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Abstract: Automatic segmentation of intracranial brain tumors in three-dimensional (3D) image
series is critical in screening and diagnosing related diseases. However, there are various challenges
in intracranial brain tumor images: (1) Multiple brain tumor categories hold particular pathological
features. (2) It is a thorny issue to locate and discern brain tumors from other non-brain regions
due to their complicated structure. (3) Traditional segmentation requires a noticeable difference in
the brightness of the interest target relative to the background. (4) Brain tumor magnetic resonance
images (MRI) have blurred boundaries, similar gray values, and low image contrast. (5) Image
information details would be dropped while suppressing noise. Existing methods and algorithms do
not perform satisfactorily in overcoming these obstacles mentioned above. Most of them share an
inadequate accuracy in brain tumor segmentation. Considering that the image segmentation task
is a symmetric process in which downsampling and upsampling are performed sequentially, this
paper proposes a segmentation algorithm based on U-Net++, aiming to address the aforementioned
problems. This paper uses the BraTS 2018 dataset, which contains MR images of 245 patients. We
suggest the generative mask sub-network, which can generate feature maps. This paper also uses
the BiCubic interpolation method for upsampling to obtain segmentation results different from U-
Net++. Subsequently, pixel-weighted fusion is adopted to fuse the two segmentation results, thereby,
improving the robustness and segmentation performance of the model. At the same time, we propose
an auto pruning mechanism in terms of the architectural features of U-Net++ itself. This mechanism
deactivates the sub-network by zeroing the input. It also automatically prunes GenU-Net++ during
the inference process, increasing the inference speed and improving the network performance by
preventing overfitting. Our algorithm’s PA, MIoU, P, and R are tested on the validation dataset,
reaching 0.9737, 0.9745, 0.9646, and 0.9527, respectively. The experimental results demonstrate
that the proposed model outperformed the contrast models. Additionally, we encapsulate the
model and develop a corresponding application based on the MacOS platform to make the model
further applicable.

Keywords: brain tumors segmentation; U-Net++; 3D image series; auto pruning mechanism;
generative mask sub-network

1. Introduction

The brain is the most vital and complex organ in the human body, consisting of
billions of cells [1], dominating all activity processes in the organism and regulating the
balance between the organism and the surrounding environment. The brain tumor is a
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kind of neoplasm that grows in the brain with a high fatality rate. Brain tumors take up
most of the intracranial space; they bring pressure to the brain tissues, affect the brain’s
functionalities, severely damage patients’ central nerves, and destroy healthy brain cells.
The components of the brain tumors are complex and can be primarily divided into
different sub-areas, including the edema area, the enhanced tumor area, the non-enhanced
tumor area, and the necrotic area [2]. At the same time, brain tumor categories are multiple
and characteristic. Some tumors are troublesome to dissect, such as schwannoma [3], while
there are impediments in locating some other tumors, such as glioma and glioblastoma [4].

Before performing an operation or radiotherapy and chemotherapy, doctors need to
determine the tumor location as part of the general therapy. After confirming the location,
doctors can obtain the tumor’s basic information, such as the shape, position, and size of
tumors in different areas, and then design a more appropriate and accurate surgery and
treatment strategy. Medical imaging techniques are adopted to detect and display the brain
tumors to conduct the above-mentioned further treatment.

Current medical imaging techniques for brain tumors include PET-CT and MRI. MRI
can reflect the anatomical structure of the human soft tissues, which has already become
the preferred medical imaging method of brain diagnoses [5]. Radiology doctors can
visually observe and define the range of the tumors according to the brain images manually.
Typically, the characteristics they judge are the size, location, physiological traits, and
metabolic condition.

However, there are various barriers to brain tumor segmentation with MRI.

1. Brain tumor MR images exhibit intricate tumor structure and blurred boundaries, and
external factors, such as noise, exist [6]. These factors make it difficult to determine
the brain tumor scope.

2. The gray values of different brain tissues are similar. The image contrast is low, and
the noise and intensity of the scan are not uniform, which will lead to the lack of image
information [7]. In such cases, doctors’ observations will be limited.

3. There is high diversity in the appearance of tumor tissues, and similarity can be seen
between tumor tissues and normal tissues, easily causing misdiagnosis and missed
diagnoses [8].

4. Traditional segmentation demands a discernible difference in the brightness of the
object compared to the background. Image information details would be decreased
while eliminating noise.

Until now, clinicians have relied on manual segmentation of the brain tumors in many
cases [9], which requires doctors to have rich prior knowledge. Although some computer-
assisted semi-automatic segmentation methods exist, many are complicated to operate and
difficult to apply in clinical diagnosis. Therefore, as depicted above, brain tumors terribly
impair human health. Moreover, the segmentation and classification of brain tumors
are complicated due to their particular structure and character. Considering the clinic
requirement and the medical value, developing an accurate, reliable, and fully automatic
brain tumor segmentation algorithm has solid and crucial clinical significance [10].

The application of computer-aided systems has become one of the most active fields of
study in the health industry. It has already been greatly developed, used in computational
biomedical fields, and has made tremendous contributions [11]. Automatic segmentation
based on deep-learning methods has recently become popular, among which, U-net is
one of the most renowned frameworks for CNN. Through automatic segmentation, image
features can be automatically learned [12]. At present, many new convolutional neural
network design methods are based on the core idea of U-Net, and new modules for
innovation and improvement are incorporated.

Thorsten Falk et al., for example, published an ImageJ plugin that analyzes data with
U-Net, which includes pre-trained models for single-cell segmentation and enables U-Net
to be tailored to new tasks using a few annotated samples [13]. In addition, Anita Khanna
et al. proposed a type of deep residual U-Net CNN for automated lung segmentation,
which can capture more distinguishing features instead of handcrafted ones, achieving
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98.63%, 99.62%, and 98.68% accuracies for the LUNA16, VESSEL12, and HUG-ILD datasets,
respectively. [14]. S Ghoshet proposed an improved U-Net with VGG-16 to segment Brain
MR images and identify region-of-interest (tumor cells). The new U-Net achieved pixel
accuracies of 0.994 and 0.9975 and was compared with the basic U-Net and improved
U-Net architectures. It can be seen that the results surpassed traditional CNN-based
state-of-the-art works [15].

In the field of brain tumor image segmentation, many experts continued proposing
novel algorithms that optimized the preprocessing, segmentizing and classifying to im-
prove the accuracy of the segmentation and classification for the brain tumor images. XZ A
and other scientists proposed an efficient 3D residual neural network (ERV-Net) for brain
tumor segmentation. The experimental results on the dataset of multimodal brain tumor
segmentation challenge 2018 demonstrated that ERV-Net achieved the best performance
with Dice of 81.8%, 91.21%, and 86.62% [16].

Li Sun et al. [17] suggested a deep learning-based framework for brain tumor seg-
mentation and survival prediction in glioma using multimodal MRI data. They employed
three different 3D CNN architectures ensembles to segment tumors for robust performance
using a majority rule, reaching an excellent 61.0% accuracy on diverse levels of survivor
classifications. S. Poornachandra et al. [18] used a CNN architecture to segment and pre-
process by correcting MR image inhomogeneity, balancing histogram, and applying the
Z-score normalization to all volumes. The Dice similarity coefficient it brings out is 0.68.

Shengcong Chen et al. [19] presented a Multi-Level DeepMedic for more accurate
segmentation. They also proposed a novel dual-force training scheme to enhance the
quality of multi-level learning features. In addition, they designed a label-distribution-
based loss function to learn more abstract information. Salma Alqazzazl et al. [20] applied
a fully convolutional neural network SegNet to 3D data sets for four MRI modalities for
automated segmentation of brain tumor and achieved F-measure scores of 0.8, 0.81, and
0.79 for the whole tumor, tumor core, and enhancing tumor, respectively.

P. Ramya et al. [21] used several methods about ensemble clustering labels as the
segmentation result. They also used the deep super-learning method to classify the
anomalies. For the BraTS brain images dataset, the average accuracy rate reached 97%.
Z Huang et al. [22] proposed a computer-aided brain tumor segmentation system based on
an adaptive gamma correction neural network (GammaNet). Through the experiment, the
Dice similarity coefficient (DSC), sensitivity, and intersection of union (IoU) of GammaNet
were found to be 85.8%, 87.8%, and 80.31%.

Inspired by the above research status and previous studies, this paper proposes a
segmentation algorithm based on U-Net++, consisting of a generative mask sub-network
and an auto pruning mechanism, aiming to address problems and optimize solutions in
the relative study field. The primary contributions of this paper are reflected as follows:

1. Network structure based on MR image features. The basic model of 3D U-Net++ is
adopted in this project to extract 3D features from 3D MR images. U-Net structures
of different scales are fused into a neural network to strengthen the extraction of 3D
features. In contrast, traditional networks merely obtain features from 2D images,
which may share an extreme similarity between two adjacent 2D images and are not
good enough for data feature extraction.

2. Add generative mask sub-network to address overfitting in complex network struc-
tures. The model adds a generative mask sub-network branch to obtain a result of
antagonistic generation, reducing the possibility of overfitting. The branch computes
feature conditional probability distributions by extracting and simulating features in
the highest dimension. The effect of segmenting the same sort of tumors outperforms
the decision model. The result is combined with that generated by the upper part of
the decision model. Then, calculate the loss to realize the sub-network regularization
and reduce the error of the overall model.

3. Two distinct training modes are under the same model. The pruning strategy of
U-net++ is used to determine whether pruning should be carried out according to
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the given conditions during training. The input of the sub-network is set to zero to
achieve structural inactivation, which could significantly improve the training speed
and even reduce the over-fitting of the neural network, leading to the “dual-use of
one model”.

The rest of this paper is divided into five parts: the Materials and Methods section
introduces the dataset and design details of the generative mask sub-network; the Experi-
ment section shows the experimental process and platform; the Results section shows the
experimental results as well as their analysis; the Discussion section conducts numerous
ablation experiments to verify the effectiveness of the optimized method and the limitation
of our methods; and the Conclusion section summarizes the paper.

2. Materials and Methods

The dataset used in this paper is from BraTS 2018 [23], containing 285 cases in total.
Each case has four modes: T1, T2, Flair, T1ce, and five labels: 0, 1, 2, 3, and 4. Precisely, label
0 corresponds to areas other than the domain with tumor, also known as background area.
Label 1 represents the necrotic area of the tumor. Label 2 denotes the cyst region of the
tumor. Label 3 corresponds to the non-enhanced region of the tumor. Label 4 corresponds
to the enhanced area of the tumor, in which an MR sequence contains 155 images, each
with a size of 240 × 240 pixels. Figure 1 is a case of a sequence in the BraTS dataset.

Figure 1. Dataset samples.

A case has various sequences; each sequence consists of several slices, aiming to
segment three components: whole tumor (WT), enhanced tumor (ET), and tumor core (TC).
However, a single-mode often leads to failure or deficiency in the segmentation process
due to insufficient subdivision of the tumor in the relevant area. Therefore, different MRI
models are used to compensate for such weaknesses. Multiple image information modes
can mutually complement, effectively developing segmentation accuracy. Nevertheless,
although the input of image information from multiple modes increases the necessary
information for segmentation, on the other hand, it also makes segmentation tricky by
adding a large amount of unnecessary information.

2.1. Dataset Analysis

The BraTS training set is further divided into high-grade glioma (HGG) and low-grade
glioma (LGG). HGG is a poorly differentiated glioma, which is malignant. Moreover, the
patient’s prognosis is generally bleak. LGG is a well-differentiated glioma. Although this
type of tumor is not biologically benign, the patient prognosis is relatively good.

Domain shift is a common problem in biomedical image analysis. Different institutions
use different acquisition parameters to capture data for the first domain shift, resulting
in the acquired images belonging to distinct domains. In this paper, the applied data
set is from different MRI scanners of various medical institutions. Regarding the second
type of domain shift, considering that the distribution of tumors and cancers may differ
by grade and severity, training with HGG and LGG constrains the learning ability of
segmentation models.
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2.2. Data Enhancement

Medical image datasets carry fewer samples that need data enhancement to grow the
amount and complexity of training samples. The following data enhancement methods are
used in this paper to optimize insufficient network training caused via an insufficient data
set or performance degradation caused by overfitting.

2.2.1. Basic Enhancement

This paper refers to the method proposed by Alex et al. [24]. Image flipping, image
translation, image scaling, and noise adding are used to enhance the data. Flipping and
translation are mainly used to improve model accuracy by increasing the amount of data,
while scaling and noise adding are used to learn high-dimensional features by the low-
frequency network. We use affine transformation to achieve the scaling of images.

It is assumed that the target image’s width and height are targetw and targeth, and
the original image’s width and height are imagew and imageh. In this paper, scale f actor is
first calculated when the image is magnified and shrunk, as shown in Formula (1). After
that, we divide the width and height of the original image by scale f actor, and then take
the part inside the target frame after the center point of the target frame is overlapped
with the center point of the processed image. The section on noise addition is expanded in
Section 2.2.2, comprising of methods, such as Cutout and CutMix.

scale f actor = min{ targeth
imageh

,
targetw

imagew
} (1)

2.2.2. Advanced Enhancement

In order to solve the enormous memory loss and the network’s unsatisfactory sensitiv-
ity to adversarial examples, we refer to the method depicted in the Mixup [25] and propose
a 3DMix data enhancement method for 3D images. Since the generative mask sub-network
is included in this model, enhancing the sensitivity of antagonistic samples can improve
the accuracy of the generative sub-network, thus, improving the regularization effect of
the final generated image. The method is shown in the Formulas (2)–(4).

λ = Beta(α, β) (2)

mixed_batchx = λ× batchx1 + (1− λ)× batchx2 (3)

mixed_batchy = λ× batchy1 + (1− λ)× batchy2 (4)

batchx1 is a batch sample, and batchy1 is the label matching to the batch sample. batchx2
is another batch sample, batchy2 is the label matching to this batch sample, and λ is the
mixing coefficient computed using the Beta distribution of parameters α and β. When this
method is implemented in this paper, there is no restriction on batchx1 and batchx2. When
the batch size is set to 1, two images are mixed.

When the batch size is greater than 1, it means that two Batch image samples are
mixed accordingly. In addition, batchx1 and batchx2 can be either the same batch of samples
or different batches of samples. When the method is implemented, batchx1 and batchx2
adopt the same batch of samples. Among them, batchx1 is the original Batch image sample,
and batchx2 is obtained after shuffle processing of batchx1 in the dimension of Batch size.

In addition, to prevent network overfitting, we use the dropout function proposed by
Alex [24]. We perform a random erase operation on image data before data is inputted to
the backbone network. The role of the Dropout function is similar to that of the dropout
function [24]. As the part and area erased in each round of training are random, the
robustness of the network can be enhanced, and the erased part will be regarded as the
blocked or blurred part. There are two ways to deal with the erased part: filling pixels
with a fixed color, such as black; filling with the RGB channel average of all pixels in the
erased portion.
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In addition to the above two methods, we also use Cutout [26] and CutMix [27] to
process images.

Cutout takes a sample section at random and fills it with a specific pixel, leaving
the classification result unaffected. The cutout is achieved by masking the image with a
defined-size rectangle and then setting other solid colors within the rectangle or assigning
all values to zero. Cutout allows CNN to employ global information from the entire image
rather than local information from a few minor features.

The CutMix method is adopted to remove a portion of the region. The other data in
the training set’s area pixel values are stochastically filled rather than filling zero pixels.
CutMix allows the model to recognize two targets from a local view of an image, increasing
the training efficiency. It also allows the model to focus on the areas where the target is
hard to differentiate. However, there is a lack of knowledge in several areas, which will
impact the training efficiency.

These specific effects are shown in Figure 2.

Figure 2. Illustration of four augmentation methods. (A) Cutout; (B) MixUp; (C) CutMix; and
(D) Mosaic.

2.3. GenU-Net++

U-Net++ [28], which has a U-shaped structure with a jump connection, is ideal for
medical images segmentation. The network skeleton in this paper is U-Net++. Figure 3
depicts the network architecture of this paper. In order to improve the accuracy and prevent
the gradient disappearance of data less than 0 in the convolution layer, we changed the
activation function ReLU [29] of each block in the original model into LeakyReLU. We
added a generative mask sub-network in the fifth layer of U-NET++. On the one hand, the
generated mask feature maps will operate concatenation with the feature maps generated
in the fifth layer and then be transmitted to the subsequent parts of u-Net.

On the other hand, up-sampling will be carried out in the sub-network and predicted
segmentation is generated. The Predicted segmentation generated by U-Net itself and the
predicted segmentation generated by the sub-network will be fused in the Pixel Fusion
Module. In the generative mask sub-network, we attempted three generative models:
DCGAN [30], CVAE [31], and DCGAN-VAE [32], and the Instance Normalization layer
replaces the Batch Normalization layer.

In addition, the deconvolution up-sample method commonly used in CNNs is re-
placed by the BiCubic interpolation algorithm. The experimental verification shows that
the model performance obtained by this interpolation algorithm is superior to the deconvo-
lution up-sampling method. In the weighted pixel fusion module, we reference the ideas
of the NMS algorithm [33] and WBF algorithm [34] used in the target detection problem.

We give different weights to each pixel in the two predicted segmentation generated
by U-Net [35] and generative mask sub-network, and the probability of the category to
which each pixel belongs is obtained through a weighting operation. In this way, the
prediction results of the two networks are fused, as shown in Algorithm 1.
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Algorithm 1 GenU-Net++ algorithm

1: Input: dataset D
2: Output: classes of every pixel O
3: Step 1: Data Enhancement
4: Step 2: extract feature maps
5: Step 3: at five convolutional layer, give feature maps to sub-network
6: Step 4a: upsample in U-Net++
7: Step 4b: upsample in generative mask sub-network
8: Step 5: fuse the results of U-Net++ and sub-network

Figure 3. Flow chart of GenU-Net++.

2.3.1. Generative Mask Sub-Network

In the generative mask sub-network, we first generate mask maps with the same di-
mension as feature maps of the U-Net++ fifth layer network based on Gaussian distribution.
Then, the generated mask maps are concatenated with feature maps of the fifth layer of
the network, and the effect is similar to that of the attention mechanism in SENet [36]. The
masks generated by the generative model are used here to enhance features. At the same
time, we carry out convolution and upsampling operations in the sub-network with mask
maps and obtain the segmentation different from that of U-Net++. The specific structure of
the generative mask sub-network is demonstrated in Figure 3.

The generator is employed to generate more available eigenvectors corresponding
to lesion images to improve the training process. Consider DCGAN, which has two
participants: the generator G and the discriminator D. Let pdata be the distribution of
retrieved eigenvectors. The generator model G’s purpose is to construct a probability
distribution pg on the feature map x. This probability distribution is the estimated value of
pdata. Two deep neural networks represent the generator and discriminator. The DCGAN
model’s optimization goal can be expressed mathematically as:

min
G

max
D

V(D, G) = E(x∼pdata)
[logD(x)] +E(z∼pz(z))

[log(1− D(G(z)))] (5)
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x is the prior value of the input noise variable in Formula (5). Two deep neural
network models are trained during the training procedure. The generative model G is
matched against the discriminative model. That is to say, through playing games, these
two models will optimize their objective functions. Nevertheless, to avoid the difficulty
of determining the exact Nash balance in the actual scenarios, the accuracy of the data
generated in discriminator D is employed as a stopping requirement. This indicates that
the training will be terminated if the misclassified probability of the data generated by G
exceeds a predefined threshold. The training procedure is depicted in Figure 4.

Figure 4. Flow chart of the generative adversarial network.

The other two types of generative models, CVAE and DCGAN-VAE, are applied in the
same way as the DCGAN model. In addition, we experimentally find that the upsampling
operation using BiCubic Interpolation algorithm in the generative mask sub-network is
superior to that using a deconvolution algorithm commonly based on CNNs. Therefore,
this paper uses the BiCubic interpolation algorithm to implement all upsampling operations
in the sub-network. The specific interpolation process is shown in Formulas (6) and (7). In
Formula (6), a is set to 0.5.

W(x) =


(a + 2)|x|3 − (a + 3)|x|2 + 1, |x| ≤ 1

a|x|3 − 5a|x|2 + 8a|x| − 4a, 1 < |x| < 2

0, otherwise

(6)

B(x, y) =
3

∑
i=0

3

∑
j=0

aij ×W(i)×W(j) (7)

In this case, calculating the coefficients aij relies on the interpolated data’s properties.
If the interpolation function’s derivatives are known, conventional approaches will use the
heights of the four vertices and three derivatives of each vertex. The first derivatives h

′
x

and h
′
y represent the surface slope in the x and y directions, respectively. Meanwhile, the

second mutual derivative h
′′
xy denotes the slope in the directions of the x and y. These

values can be obtained by successively differentiating the x and y vectors, respectively.

2.3.2. Weighted Pixel Fusion on Boundary

A simple way to fuse the results generated by U-Net and sub-network is to use the
voting method, which adds and averages the two networks’ predicted probabilities of
each pixel. Then, the result is regarded as the final segmentation result. However, the
experimental results of this fusion method are unsatisfactory. Therefore, this paper assigns
weights to each pixel in the two networks and performs weighted fusion according to
the weights.

2.3.3. Auto Pruning Mechanism

According to the conventional image segmentation training method, the correspond-
ing number of 3D images are imported according to the selected patch size for each training.
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After the preprocessing, input U-Net++ and generative mask sub-network, and then carry
out convolution and up-sampling in turn according to the model to obtain two predicted
segmentation maps. The final result is obtained by weighted fusion of the two segmen-
tation maps. Furthermore, we use the network parameters obtained in the training stage
for inference.

The training stage of the auto pruning mechanism is the same as that of the above
method. However, the auto pruning mechanism deactivates the generative mask sub-
network in the inference stage by zeroing the network’s input. Then, during the training
process, the outer neurons are sequentially snipped out by deactivating the blocks according
to preset conditions. For example, suppose U-Net++ at a lower level has higher accuracy
or is equal to U-Net++ at a higher level. In that case, the input of U-Net++ at a higher level
will be set to zero to achieve structural pruning, thus, improving the training speed. The
effect of the pruning operation during the training process is shown in Figure 5.

Figure 5. Illustration of the auto pruning mechanism.

2.3.4. Loss Function

To better adapt to the data set in this paper, we optimize the loss function of the
network and use the Exponential Logarithmic Loss proposed in [37]. The specific form is
as follows:

L = wDice ×LDice + wCross ×LCross (8)

The loss function in the above equation consists of two components, LDice represents
the Dice loss; LCross represents the CrossEntropy loss. Two parameter weights are added
as wDice and wCross respectively, while wDice is the exponential log Dice loss. wCross is the
exponential cross-entropy loss. The formula is as follows:

LDice = E[(−ln(Dicei))
γDice] (9)

LCross = E[wl(−ln(pl(x)))γCross] (10)

where x denotes the pixel position, i represents the category label, l denotes ground truth
category at location l, and pi(x) represents the probability value after the softmax operation.
In addition, wl = (∑k fk

fl
)0.5, where fk stands for the frequency of label k’s occurrence. This

parameter is used to reduce the weights of categories with a high occurrence rate. γDice
and γCross can enhance the nonlinearity of the loss function.

3. Experiment
3.1. Evaluation Metrics

To verify the performance of the model, the following indexes are used as model
evaluation indicators in this paper.

1. Pixel Accuracy (PA) is the percentage of precisely classified pixels in an image,
i.e., the proportion of correctly classified pixels to total pixels. The formula can be
expressed as:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
=

TP + TN
TP + TN + FP + FN

(11)
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n denotes the overall number of categories, n + 1 denotes the category number includ-
ing backgrounds; pii expounds the entire number of real pixels whose label is i and is
predicted to be class i, i.e., the total number of matched pixels for real pixels whose
class is i; pij indicates the total number of real pixels whose label is i that are predicted
to be class j, which can also be interpreted as the number of pixels whose label is i that
are misclassified into class j.
TP represents the number of true positives, which is positive in both label and pre-
dicted value. TN represents the number of true negatives, which is negative in
both label and predicted value. FP represents the number of false positives, which
is negative in label and positive in predicted value. FN represents the number of
false negatives, which is positive in label and negative in predicted value. Then,
TP + TN + FP + FN is the total number of pixels, and TP + TN is the number of
pixels correctly classified.
The Mean Pixel Accuracy (MPA) is a simple enhancement of PA. Calculate the propor-
tion of pixels accurately identified in each class, and then average the average results.

2. Intersection-Over-Union (IoU), also known as the Jaccard index, is defined as the
intersection of the predicted segmentation and label divided by the intersection of
predicted segmentation and label. This indicator has a value between 0 and 1, with 0
indicating no overlap and 1 indicating complete overlap. The calculation formula for
binary classification is:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(12)

where A represents the ground truth, and B denotes the predicted segmentation.
The Mean Intersection over Union (MIoU) is a typical semantic segmentation measure.
It computes the intersection and union ratio of two sets. In the semantic segmentation
issue, these two sets of ground truth and predicted segmentation calculate the IoU on
each class and then average it.

MIoU =
1

n + 1
×

n

∑
i=0

TP
TP + FP + FN

(13)

3. Precision (P) is the percentage of samples classified as positive samples in the accu-
rately categorized samples.

P =
TP

TP + FP
(14)

4. Recall (R) describes the percentage of correctly classified positive samples among all
positive samples.

R =
TP

TP + FN
(15)

3.2. Experiment Setting

The complete model training and validation process was implemented by a personal
computer (processor: Intel(R) i9-10900KF @ 3.7 GHz; operating system: Ubuntu 18.04,
64 bits; memory: 16 GB). The training speed was optimized in Graphics Processing Unit
(GPU) mode (NVIDIA RTX 3080 10 GB). We select the Adam optimizer with the initial
learning rate such that a0 = 1 ×10−4. The increment of the learning rate is updated
according to the method described in Section 3.3.

3.3. Learning Rate

Warm-up [38] is a training scheme. In the pre-training stage, we first use a low
learning rate to train certain epochs or steps, such as four epochs or 10,000 steps. Then, we
modify it to a preset learning rate for training. When training begins, the model weights
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are initialized randomly, and the model’s “level of understanding” of the data is 0. If a
larger learning rate is used at the beginning, the model might oscillate.

Warm-up first uses a lower learning rate for training to provide the model with prior
knowledge of the data. Then, we use the preset learning rate for training to improve
the model’s convergence speed and effect. Eventually, using a small learning rate to
proceed with exploration, we shun the loss of local best points. For instance, in the training
procedure, we set 0.01 learning rate to train the model until the error is less than 80%, and
then set a 0.1 learning rate for training.

The mentioned warm-up is the Constant warm-up. Its disadvantage lies in transform-
ing from a tiny learning rate to a comparatively high learning rate, which may cause the
training error to increase suddenly. Consequently, in 2018, Facebook proposed a gradual
warm-up to solve this problem. It starts from the initial small learning rate; each step
increases slightly until the relatively large learning rate initially set is reached, and then it
is adopted to conduct training.

In this paper, exp warm-up is tested, linearly increasing the learning rate from a tiny
value to the preset learning rate and then decaying according to the exp function law.
Meanwhile, sin warm-up is also tested, linearly increasing the learning rate from a minimal
value. After reaching the preset value, it decays according to the sin function law. For the
two pre-training methods, their changes are shown in Figure 6.

Figure 6. The warmup learning rate schedule.

4. Results
4.1. Validation Results

Table 1 illustrates the statistical results. The best results of the index are bold. In
Table 1, FCN8s [39] has the shortest average running time. The PA, MIoU, P, and R of
AttU-Net [40] are 0.9559, 0.9618, 0.9592, and 0.9438, respectively. These indices of AttU-Net
are superior to those of FCN series [39], SegNet [41] and VAEU-Net. AttU-Net suggests the
spatial attention mechanism to U-Net. VAEU-Net integrates VAE and U-Net to develop
the U-Net segmentation effect. Even if VAEU-Net imported VAE, it simply adopts VAE as
a portion of the decoder in the last layer. VAEU-Net is barely higher in some indexes than
FCN series and SegNet. Our algorithm’s PA, MIoU, P, and R are 0.9737, 0.9745, 0.9646, and
0.9527, respectively.

All of our algorithm’s indices outperform those of the comparison algorithms. Our
algorithm is the fourth in terms of average running time. This is caused by the complexity
of the generative mask sub-network. Our algorithm delivers the best segmentation impact
on the BraTS dataset, according to the results.
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Table 1. Comparison with other state-of-the-art algorithms on the segmentation task of medical images.

Method PA MIoU P R Time (ms)

FCN8s 0.8975 0.9046 0.9157 0.9033 23.7
FCN16s 0.9091 0.9127 0.9348 0.9201 27.1
FCN32s 0.9317 0.9387 0.9504 0.9218 29.6
SegNet 0.9437 0.9445 0.9646 0.9257 31.2
AttU-Net 0.9559 0.9618 0.9592 0.9438 42.2
VAEU-Net 0.9522 0.9573 0.9506 0.9587 47.4
U-Net++ 0.9652 0.9703 0.9611 0.9410 29.7
GenU-Net++ (ours) 0.9737 0.9745 0.9646 0.9527 33.9

4.2. Segmentation Results

For further comparison, we extracted six tomographic images from the 3D sequence
of BraTS. These images locate at a considerable distance from each other, fully reflecting
the characteristics of this dataset and the difficulty of segmentation. Figures 7–15 show
the segmentation results. FCN8s, FCN16s, and SegNet lose a multitude of details in the
decoding process. The loss of detail delivers these algorithms’ segmentation lines coarse
and incorrect at the image edges and details.

As the jump connection compensates for detailed information in decoding, the U-Net
segmentation accuracy is increased to some extent. When compared to U-Net++, the seg-
mentation results of AttU-Net, FCN32s, and VAEU-Net improve the segmentation results
of most regions, with the exception of the difficult-to-separate regions. Our algorithm is
quite good at extracting features. It can also overcome opacity-induced indistinguishability
between the target and the background.

That is because our model adds a generative mask sub-network to the last layer of
the leading network. This sub-network makes it feasible to learn the features at the edges
better by using the properties of generative networks, giving the model a more robust
segmentation capability. Therefore, our algorithm yields the most accurate segmentation
results. The algorithm in this study produced the most comprehensive segmentation results
of any segmentation algorithms.

Figure 7. The ground truth in the BraSt dataset.
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Figure 8. The segmentation results of FCN8s in the BraSt dataset.

Figure 9. The segmentation results of FCN16s in the BraSt dataset.
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Figure 10. The segmentation results of FCN32s in the BraSt dataset.

Figure 11. The segmentation results of U-Net++ in the BraSt dataset.
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Figure 12. The segmentation results of SegNet in the BraSt dataset.

Figure 13. The segmentation results of AttU-Net in the BraSt dataset.
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Figure 14. The segmentation results of VAEU-Net in the BraSt dataset.

Figure 15. The segmentation results of GenU-Net++ in the BraSt dataset. Red box A: did not
identity the segmentation result. Red box B: the finest segmentation result. Red box C: surpassed
comparison models.

From Figures 7–15, our algorithm’s segmentation results in diverse cases outperformed
those of the comparison algorithms. In particular, the three red boxes in Figure 15 show
that our algorithm performed exceptionally well in terms of edges and details compared
to other models. All the comparison algorithms did not identify the segmentation result
in red box A. The segmentation result in red box B is the finest compared with all the
comparison algorithms, and the FCN8s and FCN16s had almost no lesions detected in this
area. Even though our algorithm’s segmentation result in red box C is not as good as the
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ground truth algorithm, it surpassed other comparison models. The segmentation results
show that our algorithm is accessible, efficient, and excellent.

5. Discussion
5.1. Ablation Experiment of Generative Mask Sub-Network

This paper used three generative models to achieve generative mask sub-network: DC-
GAN, CVAE, and DCGAN-VAE. To verify their respective implementation effects, ablation
experiments are carried out in this paper. Table 2 illustrates the experimental results.

Table 2. The results of different implements of sub-networks.

Method PA MIoU P R Time (ms)

U-Net++ (baseline) 0.9652 0.9703 0.9611 0.9410 29.7
DCGAN 0.9737 0.9745 0.9646 0.9527 33.9
CVAE 0.9691 0.9731 0.9603 0.9477 29.9
DCGAN-VAE 0.9741 0.9745 0.9642 0.9528 40.8

From the Table 2, it can be seen that DCGAN-VAE combines the advantages of DC-
GAN and CVAE, respectively. However, this model inference speed is also the slowest. By
comparing the baseline model, we can find that various implementations of the generative
mask sub-network effectively promote the GenU-Net++ model’s performance. The PA,
MIoU, P, and R of the best performing DCGAN-VAE implementation are 0.9741, 0.9745,
0.9642, and 0.9528, respectively.

5.2. Ablation Experiment of Data Enhancement Methods

In addition to the common data enhancement methods in computer vision tasks, such
as random flip, crop, translation, advanced data enhancement methods of random erasure
and image mixing are also used in this paper. In order to verify the improvement effect of
these methods on model performance, we conducted ablation experiments.

Since the four data enhancement methods, Cutout, CutMix, MixUp, and Mosaic, have
more intensive computational complexity than the affine transformation-based methods,
they have a more significant impact on the training and inference speed of the model.
To verify whether it is worthwhile to use these methods, we compared the effects of
different combinations. In addition, we explored whether it is feasible only to use affine
transformation-based enhancement methods. The experimental results are shown in
Table 3.

Table 3. The results of different data enhancement methods.

Cutout CutMix MixUp Mosaic PA MIoU P R Time (ms)

X X X X 0.9737 0.9745 0.9646 0.9527 33.9
X X X 0.9734 0.9743 0.9621 0.9524 33.9

X X X 0.9736 0.9737 0.9633 0.9510 31.6
X X X 0.9736 0.9737 0.9637 0.9508 32.2
X X X 0.9737 0.9749 0.9651 0.9520 31.7

0.9328 0.9336 0.9211 0.9207 27.9

In Table 3, we can witness that each data enhancement method can effectively improve
the model’s performance. However, the effects of the CutMix and Mosaic methods are
similar, and the effects of using only one of them on the model are almost the same. At the
same time, when only using the affine transformation-based data augmentation method,
although the speed of the model can be increased to 27.9 ms, the PA, MIoU, Precision,
and Recall of the model are only 0.9328, 0.9336, 0.9211, and 0.9207, which is a significant
decrease. Thus, considering the model’s training and inference speed characteristics,
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we used Cutout, CutMix, and MixUp together to guarantee that the model has the best
all-around performance.

5.3. Ablation Experiment of Pruning Mechanism

In the inference stage, the auto pruning mechanism proposed in this paper can set the
sub-network input to 0 to deactivate the generative mask sub-network and improve the
inference speed. The same method is used to prune the U-Net++ network layer by layer.
This paper carries out experiments to confirm the variation trend of inference speed and
performance when the auto pruning mechanism is applied. The experimental results are
displayed in Table 4.

Table 4. The results of different pruning strategies.

Pruning Strategy PA MIoU P R Time (ms)

U-Net++ (baseline) 0.9652 0.9703 0.9611 0.9410 29.7
GenU-Net++ 0.9737 0.9745 0.9646 0.9527 33.9
L1 Pruning 0.9439 0.9447 0.9528 0.9216 25.7
L2 Pruning 0.9435 0.9439 0.9507 0.9197 25.0
L3 Pruning 0.9218 0.9223 0.9472 0.9083 24.1
Auto Pruning 0.9687 0.9711 0.9627 0.9518 31.3

Table 4 reflects that only cutting the sub-network enhances the inference speed slightly
in the inference stage. In contrast, it has a significant impact on inference performance.
This also proves that the proposed generative mask sub-network is capable of effectively
improving the U-Net++ model’s performance.

However, through experiments, it can also be discovered that when layer by layer
pruning U-Net++ is carried out, the inference speed can be improved to a certain extent.
At the same time, the model performance does not significantly decrease. Consequently,
if high performance is pursued, a non-pruning strategy can be used. If high timeliness
is pursued, the L3 pruning strategy can be carried out on the model. Moreover, the auto
pruning strategy can increase the model inference speed with almost no performance loss.

5.4. Diagnosis System on MacOS

To apply the proposed GenU-Net++ model in practice, we encapsulate the model and
build a user-friendly diagnosis system. This system is developed in Swift language, the
main functional modules of the software are:

1. Patient information search and browsing section. Users can search patient information
and review historical patient information through the revision block. In order to
facilitate users to use patient data, a remote server is used to connect, and the basic
information related to patients and medical image data are stored in the remote
server MySQL database. To further improve portability, an interface to connect to
the database is set aside so that users can connect to the database when the product
is applied.

2. Basic medical image viewing function. To further determine the lesion, the user can
move and magnify the image.

3. A block used to write relevant analysis reports.

All these functional features are shown in Figure 16.
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Figure 16. Diagnosis system interface built on MacOS.

5.5. GenU-Net++ Analysis

The main innovations of the proposed network model can be summarized as the
following three points:

1. Network structure based on MR image features. MR images have three-dimensional
features, and traditional networks extract features from two-dimensional images
to achieve tumor segmentation. Due to the extreme similarity of two adjacent two-
dimensional images, a 2D network is often not good enough for data feature extraction.
Therefore, the basic model of 3D U-Net++ is adopted in this project to extract 3D
features from 3D MR images. U-Net structures of different scales are fused into a
neural network to strengthen the extraction of 3D features.

2. Add generative mask sub-network aiming at solving overfitting in complex network
structures. Due to the complexity of neural networks after improvement, the over-
fitting ability of neural networks will be improved. The model adds a generative
mask sub-network branch to find a result of antagonistic generation through the
generation model, reducing the possibility of overfitting. The branch calculates the
conditional probability distribution of features through the extraction and simulation
of features in the highest dimension. The effect of segmenting the same type of tumors
is better than that of the decision model. The result is combined with that generated
by the upper part of the decision model to calculate the loss, realizing the sub-network
regularization and reducing the error of the whole model.

3. Two different training modes are under the same model. Generally, the segmenta-
tion’s higher accuracy, the better the effect is. However, accuracy improvement often
accompanies a considerable time consumption. Moreover, the deepening of neural
network depth does not necessarily bring better results. Due to the overfitting, the
segmentation result of the deep network may be worse than that of the lower network.
Therefore, we propose a second set of solutions for the model. The pruning strategy
of U-net++ is used to determine whether pruning should be carried out according to
the given conditions during training. The input of the sub-network is set to zero to
achieve structural inactivation, which could significantly improve the training speed
and even reduce the overfitting of the neural network, leading to the “dual-use of
one model”.
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5.6. Limitation

Even though our algorithm delivers the best segmentation effect, it has a few draw-
backs. As shown in Figure 15, even if our algorithm has been able to segment most of the
lesions, it is not sufficiently accurate for such relatively independent and small lesions in
boxes A and C. The flaw is a task that we will further have to struggle with in the future.

5.6.1. Segmentation Boundary Loss

The algorithm proposed in this paper still does not work satisfactorily at the bound-
aries of brain tumors Figure 17. Although the mask information generated by the generative
network can enhance the algorithm’s robustness to a certain extent, the results thus far are
still not excellent enough. On the one hand, that is due to the failure to assign a higher
weight to pixels at boundaries when constructing the loss function. On the other hand, it is
difficult for even human beings to quickly determine the boundary lines of some complex
images during processing.

Figure 17. The limitation of our methods. The left is ground truth, and the right is the predicted
segmentation by our methods.

5.6.2. Third Dimensional Information Loss

In this paper, we used a 3D image series, which contained the three-dimensional
information of the whole lesion. However, this information was not fully utilized in this
paper, as it was still treated as multiple consecutive two-dimensional images. Hence, the
continuity and correlation information in the third dimension is not fully utilized in this
way. When the processed lesion images appear for the first time in one image and gradually
expand in the subsequent images, theoretically, the segmentation effect of these images
will be effectively improved if the continuity information in the third dimension contained
in the 3D images series is fully utilized.

5.7. Future Work

As described in Section 5.6, the method proposed in this paper still does not work
well at the boundaries of the brain tumor segmentation. The dataset used in this paper is a
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slice sequence, which is three-dimensional image information. Nevertheless, the current
algorithm does not effectively utilize the continuity in the three-dimension to optimize the
segmentation results. Therefore, the authors of this paper optimize the proposed generative
mask sub-network to extract the continuity and correlation features in three-dimensional
space to optimize the segmentation results further.

6. Conclusions

The brain tumor is a lethal neoplasm that grows in the brain and horribly impacts
the essential functionalities of the brain. Brain tumor segmentation has occupied a critical
status in the computational biomedical fields in recent years. This paper uses the BraTS
2018 dataset, comprising 245 patients’ MR images. Moreover, MRI segmentation currently
has difficulties as follows. 1. The requirement of a discernible difference in the brightness
of the detection target compared to the background. 2. The MRI has blurred boundaries,
semblable gray values, and low contrast. 3. Eliminating noise has an influence on the
image information details. Therefore, this paper proposes a segmentation algorithm based
on U-Net++, aiming to address these mentioned above problems.

This paper introduced the generative mask sub-network and auto pruning mechanism—
specifically: 1. A generative mask sub-network generated feature maps using BiCubic
interpolation to conduct upsampling and obtains segmentation results different from U-
Net++. Then, this paper employed pixel-weighted fusion to fuse the two segmentation
results. Through this process, the robustness and segmentation performance of the model
were improved.

2. We proposed an auto pruning mechanism that depended on the architectural
characteristics of U-Net++. This mechanism deactivated the sub-network by zeroing the
input. It also automatically pruned GenU-Net++ during the inference process, increasing
the inference speed and improving the network performance by preventing overfitting.
Ultimately, on the validation set, the proposed method reached 0.9737, 0.9745, 0.9646,
and 0.9527 on the PA, MIoU, P, and R indices, respectively. This experimental result
demonstrates that the proposed model surpassed all the compared models.

In order to verify the effectiveness of various implementations of generative mask sub-
networks, in Section 5, we tested the performance of DCGAN, CVAE, and DCGAN-VAE,
respectively. The sub-network implemented on DCGAN-VAE had the best performance
without considering the inference speed. We also tested different levels of pruning strate-
gies. The results indicate that the proposed auto pruning mechanism was able to balance
the model’s performance with the inference speed. Moreover, it could still take advantage
of the generative mask sub-network with an inference speed close to the native U-Net++.

Although the proposed model surpassed the comparison model, limitations were still
present. First, the algorithm was still not good enough in the boundary region of brain
tumors. Second, the model has been adapted for 3D image sequences; however, it still
cannot make good use of the 3D information in the dataset. These shortcomings are future
directions for the authors of this paper. Ultimately, this paper encapsulated the model
and developed a corresponding application under the MacOS platform, thus, making the
model applicable.
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