤ dp(a, b)

2n−1 p(1− 2n p)

(
2n√

ab2n−1 − b
)2

min{ 2n√
ab2n−1, b}

+ p
n

∑
k=1

2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2

. (25)
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(iii) For p ∈
[

0,
1
2n

]
, we have

p
2n+1 (1− 2n p)min{ 2n√

ab2n−1, b} log2 a
b

≤ dp(a, b)− p
n

∑
k=1

2k−1√
b2k−1−1

(
2k√

a− 2k√
b
)2

≤ p
2n+1 (1− 2n p)min{ 2n√

ab2n−1, b} log2 a
b

.

Proof. We use the inequalities from (a) to (c), where we replace p by 2n p and a by 2n√
ab2n−1.

For a, b > 0 and p ∈
[

0,
1
2n

]
, we have the following (a3)–(c3).

(a3)

r(2n p)
(

2n+1√
ab2n−1 −

√
b
)2
≤ d2n p(

2n√
ab2n−1, b)

≤ R(2n p)
(

2n+1√
ab2n−1 −

√
b
)2

, (26)

(b3)

2n−1 p(1− 2n p)

(
2n√

ab2n−1 − b
)2

max{ 2n√
ab2n−1, b}

≤ d2n p(
2n√

ab2n−1, b)

≤ 2n−1 p(1− 2n p)

(
2n√

ab2n−1 − b
)2

min{ 2n√
ab2n−1, b}

. (27)

(c3)

p
2n+1 (1− 2n p)min{ 2n√

ab2n−1, b} log2 a
b
≤ d2n p(

2n√
ab2n−1, b)

≤ p
2n+1 (1− 2n p)max{ 2n√

ab2n−1, b} log2 a
b

. (28)

Using equality (21) and inequalities (26)–(28), we deduce the inequalities from the
statement.

4. The Connection between d·(·, ·) and Different Types of Convexity

In the following, we use the inequality by Kittaneh–Manasrah as noted in (3). We
prepare some lemmas to state our results.

Lemma 4. If f : J → R, where J is an interval of R, is a concave function, then

f ((1 + r)x− ry) ≤ (1 + r) f (x)− r f (y) (29)

for all x, y ∈ J and all r > 0 with (1 + r)x− ry ∈ J. If f is a convex function, then the reversed
inequality above holds.

Proof. If f is concave, then we have

1
1 + r

f ((1 + r)x− ry) +
r

1 + r
f (y) ≤ f

(
x− r

1 + r
y +

r
1 + r

y
)
= f (x).
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The following result is given in ([15], Corollary 1). This is the supplemental to the first
inequality of (3).

Lemma 5. Let a and b be positive real numbers and let p /∈ (0, 1). Then,

dp(a, b) ≤ r(p)
(√

a−
√

b
)2

, (30)

where r(p) := min{p, 1− p}.

Proof. We set the function f (t) := tp − 2pt1/2 − (1− 2p) for t > 0 and p /∈ (0, 1/2). From
f ′(t) = pt−1/2

(
tp−1/2 − 1

)
, we find that f ′(t) = 0 ⇔ t = 1, f ′(t) < 0 for 0 < t < 1 and

f ′(t) > 0 for t > 1. Thus, we have f (t) ≥ f (1) = 0. Putting t := a/b and multiplying
b > 0 to both sides in the inequality f (t) ≥ 0, we have

apb1−p ≥ 2p
√

ab + (1− 2p)b,

which is equivalent to

pa + (1− p)b− p
(√

a−
√

b
)2
≤ apb1−p, p /∈ (0, 1/2) (31)

We similarly have

pa + (1− p)b− (1− p)
(√

a−
√

b
)2
≤ apb1−p, p /∈ (1/2, 1). (32)

From (31) and (32), we have (30).

Note that the supplemental to the second inequality of (3), never generally holds:

R(p)
(√

a−
√

b
)2
≤ dp(a, b), a, b > 0 p /∈ (0, 1).

To state the following result, we review the log-convexity/log-concavity. For the
function f : I → (0, ∞), where I ⊂ R, x, y ∈ I and λ ∈ [0, 1], if f ((1− λ)x + λy) ≤
f 1−λ(x) f λ(y), then f is often called log-convex function. If the reversed inequality holds,
then f is called log-concave function.

In the following two lemmas, we deal with the symmetric function on 1
2 (i.e., f (t) =

f (1− t), for every t ∈ [0, 1]). The results are applied to the concrete symmetric function
related to entropy, in the end of this section.

Lemma 6. Let f : [0, 1] → (0, ∞) be a convex function such that f (t) = f (1− t) for every
t ∈ [0, 1]. Then

2R(t) f (1/2) + (1− 2R(t)) f (0) ≤ f (t) ≤ 2r(t) f (1/2) + (1− 2r(t)) f (0), (33)
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where r(t) := min{t, 1− t} and R(t) := max{t, 1− t}. If in addition, f is log-convex, then

2R(t) f (1/2) + (1− 2R(t)) f (0)

≤ 2R(t) f (1/2) + (1− 2R(t)) f (0)− (1− 2R(t))
(√

f (1/2)−
√

f (0)
)2

≤ f (1/2)2R(t) f (0)1−2R(t)

≤ f (t) (34)

≤ f (1/2)2r(t) f (0)1−2r(t)

≤ 2r(t) f (1/2) + (1− 2r(t)) f (0)− r(2r(t))
(√

f (1/2)−
√

f (0)
)2

≤ 2r(t) f (1/2) + (1− 2r(t)) f (0).

Proof. By convexity of f , we have for t ∈ [0, 1/2],

f (t) = f
(

2t · 1
2
+ (1− 2t) · 0

)
≤ 2t f

(
1
2

)
+ (1− 2t) f (0).

Thus, we have
2t( f (1/2)− f (0)) ≥ f (t)− f (0).

For t ∈ [1/2, 1], by exchanging t with 1− t in the above inequality, we have

2(1− t)( f (1/2)− f (0)) ≥ f (t)− f (0).

Therefore, we have

2r(t)( f (1/2)− f (0)) ≥ f (t)− f (0),

which implies the second inequality in (33). By Lemma 4 with r := 2t − 1 > 0 (i.e.,
t ∈ [1/2, 1].), we have

f (t) = f
(

2t · 1
2
+ (1− 2t) · 0

)
= f

(
(1 + r) · 1

2
− r · 0

)
≥ (1 + r) f (1/2)− r f (0) = 2t f (1/2) + (1− 2t) f (0).

Thus, we have for t ∈ [1/2, 1]

2t( f (1/2)− f (0)) ≤ f (t)− f (0).

For t ∈ [0, 1/2], by exchanging t with 1− t in the above inequality, we have

2(1− t)( f (1/2)− f (0)) ≤ f (t)− f (0).

Therefore, we have

2R(t)( f (1/2)− f (0)) ≤ f (t)− f (0),

which implies the first inequality in (33).
By log-convexity of f , log f is convex so that we have f (t) ≤ f (1/2)2r(t) f (0)1−2r(t)

which is the forth inequality of (34). The third inequality is from (33) and the second one is
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obtained by the Young inequality. The last inequality of (34) is trivial. Since 0 ≤ r(t) ≤ 1
2 ,

we have 0 ≤ 2r(t) ≤ 1. So we can use the first inequality of (3) as

f (1/2)2r(t) f (0)1−2r(t)

≤ 2r(t) f (1/2) + (1− 2r(t)) f (0)− r(2r(t))
(√

f (1/2)−
√

f (0)
)2

,

which is the fifth inequality of (34). Finally, we prove the first inequality of (34). Since
1
2
≤ R(t) ≤ 1, we have 1 ≤ 2R(t) ≤ 2 and −3 ≤ 1− 2R(t) ≤ −1. Namely, we have

1− 2R(t) ≤ 2R(t). By using (30), we have

f (1/2)2R(t) f (0)1−2R(t)

≥ 2R(t) f (1/2) + (1− 2R(t)) f (0)− (1− 2R(t))
(√

f (1/2)−
√

f (0)
)2

.

It is notable that the right inequalities in (33) and (34) are also found in ([17], Lemma
1.1). The following lemma is a counterpart by concavity. However, it does not completely
corresponded to the above lemma. (See Remark 2 below).

Lemma 7. Let f : [0, 1]→ (0, ∞) be a concave function with f (t) = f (1− t) for every t ∈ [0, 1].
Then

2r(t) f (1/2) + (1− 2r(t)) f (0) ≤ f (t) ≤ 2R(t) f (1/2) + (1− 2R(t)) f (0). (35)

If in addition, f is log-concave, then

2r(t) f (1/2) + (1− 2r(t)) f (0)− R(2r(t))
(√

f (1/2)−
√

f (0)
)2

≤ f (1/2)2r(t) f (0)1−2r(t)

≤ 2r(t) f (1/2) + (1− 2r(t)) f (0)

≤ f (t) (36)

≤ 2R(t) f (1/2) + (1− 2R(t)) f (0)

≤ f (1/2)2R(t) f (0)1−2R(t)

Proof. By concavity of f , we have for t ∈ [0, 1/2],

f (t) = f
(

2t · 1
2
+ (1− 2t) · 0

)
≥ 2t f (1/2) + (1− 2t) f (0),

which implies
2t( f (0)− f (1/2)) ≥ f (0)− f (t).

For the case of t ∈ [1/2, 1], by exchanging t with 1− t, then we have from the above
inequality

2(1− t)( f (0)− f (1/2)) ≥ f (0)− f (1− t) = f (0)− f (t).

Thus, we have for t ∈ [0, 1] and r(t) := min{t, 1− t},

2r(t)( f (0)− f (1/2)) ≥ f (0)− f (t),



Symmetry 2021, 13, 2398 15 of 19

which implies the first inequality of (35). For the proof of the second inequality of (35), we
use Lemma 4. Putting r := 2t− 1 > 0 in (29), we have

f (t) = f
(

2t · 1
2
+ (1− 2t) · 0

)
= f

(
(1 + r) · 1

2
− r · 0

)
≤ (1 + r) f (1/2)− r f (0)

= 2t f (1/2) + (1− 2t) f (0),

which means
2t( f (0)− f (1/2)) ≤ f (0)− f (t), t ∈ [1/2, 1].

For the case of t ∈ [0, 1/2], by exchanging t with 1 − t, we have from the above
inequality

2(1− t)( f (0)− f (1/2)) ≤ f (0)− f (1− t), t ∈ [0, 1/2].

By the symmetric property of f in t = 1/2, we obtain

2R(t)( f (0)− f (1/2)) ≤ f (0)− f (t),

which gives the right hand side in the inequalities (35).
If f is log-concave, then we have from the first inequality of (35) with concave function

log f , f (1/2)2R(t) f (0)1−2R(t) ≥ f (t), which show the forth inequality in (36). The third
inequality is just from (35). The second and last inequalities in (36) are obtained by the
Young inequality.

Since we have 0 ≤ r(t) ≤ 1/2 ≤ R(t) ≤ 1 generally, we have 0 ≤ 2r(t) ≤ 1 for
t ∈ [0, 1]. Then we apply the second inequality of (3), we have

f (1/2)2r(t) f (0)1−2r(t) ≥ 2r(t) f (1/2) + (1− 2r(t)) f (0)− R(2r(t))
(√

f (1/2)−
√

f (0)
)2

which shows the first inequality in (36).

Remark 2. In general, we have the supplement to the Young inequality:

avb1−v ≥ va + (1− v)b, v /∈ (0, 1), a, b > 0.

Thus, we have

f (1/2)2R(t) f (0)1−2R(t) ≥ 2R(t) f (1/2) + (1− 2R(t)) f (0).

Therefore, it seems difficult to bound f (1/2)2R(t) f (0)1−2R(t) in (36) from the above by the use

of the two terms 2R(t) f (1/2) + (1− 2R(t)) f (0) and
(√

f (1/2)−
√

f (0)
)2

as a simple form.

We have some bounds on f (1/2)2R(t) f (0)1−2R(t) by applying (3)–(6). We here show
one result by the use of (3). However, we omit the other cases.

Lemma 8. Let a and b be positive real numbers and let p ∈ [1, 2]. Then,

pa + (1− p)b + min{Ap, Bp}
(√

a−
√

b
)2

≤ apb1−p (37)

≤ pa + (1− p)b + max{Ap, Bp}
(√

a−
√

b
)2

,

where Ap := (p− 1)
(

1 + 2
√

a
b

)
and Bp := (2p− 3) a

b + (p− 1)
(

1 + 2
√

a
b

)
.

Proof. Since p− 1 ∈ [0, 1], we can use (3) as
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r(p− 1)
(√

a−
√

b
)2
≤ dp−1(a, b) ≤ R(p− 1)

(√
a−
√

b
)2

. (38)

Here we have the relation:

b · dp(a, b)− a · dp−1(a, b) = (1− p)(a− b)2, (a, b > 0, p ∈ R). (39)

Combining (39) with (38), we obtain

r(p− 1)a
(√

a−
√

b
)2

+ (1− p)(a− b)2 ≤ b · dp(a, b)

≤ R(p− 1)a
(√

a−
√

b
)2

+ (1− p)(a− b)2.

Elementary calculations imply

pa + (1− p)b +
1
b

{
(p− 1)

(√
a +
√

b
)2
− R(p− 1)a

}(√
a−
√

b
)2

≤ apb1−p

≤ pa + (1− p)b +
1
b

{
(p− 1)

(√
a +
√

b
)2
− r(p− 1)a

}(√
a−
√

b
)2

.

Considering the cases max{p− 1, 2− p} and min{p− 1, 2− p}, we obtain the inequal-
ities (37).

As for the bounds on f (1/2)2R(t) f (0)1−2R(t), we have the following result.

Proposition 2. Let t ∈ [0, 1] and a function f : [0, 1]→ (0, ∞). Then we have

2R(t) f (1/2) + (1− 2R(t)) f (0) + min{At, Bt}
(√

f (1/2)−
√

f (0)
)2

≤ f (1/2)2R(t) f (0)1−2R(t)

≤ 2R(t) f (1/2) + (1− 2R(t)) f (0) + max{At, Bt}
(√

f (1/2)−
√

f (0)
)2

,

where

At := (2R(t)− 1)

(
1 + 2

√
f (1/2)

f (0)

)
,

Bt := (4R(t)− 3)
f (1/2)

f (0)
+ (2R(t)− 1)

(
1 + 2

√
f (1/2)

f (0)

)
.

Proof. Since 1 ≤ 2R(t) ≤ 2, we set p := 2R(t), a := f (1/2) and b := f (0) in Lemma 8.

Example 1. The so-called binary entropy (e.g., [18], example 2.1.1) defined by

hbin(t) := −t log t− (1− t) log(1− t) > 0, (0 < t < 1)

with convention 0 log 0 =: 0, satisfies the conditions in Lemma 7, since

d2hbin(t)
dt2 =

−1
t(1− t)

< 0

and
d2

dt2 (log hbin(t)) =
−hbin(t)− t(1− t){log t− log(1− t)}2

t(1− t)hbin(t)2 < 0
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The standard convention 0 log 0 =: 0 is in information theory, since we have lim
x↓0

x log x = 0

and log x is undefined for x ≤ 0. In information theory, we use 2 as the base of the loga-
rithmic function, but we here use e for mathematical simplicity. Its selection is not essential
in mathematics. Applying (35) to function hbin(t) with convention hbin(0) =: 0, we have
2(loge 2)r(t) ≤ hbin(t) ≤ 2(loge 2)R(t), which is equivalent to

2 min{t, 1− t} ≤ −t log2 t− (1− t) log2(1− t) ≤ 2 max{t, 1− t}. (40)

The above inequalities are equivalent to

1− |1− 2p| ≤ Hb(p) ≤ 1 + |1− 2p|, (0 ≤ p ≤ 1), (41)

where Hb(p) := −p log2 p− (1− p) log2(1− p) is the usual binary entropy, whose base is 2.
If we do not adopt the standard convention 0 log 0 =: 0 in information theory, then we assume

f (0) := lim
t→0

f (t) =: ε precisely. Applying the inequalities in (36):

f (1/2)2r(t) f (0)1−2r(t) ≤ f (t) ≤ f (1/2)2R(t) f (0)1−2R(t),

we obtain
(loge 2)2r(t)ε1−2r(t) ≤ f (t) ≤ (loge 2)2R(t)ε1−2R(t),

which implies the following result.(
ε

loge 2

)1−2r(p)
≤ Hb(p) ≤

(
ε

loge 2

)1−2R(p)
, (0 ≤ p ≤ 1).

The Fermi–Dirac entropy is defined above by

IFD
1 (p) := −

n

∑
j=1

pj log pj −
n

∑
j=1

(1− pj) log(1− pj).

From the bounds of the binary entropy given in (40) and (41), we obtain the interesting
bounds on the Fermi–Dirac entropy as

2
n

∑
j=1

min{pj, 1− pj} ≤ IFD
1 (p) ≤ 2

n

∑
j=1

max{pj, 1− pj}

or

n−
n

∑
j=1

∣∣1− 2pj
∣∣ ≤ IFD

1 (p) ≤ n +
n

∑
j=1

∣∣1− 2pj
∣∣.

5. Concluding Remarks

We close this paper by providing some remarks on the log-convex function.

Lemma 9. For a, b, c, d > 0 and λ ∈ [0, 1], we have

aλb1−λ + cλd1−λ ≤ (a + c)λ(b + d)1−λ. (42)

Proof. Since function f (t) = tλ is concave for λ ∈ [0, 1], we use the Jensen inequality for
positive real numbers x and y as

b f (x) + d f (y)
b + d

≤ f
(

bx + dy
b + d

)
.
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If we take x :=
a
b

and y :=
c
d

, then we obtain

b
b + d

( a
b

)λ
+

d
b + d

( c
d

)λ
≤
(

a + c
b + d

)λ

which implies (42).

Theorem 4. If f , g : I → (0, ∞) are log-convex functions, then function µ f + νg is log-convex,
where I ⊂ R and µ, ν > 0.

Proof. Since f , g are log-convex functions, we have for λ ∈ [0, 1],

(µ f + νg)(λx + (1− λ)y) = µ f (λx + (1− λ)y) + νg(λx + (1− λ)y)

≤ µ f λ(x) f 1−λ(y) + νgλ(x)g1−λ(y) = (µ f (x))λ(µ f (y))1−λ + (νg(x))λ(νg(y))1−λ

≤ (µ f (x) + νg(x))λ(µ f (y) + νg(y))1−λ,

where we used Lemma 9 in the last inequality. Therefore, µ f + νg is log-convex.

Let Mn be the set of all n× n complex matrices, and let M+
n be the set of all positive

semi-definite matrices in Mn.

Corollary 4. For A, B ∈M+
n , X ∈Mn, t ∈ [0, 1] and ||| · ||| is the unitarily invariant norm, the

following functions are log-convex:

g1(t) := |||AtXBt|||+ |||A1−tXB1−t|||,
g2(t) := |||AtXB1−t|||+ |||A1−tXBt|||,
g3(t) := |||At|||+ |||A1−t|||,

g4(t) := tr
(

AtXB1−tX∗ + A1−tXBtX∗
)

.

Proof. In [19], it was shown that functions f1(t) := |||AtXBt|||, f2(t) := |||AtXB1−t|||,
f3(t) := |||At||| and f4(t) := tr

(
AtXB1−tX∗

)
are log-convex on [0, 1]. Thus, we have the

corollary from Theorem 4.

Since the functions gi are log-convex and gi(t) = gi(1− t), we can apply Lemma 6 for
the symmetric function gi on an axis t = 1

2 . Therefore, we obtain the chain of inequalities
for the functions g1 in the following, for example. We can obtain the similar inequalities for
the other functions g2, g3 and g4. However, we omit them. For A, B ∈ M+

n , X ∈ Mn and
t ∈ [0, 1], we have

4R(t)|||A1/2XB1/2|||+ (1− 2R(t))(|||X|||+ |||AXB|||)

−(1− 2R(t))
(√

2|||A1/2XB1/2||| −
√
|||X|||+ |||AXB|||

)2

≤
(

2|||A1/2XB1/2|||
)2R(t)

(|||X|||+ |||AXB|||)1−2R(t)

≤ |||AtXBt|||+ |||A1−tXB1−t|||

≤
(

2|||A1/2XB1/2|||
)2r(t)

(|||X|||+ |||AXB|||)1−2r(t)

≤ 4r(t)|||A1/2XB1/2|||+ (1− 2r(t))(|||X|||+ |||AXB|||)

−r(2r(t))
(√

2|||A1/2XB1/2||| −
√
|||X|||+ |||AXB|||

)2
.
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