
symmetryS S

Article

An Effective Naming Heterogeneity Resolution for XACML
Policy Evaluation in a Distributed Environment

Teo Poh Kuang 1, Hamidah Ibrahim 1,*, Fatimah Sidi 1, Nur Izura Udzir 1 and Ali A. Alwan 2

����������
�������

Citation: Kuang, T.P.; Ibrahim, H.;

Sidi, F.; Udzir, N.I.; Alwan, A.A. An

Effective Naming Heterogeneity

Resolution for XACML Policy

Evaluation in a Distributed

Environment. Symmetry 2021, 13,

2394. https://doi.org/10.3390/

sym13122394

Academic Editor: Tomohiro Inagaki

Received: 16 November 2021

Accepted: 7 December 2021

Published: 12 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,
Serdang 43400, Malaysia; gs23442@student.upm.edu.my (T.P.K.); fatimah@upm.edu.my (F.S.);
izura@upm.edu.my (N.I.U.)

2 School of Theoretical & Applied Science, Ramapo College of New Jersey, Mahwah, NJ 07430, USA;
aaljuboo@ramapo.edu

* Correspondence: hamidah.ibrahim@upm.edu.my

Abstract: Policy evaluation is a process to determine whether a request submitted by a user satisfies
the access control policies defined by an organization. Naming heterogeneity between the attribute
values of a request and a policy is common due to syntactic variations and terminological variations,
particularly among organizations of a distributed environment. Existing policy evaluation engines
employ a simple string equal matching function in evaluating the similarity between the attribute
values of a request and a policy, which are inaccurate, since only exact match is considered similar.
This work proposes several matching functions which are not limited to the string equal matching
function that aim to resolve various types of naming heterogeneity. Our proposed solution is also
capable of supporting symmetrical architecture applications, in which the organization can negotiate
with the users for the release of their resources and properties that raise privacy concerns. The
effectiveness of the proposed matching functions on real XACML policies, designed for universities,
conference management, and the health care domain, is evaluated. The results show that the proposed
solution has successfully achieved higher percentages of Recall and F-measure compared with the
standard Sun’s XACML implementation, with our improvement, these measures gained up to 70%
and 57%, respectively.

Keywords: access control policies; policy evaluation; naming heterogeneity; XACML

1. Introduction

Policy evaluation is a process to determine whether a request submitted by a user
satisfies the access control policies defined by an organization. A practical distributed
policy evaluation framework should be able to support the autonomy in policy specifi-
cation, as well as interoperability, among parties and policy portability [1–5]. Naming
heterogeneity arises due to the use of different combinations of characters which can
represent the same term (syntactic variations), including typographical errors, similar
terms belonging to different grammar categories, and different terms which have the same
meaning (terminological variations) [6,7].

Existing policy evaluation engines [8–11] employ a simple string equal matching
function during policy evaluation. However, they are deemed inaccurate since they do not
explore naming heterogeneity and rely on the assumption that different terms represent
different concepts. It would be unrealistic to assume that different organizations from
different security domains would share the same vocabulary to represent their policies.

Several researchers have used ontologies for the specification of policies or add on
semantic knowledge-based functions for semantic interoperability [12–19]. However,
ontology forming is a labor-intensive, error-prone, and time-consuming task because, in
general, it involves human input during the policy design stage to manually perform the
ontology concept mapping, and with an assumption that the security officer is trusted to

Symmetry 2021, 13, 2394. https://doi.org/10.3390/sym13122394 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0543-3329
https://orcid.org/0000-0003-3279-9366
https://doi.org/10.3390/sym13122394
https://doi.org/10.3390/sym13122394
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13122394
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13122394?type=check_update&version=2

Symmetry 2021, 13, 2394 2 of 26

perform an accurate mapping. Moreover, the ontology needs to be reformed once a new
party joins the collaboration. Therefore, developing a matching function that attempts to
achieve effectiveness has been one of the main tasks in policy evaluation.

Several matching functions are proposed in this work to resolve the issue of naming
heterogeneity between the attribute values of a request and a policy during policy eval-
uation. The proposed solution is domain-independent as it does not rely on any specific
rules of a particular domain, hence a predefined knowledge of the domain is not required.
Tokenization and concatenation are applied to the attribute values in order to remove
unnecessary delimiters, which are considered as noise, before the proposed matching
functions are executed. N-gram and WordNet are adopted as well in the proposed solution.
N-gram is effective in matching terms with minor syntactic differences [13]; while WordNet
could identify the equivalence and inheritance relationships between the attribute values
of a request and a policy.

This work is based on the discretionary access control (DAC) model. The eXtensible
access control markup language (XACML) is used to specify the policy since it is the
OASIS standard language, and the standard defines a declarative access control policy
language implemented in XML format, which is able to express policies in terms of rules
over different kinds of attributes. Overall, the main contributions of this work are briefly
described as follows:

• We have proposed a naming heterogeneity resolution model with the main aim
to resolve naming heterogeneity, which may arise due to syntactic variations and
terminological variations during policy evaluation.

• Several matching functions have been proposed. Each matching function has been
designed to cater to certain type of variation (syntactic and/or terminological) by
analyzing the terms that appeared in the attribute values of a request and a policy.
N-gram and WordNet are utilized to provide the syntactic similarities and semantic
relationships (synonym, hypernym, and hyponym) between terms, respectively.

• The experimental results of the proposed solution are presented to prove its capability
of identifying and resolving naming heterogeneity due to syntactic and terminological
variations during policy evaluation.

The rest of the paper is organized as follows. Section 2 reviews the methods of policy
evaluation proposed by previous studies. Section 3 introduces the necessary definitions
and notations used throughout the paper, while Section 4 presents the proposed matching
functions that aim to resolve naming heterogeneity, namely: Synonym Equal, Hyponym,
Syntactical Synonym Equal, Syntactical Hyponym, Syntactical Equal, Hyponym Common Word,
and Abbreviation Equal. An illustrative example based on the academy university domain
is also given. Section 5 evaluates the performance of the proposed matching functions
which is then compared to the performance of a previous notable work. The last section
concludes this work and sheds light on some directions which can be used in the future.

2. Related Works

Numerous studies have proposed methods for integrating policies of collaborating
parties into a global policy schema, which may support complex authorization specifica-
tions and requirements of the collaborating parties [19–26]. However, policy integration
methods among various collaborating parties could become very complex due to domain
heterogeneity and different vocabulary utilized by organizations in specifying their policies.

Several works have affirmed that collaborative partners may need to perform policy
similarity by comparing their access control policies in order to determine which requests
will be permitted among the policies [27–30]. Nevertheless, these works required the
collaborative parties to provide their individual and independent policies that may be
misused by adversaries with the intention to reveal sensitive information among those
policies and may lead to unintended breaches of privacy. Due to the difficulty of integrating
schemas from different organizations into a global schema, current researchers providing

Symmetry 2021, 13, 2394 3 of 26

solutions for dynamic policy evaluation, which fit in the large scale of distributed systems,
are receiving particular attention [8–11].

Sun’s XACML implementation [11] is a policy evaluation mechanism that is specif-
ically designed to provide a full support for determining applicability of policies and
evaluating requests against policies in XACML. The major problems are that XACML is
unable to handle semantics that are associated with the elements and unable to properly
detect policy conflicts among complex policies [5].

In order to achieve an efficient XACML policy evaluation that is able to deal with a
large volume of requests, several works have focused on the performance of processing
requests by improving the Sun’s XACML implementation [8–10]. These works, which
mainly focus on evaluation time, have adopted a simple string equal matching function
to match the string values. However, the simple string-based method is unable to solve
naming heterogeneity in a distributed environment since we cannot expect that policies
belonging to different organizations are based on the same vocabulary. Nevertheless, there
are also works such as [2,31–40] that made attempts to improve the policy decision point
(PDP) evaluation performance with regard to evaluation time by grouping/clustering the
whole rule set into several subsets; hence, resolving the issue of semantic interoperability
is not part of their solutions. Meanwhile, our work focuses on the effectiveness of a policy
evaluation engine in which accuracy is the main measurement used.

A number of works have supported semantic interoperability to resolve naming
heterogeneity [4,7,12–15,17,18]. These works combined policy rules with ontologies in
order to improve the query answering support to infer domain knowledge. However, the
ontology-based knowledge management in these works is a labor-intensive, error-prone,
and time-consuming task because it needs intensive human involvement during the access
control policy design stage to manually map the ontology. The human perception error
that might occur while performing mapping, especially for policies of larger sizes, further
hinders the full acceptance of such solution.

All possible violations that might exist among a request and a policy are identified
based on the subject, object, action, and condition attributes of the request and policy.
However, existing works are still lacking in terms of providing solutions to resolve naming
heterogeneity, and it is yet to be validated whether the results returned by the evaluation
engines are accurate. According to the work in [41], to reduce human involvement, string-
based and language-based techniques and linguistic resources can be used to analyze
strings. In [42], the authors measure syntactical similarity by using N-gram to compute
the number of common N-grams between terms (i.e., sequences of N characters) while
terminological analysis is performed by identifying equality between concepts utilizing
the WordNet lexical database.

This work is an extension to our previous work [42], in which WordNet is further
utilized to identify equivalence and inheritance relationships between the attribute values
of a request and a policy. Table 1 presents a summary of the existing naming heterogeneity
methods in a distributed system as described in this section.

Table 1. The summary of the existing naming heterogeneity methods in a distributed system.

A
I II III

B C D E F G H I

[23]
√

- String Equal Graph Matching String Equal String Equal
√ √

[26]
√

-

Vector similarity,
clustering,
ontology graph
matching

Vector similarity,
clustering,
ontology graph
matching

String Equal -
√ √

Symmetry 2021, 13, 2394 4 of 26

Table 1. Cont.

A
I II III

B C D E F G H I

[24]
√

-
Equal, not
equal, intersect,
subset, superset

Equal, not equal,
intersect, subset,
superset

Equal, not equal,
intersect, subset,
superset

Equal, not equal,
intersect, subset,
superset

√
-

[25]
√

-

Addition,
subtraction,
negation,
domain
projection

Addition,
subtraction,
negation,
domain
projection

Addition,
subtraction,
negation,
Domain,
Projection

Addition,
subtraction,
negation,
domain
projection

√
-

[41]
√

-

Addition,
subtraction,
intersection,
precedence,
negation,
domain
projection

Addition,
subtraction,
intersection,
precedence,
negation,
domain
projection

Addition,
subtraction,
intersection,
precedence,
negation,
domain
projection

Addition,
subtraction,
intersection,
precedence,
negation,
domain
projection

√
-

[20]
√

-

Intersection,
scoping
restriction, set
difference

Intersection,
scoping
restriction, set
difference

Intersection,
scoping
restriction, set
difference

Intersection,
scoping
restriction, set
difference

√
-

[21]
√

- String Equal String Equal String Equal Algebraic
√

-

[22]
√

- Ontology graph
matching

Ontology graph
matching

Ontology graph
matching

Ontology graph
matching

√ √

[30]
√

- Ontology graph
matching

Ontology graph
matching

Ontology graph
matching

Ontology graph
matching

√
-

[29]
√

-

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

√ √

[27]
√

-

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

Domain specific
thesauri,
WordNet,
ontology graph
matching

√ √

[11] -
√

String Equal String Equal String Equal String Equal
√

-

[18]
√

- Jena and Pellet
reasoner

Jena and Pellet
reasoner

Jena & Pellet
reasoner

Jena & Pellet
reasoner

√ √

[8] -
√

String Equal String Equal String Equal String Equal
√

-

[9] -
√

String Equal String Equal String Equal String Equal
√

-

[10] -
√

String Equal String Equal String Equal String Equal
√

-

[12] -
√

JaroWinklerTF-
IDF,
WordNet, user
dictionary,
ontology graph
matching

JaroWinklerTF-
IDF, WordNet,
user
dictionary,
ontology graph
matching

JaroWinklerTF-
IDF, WordNet,
user
dictionary,
ontology graph
matching

-
√ √

[14] -
√ Ontology graph

matching
Ontology graph
Matching

Ontology graph
matching -

√ √

[13] -
√

Pellet reasoner Pellet reasoner Pellet Reasoner Pellet reasoner
√ √

Symmetry 2021, 13, 2394 5 of 26

Table 1. Cont.

A
I II III

B C D E F G H I

[15] -
√ Ontology graph

matching
Ontology graph
Matching

Ontology graph
matching

- √ √

[17] -
√ Jena & Pellet

reasoner
Jena & Pellet
reasoner

Jena & Pellet
Reasoner

Jena & Pellet
Reasoner

√ √

[4] -
√

Jena reasoner Jena reasoner Jena reasoner Jena Reasoner
√ √

[7] -
√ Ontology graph

matching
Ontology graph
matching

Ontology graph
matching

Ontology graph
matching

√ √

[42] -
√ WordNet,

N-gram
WordNet,
N-gram

WordNet,
N-gram

WordNet,
N-gram

√ √

Note: I—environment; II—matching methods; III—variations; A—authors; B—matching two policies; C—matching a request and a policy;
D—subject; E—resource; F—action; G—condition; H—syntactic; I—terminological.

3. Preliminaries

In this section, we present the necessary definitions and introduce the notations that
are used throughout this paper. First, we give the general definitions related to policy eval-
uation that have been defined either formally or informally in the literature [6,7,15,43–45],
based on the notations used in this paper (i.e., Definition 1 and Definition 2). This is then
followed with specific definitions that are related to our work. Motivation examples are
then put forward to further clarify the problem addressed in this paper.

3.1. Definitions and Notations

The definitions of policy and request are as follows:

Definition 1. An access control policy, Pol, is a tuple of the form: Pol ≡ (Effect, Target, Condition).

Definition 2. A request, Req, is presented in the form: Req ≡ (Subject, Resource, Action, Condition).

A Target is basically a set of conditions of a subject, resource, and action that must
be met for a policy to be applied to a given request. Subject, Resource, and Action are
the components of a request and a policy. However, Condition is an optional attribute
to further constrain the scope of a request or a policy. Subject identifies an individual
user or a user role that can potentially invoke an action in the system. Resource can be
any objects for the subject to access (e.g., data or computer resources such as Webservers
or database servers). Action represents any operations (e.g., delete or write a file) that
can be applied to the resource. Finally, Condition is a Boolean expression that involves
environment context of evaluation. Examples of a typical environment context are time
(e.g., 2 p.m. ≤ time ≤ 5 p.m.) and spatial (e.g., location = Faculty Floor). The effect is the
intended consequence of a satisfied policy (either Permit or Deny).

We use the symbols ∨ as a logical disjunction and ∧ as a logical conjunction when
multiple terms are joined into a single attribute of an access control policy. Our work covers
the domain elementary expressions which are classified into three categories [7], as follows:

Category 1. One variable equality constraints, x = c, where x is a variable and c is a constant.

Category 2. One variable inequality constraints, x B c, where x is a variable, c is a constant, and
B ∈ {< ,≤,≥, >}.

Category 3. Compound Boolean expression constraints. This category combines the categories 1
and 2 using the logical operators ∧ or ∨.

The domain of the terms that appeared in the above constraints belongs to string data
type (e.g., Email = gs23442@upm.edu.my) and date/time data type (e.g., Time = 12 : 30).

Symmetry 2021, 13, 2394 6 of 26

A policy is said to be applicable to a request if the term of a subject, resource, action, and
condition of the request corresponds to the term of a subject, resource, action, and condition
of the policy, respectively. The definition of an applicable policy can be formally defined
as follows:

Definition 3. A policy, Poli, is said to be applicable to a request, Reqj, if and only if the subject
of the request, SubjectReqj , corresponds to the subject of the policy, SubjectPoli , the resource of
the request, ResourceReqj , corresponds to the request of the policy, ResourcePoli , the action of the
request, ActionReqj , corresponds to the action of the policy, ActionPoli , and the condition of the
request, ConditionReqj , corresponds to the condition of the policy, ConditionPoli .

Definition 4. A term of Reqj, avReqj , is said to correspond to a term of Poli, avPoli , if and only if:[(
avReqj = avPoli

)
∨
(

avReqj ≡ avPoli

)]
∧ SC

(
avReqj , avPoli

)
≥ τ,

where ≡ is an equivalence symbol, SC is a similarity score, and τ is a similarity threshold. Here,
term implies the explicit value of an attribute of a request and a policy as specified by the user and
administrator, respectively.

Definition 5. The semantic relationship between a term of Reqj, avReqj , and a term of Poli, avPoli ,
can be one of the following: synonym, hyponym, and hypernym. Synonym is a relation that exists
between avReqj and avPoli that have the same meaning. Hyponym is a relation between avReqj and
avPoli that implies one of terms is a specific meaning than the other term which is the general or
superordinate term. The opposite relationship of hyponym is hypernym. Other relationships like
antonym, homonym, and polysemy are not considered in this work since antonym represents a term
opposite in meaning to another, homonym means that the terms are having the same spelling or
pronunciation but different meanings and origins, and polysemy is the coexistence of many possible
meanings for a term.

3.2. Illustrative Example

This section presents an illustrative example, based on the academy university domain.
It attempts to highlight the following: (i) the various forms of terms used in a request
as well as a policy and (ii) the different types of naming heterogeneity that occur during
policy evaluation. These variants of terms and heterogeneity further hinder the process of
matching and evaluating the similarities between the attribute values of a request and a
policy during policy evaluation. Table 2 presents five explicit access control policies, based
on Definition 1, while Table 3 presents four requests, based on Definition 2.

Table 2. The XACML policies applied in the University.

Policy No. Effect Subject Resource Action Condition

Pol1 Permit RA Grades Assign ∨ View
(Location = Association) ∧

(Time ≥ 12 p.m.∧ Time ≤ 2 p.m.) ∧
(Email = upm.edu.my)

Pol2 Deny Student Course Assign ∨ View
(Location = Department) ∧

(Time ≥ 12 p.m.∧ Time ≤ 1 p.m.) ∧
(Email = upm.edu.my)

Pol3 Permit Undergrad Course View
(Location = Department) ∧

(Time ≥ 12 p.m.∧ Time ≤ 1 p.m.) ∧
(Email = upm.edu.my)

Pol4 Permit AssociatePro f essor Grades SubmitGradeChange ∨
SubmitGrade ∨ Assign ∨ View

(Location = GraduateSchool) ∧
(Time ≥ 12 p.m.∧ Time ≤ 1 p.m.) ∧

(Email = upm.edu.my)

Pol5 Deny Faculty_Member Grades Assign ∨ View (Location = School) ∧
(Time ≥ 12 p.m.∧ Time ≤ 1 p.m.)

Symmetry 2021, 13, 2394 7 of 26

Table 3. The requests for policy evaluation.

Request No. Subject Resource Action Condition

Req1 Undergraduate Student Teaching Course View
(Location = University Department) ∧

(Time = 12 : 30 p.m.) ∧
(Email = gs23442@upm.edu.my)

Req2 ResearchAssistant ExternalGrades Assign
(Location = Institute) ∧
(Time = 1 : 30 p.m.) ∧

(Email = gs23442@upm.edu.my)

Req3 AssociatePro f Grades Assign (Location = GraduateSchool) ∧
(Time = 12 : 30 p.m.)

Req4 Faculty_Member Grades AssignGrade (Location = School) ∧
(Time = 12 : 30 p.m.)

Altogether, there are 20 comparisons (5× 4) for this illustrative example but only those
comparisons that imply the policies are applicable to the requests are shown in Tables 4–10.
From this example, it is found that different forms of terms are used in a request and a
policy, as further elaborated below:

• A compound noun is a noun that is made of two or more words. For instance, referring
to Table 3, the term Teaching Course in the resource attribute of Req1 is a compound
noun.

• An abbreviation is a shortened or contracted form of a word or phrase. For instance,
referring to Table 8, the term Pro f which is part of the term AssociatePro f in the
subject attribute of Req3 is a shortened form of Pro f essor.

• An acronym is a word formed as an abbreviation from the initial letters in a phrase
or a word [43]. For instance, referring to Table 2, RA in the subject attribute of Pol1
is formed from the initial letters of ResearchAssistant in the subject attribute of Req2
(Table 3).

• A word may appear at the beginning of another word which is in the form of a
compound noun. For instance, referring to Table 9, Assign in the action attribute of
Pol4 occurs at the beginning of AssignGrade in the action attribute of Req4.

• A word may appear at the end of another word which is in the form of a compound
noun. For instance, referring to Table 6, Grades in the resource attribute of Pol1 occurs
at the end of ExternalGrades in the resource attribute of Req2.

• A word may contain delimiter characters (i.e., dash, underscore, capital letters, etc.).
For example, referring to Table 2, the term Faculty_Member in the subject attribute of
Pol5 contains “_” as delimiter.

Table 4. The mapping results among Req1 and Pol2.

Req1 Pol2 Result Type of Variations

Subject = Undergraduate Student Subject = Student Match Terminological

Resource = Teaching Course Resource = Course Match Terminological

Action = View
Action = Assign Not Match -

Action = View Match Syntactic

Location = University Department Location = Department Match Terminological

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

Email = gs23442@upm.edu.my Email = upm.edu.my Match Terminological

Symmetry 2021, 13, 2394 8 of 26

Table 5. The mapping results among Req1 and Pol3.

Req1 Pol3 Result Type of Variations

Subject = Undergraduate Student Subject = Undergrad Match Syntactic

Resource = Teaching Course Resource = Course Match Terminological

Action = View Action = View Match Syntactic

Location = University Department Location = Department Match Terminological

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

Email = gs23442@upm.edu.my Email = upm.edu.my Match Terminological

Table 6. The mapping results among Req2 and Pol1.

Req2 Pol1 Result Type of Variations

Subject = ResearchAssistant Subject = RA Match Syntactic

Resource = ExternalGrades Resource = Grades Match Syntactic

Action = Assign
Action = Assign Match Syntactic

Action = View Not Match -

Location = Institute Location = Association Match Terminological

Time = 1 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 2 p.m. Match -

Email = gs23442@upm.edu.my Email = upm.edu.my Match Terminological

Table 7. The mapping results among Req3 and Pol4.

Req3 Pol4 Result Type of Variations

Subject = AssociatePro f Subject = AssociatePro f essor Match Syntactic

Resource = Grades Resource = Grades Match Syntactic

Action = Assign

Action = Assign Match Syntactic

Action = View Not Match -

Action = SubmitGrade Not Match -

Action = SubmitGradeChange Not Match -

Location = GraduateSchool Location = GraduateSchool Match Syntactic

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

Table 8. The mapping results among Req3 and Pol5.

Req3 Pol5 Result Type of Variations

Subject = AssociatePro f Subject = Faculty_Member Match Terminological

Resource = Grades Resource = Grades Match Syntactic

Action = Assign
Action = Assign Match Syntactic

Action = View Not Match -

Location = GraduateSchool Location = School Match Terminological

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

Symmetry 2021, 13, 2394 9 of 26

Table 9. The mapping results among Req4 and Pol4.

Req4 Pol4 Result Type of Variations

Subject = Faculty_Member Subject = AssociatePro f essor Match Terminological

Resource = Grades Resource = Grades Match Syntactic

Action = AssignGrade

Action = Assign Match Terminological

Action = View Not Match -

Action = SubmitGrade Not Match -

Action = SubmitGradeChange Not Match -

Location = School Location = GraduateSchool Match Terminological

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

Table 10. The mapping results among Req4 and Pol5.

Req4 Pol5 Result Type of Variations

Subject = Faculty_Member Subject = Faculty_Member Match Syntactic

Resource = Grades Resource = Grades Match Syntactic

Action = AssignGrade
Action = Assign Match Terminological

Action = View Not Match -

Location = School Location = School Match Syntactic

Time = 12 : 30 p.m. Time ≥ 12 p.m. ∧ Time ≤ 1 p.m. Match -

The different forms of terms cause naming heterogeneity between a request and a
policy. Based on the illustrative example, two types of naming heterogeneity among terms
that need to be addressed during policy evaluation are identified, which are syntactic and
terminological. It is crucial to be able to recognize the form of the terms so as to achieve
the appropriate matching functions in resolving the naming heterogeneity. String-based
techniques (i.e., N-gram, prefix, and suffix), language-based techniques (i.e., tokenization),
and linguistic resources [41] (i.e., WordNet) are the techniques that are suitable to be
applied in resolving naming heterogeneity automatically, because of its ability to reduce
human involvement.

4. Naming Heterogeneity Resolution

Figure 1 shows the general process flow of our proposed naming heterogeneity res-
olution model that aims to resolve naming heterogeneity that might occur during policy
evaluation. It is possible that the policies from the resource organization do not directly
match with the request since the terms used in the subject, resource, action, and condition
are different. This is because each organization manages its own vocabulary of policies in
order to serve their own authority’s principal concern. Hence, naming heterogeneity is one
of the heterogeneity issues that should be addressed in policy evaluation since the policies
belonging to different organizations are not based on the same vocabulary.

A user may send a request to access the resources of an organization. The conflict
resolution algorithm in this work compares the terms of a request, Req, against the terms of
a policy, Pol. WordNet is applied as an external thesaurus with the purpose of identifying
synonym, hypernym, or hyponym relationships between terms. The term may be vague in
meaning if null is returned from WordNet, but it is considered non-vague if gloss is returned
instead. A term may be vague due to it contains delimiter characters; thus, a preprocessing
step is needed to remove the unnecessary delimiter characters (i.e., underscore, dash, etc.)
as they are considered as noise. The preprocessing step is performed by tokenizing a term
of a request, avReq, and a term of a policy, avPol , into fragments of words if they contain

Symmetry 2021, 13, 2394 10 of 26

tokens separated by delimiter characters. The tokens of avReq are stored into an array,
arrayavReq , whereas the tokens of avPol are stored into an array, arrayavPol .

Symmetry 2021, 13, x FOR PEER REVIEW 10 of 26

Figure 1. The naming heterogeneity resolution model.

A user may send a request to access the resources of an organization. The conflict
resolution algorithm in this work compares the terms of a request, 𝑅𝑒𝑞, against the terms
of a policy, 𝑃𝑜𝑙. WordNet is applied as an external thesaurus with the purpose of identi-
fying synonym, hypernym, or hyponym relationships between terms. The term may be
vague in meaning if null is returned from WordNet, but it is considered non-vague if gloss
is returned instead. A term may be vague due to it contains delimiter characters; thus, a
preprocessing step is needed to remove the unnecessary delimiter characters (i.e., under-
score, dash, etc.) as they are considered as noise. The preprocessing step is performed by
tokenizing a term of a request, 𝑎𝑣 , and a term of a policy, 𝑎𝑣 ,

into fragments of

words if they contain tokens separated by delimiter characters. The tokens of 𝑎𝑣 are
stored into an array, 𝑎𝑟𝑟𝑎𝑦 , whereas the tokens of 𝑎𝑣 are stored into an array, 𝑎𝑟𝑟𝑎𝑦 .

There are two fundamental string concatenation operators in concatenating multiple
tokens into a meaningful term. They are space concatenation and abuttal concatenation,
as elaborated below:
• Space concatenation is performed on the tokens of the 𝑎𝑟𝑟𝑎𝑦 and 𝑎𝑟𝑟𝑎𝑦 .

The tokens of the 𝑎𝑟𝑟𝑎𝑦 are concatenated with an intervening space and stored
into 𝑡𝑒𝑟𝑚 . 𝑡𝑒𝑟𝑚 is further checked by WordNet as to whether it is a
non-vague term. The same process goes for 𝑎𝑟𝑟𝑎𝑦 . For example, the tokens of 𝑎𝑣 , 𝐹𝑎𝑐𝑢𝑙𝑡𝑦_𝑀𝑒𝑚𝑏𝑒𝑟 and {𝐹𝑎𝑐𝑢𝑙𝑡𝑦, 𝑀𝑒𝑚𝑏𝑒𝑟}, are concatenated with an interven-
ing space to form a new meaningful term, 𝐹𝑎𝑐𝑢𝑙𝑡𝑦 𝑀𝑒𝑚𝑏𝑒𝑟, which is a non-vague
term, as gloss is returned from WordNet.

• In contrast, if the new term is a vague term, abuttal concatenation is performed by
concatenating the tokens into a single term without an intervening space. Take 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 − 𝐶𝑙𝑎𝑠𝑠_𝑟𝑐 as an example. 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 − 𝐶𝑙𝑎𝑠𝑠_𝑟𝑐 is tokenized into {𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑, 𝐶𝑙𝑎𝑠𝑠, 𝑟𝑐} and is further concatenated with an intervening space to
form a new term, 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 𝐶𝑙𝑎𝑠𝑠 𝑟𝑐. However, 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 𝐶𝑙𝑎𝑠𝑠 𝑟𝑐 is
apparently a vague term, thus, 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑, 𝐶𝑙𝑎𝑠𝑠, and 𝑟𝑐 are concatenated into a
single term without an intervening space, 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠𝑟𝑐. Intuitively, N-gram is
applied during the matching process.

Figure 1. The naming heterogeneity resolution model.

There are two fundamental string concatenation operators in concatenating multiple
tokens into a meaningful term. They are space concatenation and abuttal concatenation, as
elaborated below:

• Space concatenation is performed on the tokens of the arrayavReq and arrayavPol . The
tokens of the arrayavReq are concatenated with an intervening space and stored into
termReqspace. termReqspace is further checked by WordNet as to whether it is a non-
vague term. The same process goes for arrayavPol . For example, the tokens of avReq,
Faculty_Member and {Faculty, Member}, are concatenated with an intervening space
to form a new meaningful term, Faculty Member, which is a non-vague term, as gloss
is returned from WordNet.

• In contrast, if the new term is a vague term, abuttal concatenation is performed
by concatenating the tokens into a single term without an intervening space. Take
avPol , Undergrad− Class_rc as an example. Undergrad− Class_rc is tokenized into
{Undergrad, Class, rc} and is further concatenated with an intervening space to form
a new term, avPolnew, Undergrad Class rc. However, Undergrad Class rc is apparently
a vague term, thus, Undergrad, Class, and rc are concatenated into a single term
without an intervening space, UndergradClassrc. Intuitively, N-gram is applied during
the matching process.

Algorithm 1 presents the preprocessing steps before running the matching functions
in order to remove the unnecessary delimiters.

The outputs of Algorithm 1 are the new form of both avReq and avPol denoted by
avReqnew and avPolnew, respectively, which then become the input to the matching functions.
A matching function will return a set of tuples of the form

〈
avReq, avPol , Result

〉
where

avReq (avPol) is the term of a request (policy, respectively) in its initial form and Result
returns Matched if avReqnew matched with avPolnew, while returning Not Matched otherwise.
We have devised eight matching functions, each cater a different form of a term, namely:
String Equal, Synonym Equal, Hyponym, Syntactical Synonym Equal, Syntactical Hyponym,
Syntactical Equal, Hyponym Common Word, and Abbreviation Equal. For String Equal, Synonym
Equal, Hyponym, and Hyponym Common Word, the similarity score is equal to 1 when the

Symmetry 2021, 13, 2394 11 of 26

matching functions return a match value and is equal to 0 otherwise. The following sections
present how the proposed matching functions work on the string value.

Algorithm 1: Preprocessing Steps Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 11 of 27

Algorithm 1 presents the preprocessing steps before running the matching functions
in order to remove the unnecessary delimiters.

The outputs of Algorithm 1 are the new form of both 𝑎𝑣 and 𝑎𝑣 denoted by 𝑎𝑣 and 𝑎𝑣 , respectively, which then become the input to the matching func-
tions. A matching function will return a set of tuples of the form 〈𝑎𝑣 , 𝑎𝑣 , 𝑅𝑒𝑠𝑢𝑙𝑡〉
where 𝑎𝑣 (𝑎𝑣) is the term of a request (policy, respectively) in its initial form and 𝑅𝑒𝑠𝑢𝑙𝑡 returns 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 if 𝑎𝑣 matched with 𝑎𝑣 , while returning 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 otherwise. We have devised eight matching functions, each cater a different
form of a term, namely: String Equal, Synonym Equal, Hyponym, Syntactical Synonym Equal,
Syntactical Hyponym, Syntactical Equal, Hyponym Common Word, and Abbreviation Equal. For
String Equal, Synonym Equal, Hyponym, and Hyponym Common Word, the similarity score is
equal to 1 when the matching functions return a match value and is equal to 0 otherwise.
The following sections present how the proposed matching functions work on the string
value.

4.1. String Equal

Algorithm 1: Preprocessing Steps Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: A new term of the 𝑅𝑒𝑞, 𝑎𝑣 ; A new term of the 𝑃𝑜𝑙, 𝑎𝑣
For 𝑎𝑣 in 𝑅𝑒𝑞
If 𝑎𝑣 contains delimiters
 Then, tokenize 𝑎𝑣 into 𝑠 fragments and store the 𝑠 fragments into
 𝑎𝑟𝑟𝑎𝑦
 Perform space concatenation on the tokens of 𝑎𝑟𝑟𝑎𝑦 and store it into 𝑡𝑒𝑟𝑚
 If 𝑡𝑒𝑟𝑚 ∈ 𝑤𝑜𝑟𝑑 in WordNet
 Then, 𝑎𝑣 = 𝑡𝑒𝑟𝑚
 ElseIf 𝑡𝑒𝑟𝑚 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet
 Perform abuttal concatenation on the tokens of 𝑎𝑟𝑟𝑎𝑦 and store it into 𝑎𝑣
 ElseIf 𝑎𝑣 does not contain delimiters
 Then, 𝑎𝑣 = 𝑎𝑣
For 𝑎𝑣 in 𝑃𝑜𝑙
 If 𝑎𝑣 contains delimiters
 Then, tokenize 𝑎𝑣 into 𝑡 fragments and store the 𝑡 fragments into 𝑎𝑟𝑟𝑎𝑦
 Perform space concatenation on the tokens of 𝑎𝑟𝑟𝑎𝑦 and store
 it into 𝑡𝑒𝑟𝑚
 If 𝑡𝑒𝑟𝑚 ∈ 𝑤𝑜𝑟𝑑 in WordNet
 Then, 𝑎𝑣 = 𝑡𝑒𝑟𝑚
 ElseIf 𝑡𝑒𝑟𝑚 ∉ 𝑤𝑜𝑟𝑑 in WordNet
 Perform abuttal concatenation on the tokens of 𝑎𝑟𝑟𝑎𝑦 and store it into 𝑎𝑣
 ElseIf 𝑎𝑣

does not contain delimiters

 Then, 𝑎𝑣 = 𝑎𝑣

4.1. String Equal

This function aims to find the similarity between two terms by analyzing its length
and characters. avReqnew and avPolnew are considered matched if they are of the same length
and all the characters of the two terms are matched exactly. For example, avReqnew, Student
matches exactly with avPolnew, Student. Obviously, both of the two terms are string equal
match. Algorithm 2 presents the String Equal function algorithm.

Algorithm 2: String Equal Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 26

Algorithm 2: String Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 If (𝑎𝑣 == 𝑎𝑣)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.2. Synonym Equal
This function attempts to resolve the terminological variation between two non-

vague terms by analyzing the synonym relationship, based on WordNet. The proposed
function uses WordNet as a dictionary to identify the synonyms of 𝑎𝑣 . All syno-
nyms of 𝑎𝑣 are retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 .
If 𝑎𝑣 matches with one of the synonyms in the 𝑎𝑟𝑟𝑎𝑦 , then 𝑎𝑣 is
matched with 𝑎𝑣 . For example, 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 matches exactly with
one of the synonyms of 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑. Algorithm 3 presents the Synonym Equal
function algorithm.

Algorithm 3: Synonym Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in
WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and store them into 𝑎𝑟𝑟𝑎𝑦
 If (𝑎𝑣 ∈ 𝑎𝑟𝑟𝑎𝑦)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.3. Hyponym
This function aims to resolve the terminological variation between two non-vague

terms by analyzing the hyponym relationship, based on WordNet. The proposed function
uses WordNet as a dictionary to identify the hyponyms. All hyponyms of 𝑎𝑣 are
retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 . If 𝑎𝑣 matches
with one of the hyponyms in the 𝑎𝑟𝑟𝑎𝑦 , then 𝑎𝑣 is matched with 𝑎𝑣 . For example, 𝑎𝑣 ,

𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 matches exactly with one of the hypo-

nyms of 𝑎𝑣 , 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. Algorithm 4 presents the Hyponym function algorithm.

4.2. Synonym Equal

This function attempts to resolve the terminological variation between two non-vague
terms by analyzing the synonym relationship, based on WordNet. The proposed function
uses WordNet as a dictionary to identify the synonyms of avPolnew. All synonyms of
avPolnew are retrieved from WordNet and stored into an array, arrayPolnewsyn. If avReqnew
matches with one of the synonyms in the arrayPolnewsyn, then avReqnew is matched with

Symmetry 2021, 13, 2394 12 of 26

avPolnew. For example, avReqnew, Undergraduate matches exactly with one of the synonyms
of avPolnew, Undergrad. Algorithm 3 presents the Synonym Equal function algorithm.

Algorithm 3: Synonym Equal Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 26

Algorithm 2: String Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 If (𝑎𝑣 == 𝑎𝑣)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.2. Synonym Equal
This function attempts to resolve the terminological variation between two non-

vague terms by analyzing the synonym relationship, based on WordNet. The proposed
function uses WordNet as a dictionary to identify the synonyms of 𝑎𝑣 . All syno-
nyms of 𝑎𝑣 are retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 .
If 𝑎𝑣 matches with one of the synonyms in the 𝑎𝑟𝑟𝑎𝑦 , then 𝑎𝑣 is
matched with 𝑎𝑣 . For example, 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 matches exactly with
one of the synonyms of 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑. Algorithm 3 presents the Synonym Equal
function algorithm.

Algorithm 3: Synonym Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in
WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and store them into 𝑎𝑟𝑟𝑎𝑦
 If (𝑎𝑣 ∈ 𝑎𝑟𝑟𝑎𝑦)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.3. Hyponym
This function aims to resolve the terminological variation between two non-vague

terms by analyzing the hyponym relationship, based on WordNet. The proposed function
uses WordNet as a dictionary to identify the hyponyms. All hyponyms of 𝑎𝑣 are
retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 . If 𝑎𝑣 matches
with one of the hyponyms in the 𝑎𝑟𝑟𝑎𝑦 , then 𝑎𝑣 is matched with 𝑎𝑣 . For example, 𝑎𝑣 ,

𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒 matches exactly with one of the hypo-

nyms of 𝑎𝑣 , 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. Algorithm 4 presents the Hyponym function algorithm.

4.3. Hyponym

This function aims to resolve the terminological variation between two non-vague
terms by analyzing the hyponym relationship, based on WordNet. The proposed function
uses WordNet as a dictionary to identify the hyponyms. All hyponyms of avPolnew are
retrieved from WordNet and stored into an array, arrayPolnewhyp. If avReqnew matches with
one of the hyponyms in the arrayPolnewhyp, then avReqnew is matched with avPolnew. For
example, avReqnew, Undergraduate matches exactly with one of the hyponyms of avPolnew,
Student. Algorithm 4 presents the Hyponym function algorithm.

Algorithm 4: Hyponym Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 13 of 26

Algorithm 4: Hyponym Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and store them into 𝑎𝑟𝑟𝑎𝑦
 If (𝑎𝑣 ∈ 𝑎𝑟𝑟𝑎𝑦)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and store them

into ∈ 𝑎𝑟𝑟𝑎𝑦

 If (𝑎𝑣 ∈ 𝑎𝑟𝑟𝑎𝑦)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.4. Syntactical Synonym Equal
This function attempts to resolve the syntactic and terminological variations between

a vague term and a non-vague term by analyzing the synonym relationship. All synonyms
of a non-vague term are retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 .
The N-gram similarity measure is applied to calculate the similarity score, 𝑆𝐶, between
the vague term and each synonym of the non-vague term. If 𝑆𝐶 exceeds the similarity
threshold, 𝜏, then both terms are considered matched. The values of 𝑆𝐶 and 𝜏 are be-
tween 0 and 1. For example, consider a vague term of 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡
and a vague term of 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑. If N-gram with trigram (3) is applied on the
strings 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡 and 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 , the 𝑆𝐶 between both strings is 0.38
and it is only considered matched if 𝜏 is set less than or equal to 0.38. Therefore, all syn-
onyms of 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 are retrieved and stored into an array, 𝑎𝑟𝑟𝑎𝑦 , {𝑢𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒} . N-gram with trigram (3) is applied on the string 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡 and each synonym of 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑 . The 𝑆𝐶 between 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡 and one of the synonyms of 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑, i.e., 𝑢𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝑢𝑎𝑡𝑒,
is found to be 0.53 and it is greater than the default value of 𝜏 which is 0.5. Thus, 𝑎𝑣 is matched with 𝑎𝑣 . Algorithm 5 presents the Syntactical Synonym Equal
function algorithm.

4.5. Syntactical Hyponym
This function aims to resolve the syntactic and terminological variations between a

vague term and a non-vague term by analyzing the hyponym relationship. All hyponyms
of the non-vague term are retrieved from WordNet and stored into an array, 𝑎𝑟𝑟𝑎𝑦 . The N-gram similarity measure is applied to calculate the similarity score, 𝑆𝐶, between the vague term and each hyponym of the non-vague term. If 𝑆𝐶 exceeds the
similarity threshold, 𝜏, both terms are considered matched. The values of 𝑆𝐶 and 𝜏 are
between 0 and 1. For example, consider a vague term of 𝑎𝑣 ,

𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑃𝑟𝑜𝑓 and a

vague term of 𝑎𝑣 , 𝐹𝑎𝑐𝑢𝑙𝑡𝑦 𝑀𝑒𝑚𝑏𝑒𝑟. Hyponym relation is transitive [46]. All hypo-
nyms of 𝐹𝑎𝑐𝑢𝑙𝑡𝑦 𝑀𝑒𝑚𝑏𝑒𝑟 are retrieved and stored into an array, 𝑎𝑟𝑟𝑎𝑦 , {𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟, 𝑝𝑟𝑜𝑓, 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟}. N-gram with trigram (3) is applied on the string 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑃𝑟𝑜𝑓 and each hyponym of 𝐹𝑎𝑐𝑢𝑙𝑡𝑦 𝑀𝑒𝑚𝑏𝑒𝑟 . The 𝑆𝐶 between 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑃𝑟𝑜𝑓 and one of the hyponyms of 𝐹𝑎𝑐𝑢𝑙𝑡𝑦 𝑀𝑒𝑚𝑏𝑒𝑟, 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑝𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟, is
found to be 0.5 and it is equal to the 𝜏 value by default. Thus, 𝑎𝑣 is matched with 𝑎𝑣 . Algorithm 6 presents the Syntactical Hyponym function algorithm.

4.4. Syntactical Synonym Equal

This function attempts to resolve the syntactic and terminological variations between
a vague term and a non-vague term by analyzing the synonym relationship. All synonyms
of a non-vague term are retrieved from WordNet and stored into an array, arraysynter.
The N-gram similarity measure is applied to calculate the similarity score, SC, between
the vague term and each synonym of the non-vague term. If SC exceeds the similarity
threshold, τ, then both terms are considered matched. The values of SC and τ are between
0 and 1. For example, consider a vague term of avReqnew, UndergraduateStudent and a

Symmetry 2021, 13, 2394 13 of 26

vague term of avPolnew, Undergrad. If N-gram with trigram (3) is applied on the strings
UndergraduateStudent and Undergrad, the SC between both strings is 0.38 and it is only
considered matched if τ is set less than or equal to 0.38. Therefore, all synonyms of
Undergrad are retrieved and stored into an array, arraysynter, {undergraduate}. N-gram
with trigram (3) is applied on the string UndergraduateStudent and each synonym of
Undergrad. The SC between UndergraduateStudent and one of the synonyms of Undergrad,
i.e., undergraduate, is found to be 0.53 and it is greater than the default value of τ which is
0.5. Thus, avReqnew is matched with avPolnew. Algorithm 5 presents the Syntactical Synonym
Equal function algorithm.

4.5. Syntactical Hyponym

This function aims to resolve the syntactic and terminological variations between
a vague term and a non-vague term by analyzing the hyponym relationship. All hy-
ponyms of the non-vague term are retrieved from WordNet and stored into an array,
arraynewhypm. The N-gram similarity measure is applied to calculate the similarity score,
SC, between the vague term and each hyponym of the non-vague term. If SC exceeds
the similarity threshold, τ, both terms are considered matched. The values of SC and τ
are between 0 and 1. For example, consider a vague term of avReqnew, AssociatePro f
and a vague term of avPolnew, Faculty Member. Hyponym relation is transitive [46].
All hyponyms of Faculty Member are retrieved and stored into an array, arraynewhypm,
{pro f essor, pro f , associate pro f essor}. N-gram with trigram (3) is applied on the string
AssociatePro f and each hyponym of Faculty Member. The SC between AssociatePro f
and one of the hyponyms of Faculty Member, associate pro f essor, is found to be 0.5 and it
is equal to the τ value by default. Thus, avReqnew is matched with avPolnew. Algorithm 6
presents the Syntactical Hyponym function algorithm.

Algorithm 5: Syntactical Synonym Equal Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 26

Algorithm 5: Syntactical Synonym Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 ElseIf 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

Algorithm 6: Syntactical Hyponym Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 ElseIf 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and stored them into an array, 𝑎𝑟𝑟𝑎𝑦

 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

Symmetry 2021, 13, 2394 14 of 26

Algorithm 6: Syntactical Hyponym Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 26

Algorithm 5: Syntactical Synonym Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 ElseIf 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the synonyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

Algorithm 6: Syntactical Hyponym Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and stored them into 𝑎𝑟𝑟𝑎𝑦
 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 ElseIf 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∈ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 Retrieve the hyponyms of 𝑎𝑣 from WordNet and stored them into an array, 𝑎𝑟𝑟𝑎𝑦

 For each element of 𝑎𝑟𝑟𝑎𝑦
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and the element of 𝑎𝑟𝑟𝑎𝑦
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Break
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.6. Syntactical Equal

This function aims to resolve the syntactic variation between two vague terms. The
function N-gram is applied to calculate the similarity score, SC, between avReqnew and
avPolnew. If the SC between avReqnew and avPolnew exceeds the similarity threshold, τ, both
terms are considered matched. The values of SC and τ are between 0 and 1. For example,
consider the vague terms of avReqnew, UndergradClass and avPolnew, UndergradClassrc. N-
gram with trigram (3) is applied on the strings UndergradClass and UndergradClassrc.
The SC between both strings is 0.7 and it is greater than τ by default which is 0.5. Thus,
UndergradClass is matched with UndergradClassrc. Algorithm 7 presents the Syntactical
Equal function algorithm.

Algorithm 7: Syntactical Equal Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 26

4.6. Syntactical Equal
This function aims to resolve the syntactic variation between two vague terms. The

function N-gram is applied to calculate the similarity score, 𝑆𝐶, between 𝑎𝑣 and 𝑎𝑣 .

If the 𝑆𝐶 between 𝑎𝑣 and 𝑎𝑣 exceeds the similarity threshold, 𝜏, both terms are considered matched. The values of 𝑆𝐶 and 𝜏 are between 0 and 1. For

example, consider the vague terms of

𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠 and 𝑎𝑣 , 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠𝑟𝑐. N-gram with trigram (3) is applied on the strings 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠
and 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠𝑟𝑐. The 𝑆𝐶 between both strings is 0.7 and it is greater than 𝜏 by
default which is 0.5. Thus, 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠 is matched with 𝑈𝑛𝑑𝑒𝑟𝑔𝑟𝑎𝑑𝐶𝑙𝑎𝑠𝑠𝑟𝑐. Algo-
rithm 7 presents the Syntactical Equal function algorithm.

Algorithm 7: Syntactical Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet) && (𝑎𝑣 ∉ 𝑤𝑜𝑟𝑑𝑠 in WordNet)
 𝑆𝐶 = Apply N-gram between 𝑎𝑣 and 𝑎𝑣
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.7. Hyponym Common Word
This function attempts to resolve the terminological variation between two terms by

analyzing the hyponym relationship. This function checks whether a word appears at the
beginning or at the end of another word, which is in the form of a compound noun. The
common word between 𝑎𝑣

 and 𝑎𝑣 could imply the semantic measure be-

tween them. If there is a common substring, its position will provide the evidence for the
existence of a hyponymy [44]. Therefore, the same concept is applied to this function by
assuming there is a hyponym relationship between the two terms if both terms share a
common word. If 𝑎𝑣 is a common word of 𝑎𝑣 , then 𝑎𝑣

is more general

than 𝑎𝑣 . In other words, 𝑎𝑣 is more specific than 𝑎𝑣 .

The length of 𝑎𝑣

and 𝑎𝑣

should be greater than three before the function is performed to

avoid invalid hits returned by this function (e.g., 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐶𝑜𝑢𝑟𝑠𝑒 is not relevant for the
term 𝑇𝑒𝑎) [47]. If the length of a term is shorter than the other term, it is called short term,
otherwise it is called long term. Each token of the long term is stored into an array, 𝑎𝑟𝑟𝑎𝑦 . If the short term matches with one of the elements in the 𝑎𝑟𝑟𝑎𝑦 ,
then 𝑎𝑣 is matched with 𝑎𝑣 . For example, consider 𝑎𝑣 , 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 as a long term and 𝑎𝑣 , 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 as a short term. Each token of 𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 is stored into the 𝑎𝑟𝑟𝑎𝑦 , {𝐺𝑟𝑎𝑑𝑢𝑎𝑡𝑒, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡}. The 𝑎𝑣 , 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 is found to match with one of the elements of the 𝑎𝑟𝑟𝑎𝑦 , 𝑆𝑡𝑢𝑑𝑒𝑛𝑡. Thus, 𝑎𝑣 is matched with 𝑎𝑣 .

Algorithm 8 presents the Hyponym Common Word

function algorithm.

Symmetry 2021, 13, 2394 15 of 26

4.7. Hyponym Common Word

This function attempts to resolve the terminological variation between two terms
by analyzing the hyponym relationship. This function checks whether a word appears
at the beginning or at the end of another word, which is in the form of a compound
noun. The common word between avReqnew and avPolnew could imply the semantic measure
between them. If there is a common substring, its position will provide the evidence for
the existence of a hyponymy [44]. Therefore, the same concept is applied to this function
by assuming there is a hyponym relationship between the two terms if both terms share a
common word. If avPolnew is a common word of avReqnew, then avPolnew is more general than
avReqnew. In other words, avReqnew is more specific than avPolnew. The length of avReqnew and
avPolnew should be greater than three before the function is performed to avoid invalid hits
returned by this function (e.g., TeachingCourse is not relevant for the term Tea) [47]. If the
length of a term is shorter than the other term, it is called short term, otherwise it is called
long term. Each token of the long term is stored into an array, arraylongterm. If the short
term matches with one of the elements in the arraylongterm, then avReqnew is matched with
avPolnew. For example, consider avReqnew, Graduate Student as a long term and avPolnew,
Student as a short term. Each token of Graduate Student is stored into the arraylongterm,
{Graduate, Student}. The avPolnew, Student is found to match with one of the elements of
the arraylongterm, Student. Thus, avReqnew is matched with avPolnew. Algorithm 8 presents
the Hyponym Common Word function algorithm.

Algorithm 8: Hyponym Common Word Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 16 of 26

Algorithm 8: Hyponym Common Word Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 ! = 𝑎𝑣 && (𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ() > 3) && (𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ() > 3)
 If 𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 = 𝑎𝑣 , 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 = 𝑎𝑣
 Else
 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 = 𝑎𝑣 ,
 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 = 𝑎𝑣
Tokenize the 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 into 𝑢 fragments and store the 𝑢 fragments into an array, 𝑎𝑟𝑟𝑎𝑦
 If (𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 ∈ 𝑎𝑟𝑟𝑎𝑦)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

4.8. Abbreviation Equal
This function attempts to resolve the syntactic variation between two terms which

may arise due to the short forms. If the length of a term is shorter than the other term, it
is called short form, otherwise it is called long form. Every character in the short form
must match a character in the long form, and the matched characters in the long form
must be in the same order as the characters in the short form. An extraction process is
performed on the first letter of each token in the long form and further concatenated into
a new term, 𝑡𝑒𝑟𝑚 . N-gram is then applied to calculate the similarity score, 𝑆𝐶, be-
tween the term, 𝑡𝑒𝑟𝑚 , and the short form. If 𝑆𝐶 exceeds the similarity threshold, 𝜏,
then both terms are considered matched. The values of 𝑆𝐶 and 𝜏 are between 0 and 1.
For example, consider 𝑎𝑣 , 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 as a long form and 𝑎𝑣 , 𝑇𝐴 as
a short form. Each token of 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 is stored into an array, 𝑎𝑟𝑟𝑎𝑦 , {𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔, 𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡}. Then, the initial letter of each token of 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 is ex-
tracted and concatenated into a single new term, 𝑡𝑒𝑟𝑚 , 𝑇𝐴. The 𝑆𝐶 of 𝑡𝑒𝑟𝑚 , 𝑇𝐴 and the short form, 𝑇𝐴 is 1.0 and it is greater than 𝜏 by default, which is 0.5. Thus, 𝑇𝑒𝑎𝑐ℎ𝑖𝑛𝑔𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑡 is matched with 𝑇𝐴 . Algorithm 9 presents the Abbreviation Equal
function algorithm.

4.8. Abbreviation Equal

This function attempts to resolve the syntactic variation between two terms which
may arise due to the short forms. If the length of a term is shorter than the other term, it is
called short form, otherwise it is called long form. Every character in the short form must
match a character in the long form, and the matched characters in the long form must be
in the same order as the characters in the short form. An extraction process is performed
on the first letter of each token in the long form and further concatenated into a new term,
termEValue. N-gram is then applied to calculate the similarity score, SC, between the term,
termEValue, and the short form. If SC exceeds the similarity threshold, τ, then both terms are
considered matched. The values of SC and τ are between 0 and 1. For example, consider
avReqnew, TeachingAssistant as a long form and avPolnew, TA as a short form. Each token

Symmetry 2021, 13, 2394 16 of 26

of TeachingAssistant is stored into an array, arraylongterm, {Teaching, Assistant}. Then, the
initial letter of each token of TeachingAssistant is extracted and concatenated into a single
new term, termEValue, TA. The SC of termEValue, TA and the short form, TA is 1.0 and it
is greater than τ by default, which is 0.5. Thus, TeachingAssistant is matched with TA.
Algorithm 9 presents the Abbreviation Equal function algorithm.

Algorithm 9: Abbreviation Equal Function Algorithm

Symmetry 2021, 13, x FOR PEER REVIEW 17 of 26

Algorithm 9: Abbreviation Equal Function Algorithm
Input: A term of a 𝑅𝑒𝑞, 𝑎𝑣 ; A term of a 𝑃𝑜𝑙, 𝑎𝑣 ; Similarity threshold, 𝜏
Output: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑/𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

 If 𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ ≥ 𝑎𝑣 . 𝑙𝑒𝑛𝑔𝑡ℎ
 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 = 𝑎𝑣 ,
 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 = 𝑎𝑣
 Else
 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 = 𝑎𝑣 ,
 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 = 𝑎𝑣
 Tokenize the word of 𝑙𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 into 𝑢 fragments and store the 𝑢 fragments into an array, 𝑎𝑟𝑟𝑎𝑦
 Extract the initial letter of each token of 𝑎𝑟𝑟𝑎𝑦 and concatenate them into a new term, 𝑡𝑒𝑟𝑚
 𝑆𝐶 =Apply N-gram between 𝑡𝑒𝑟𝑚 and 𝑠ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚
 If (𝑆𝐶 ≥ 𝜏)
 Then, 𝑀𝑎𝑡𝑐ℎ𝑒𝑑
 Else
 𝑁𝑜𝑡 𝑀𝑎𝑡𝑐ℎ𝑒𝑑

5. Results and Discussion
Several experiments were conducted to measure the accuracy of the proposed match-

ing functions in resolving naming heterogeneity that occurs between the attribute values
of a request and a policy. These experiments aimed to show the strengths and weaknesses
of the proposed solution in resolving naming heterogeneity between a request and a pol-
icy with respect to the subject, resource, action, and condition.

The proposed matching functions were implemented in Java and XACML policy lan-
guage with Java 1.6.0 10. The match task was first conducted manually by three profes-
sional human experts who were either familiar with database management or English lin-
guistics. Sun’s XACML implementation [11] was chosen as the comparison since several
related works, such as [8–10,48], have selected Sun’s XACML implementation for their
results comparison, with the strong justification that Sun’s XACML implementation is an
open source. However, these works focused on the efficiency of their engine in processing
the requests, whereas this work focuses on the accuracy of resolving naming heterogene-
ity between a request and a policy.

In this work, six sets of XACML policies (http://sourceforge.net/projects/xacmlpdp/
(accessed on 29 March 2017)) were taken from [9] that have been designed for a university
and a conference management domain, namely: CodeA, CodeB, CodeC, CodeD, Continue-a,
and Continue-b. Continue-a and Continue-b are designed for a conference management
while CodeA, CodeB, CodeC, and CodeD are designed for a real-world web application sup-
porting the university domain. Another two sets of policies that have been analyzed were
taken from [49]. Those policies are based on the RBAC model and are designed for a uni-
versity (http:// www3.cs.stonybrook.edu/ stoller/ccs2007/university-policy.txt (accessed
on 29 March 2017)) and a health care (http:// www3.cs.stonybrook.edu/ stol-
ler/ccs2007/healthcare.txt (accessed on 29 March 2017)) institution. The RBAC policies are
presented in the syntax and structure of XACML with positive effects since negative au-
thorizations are not supported in the RBAC model [3]. These sets of policies were modi-
fied by adding additional condition context since initially these policies do not contain
condition context. This modification was necessary for the purpose of evaluating the ac-
curacy of the proposed matching functions. A request-generation technique [50] was used
to generate 10,000 requests at random since most of the real-world systems use less than
10,000 policies [16]. Eight sets of the modified XACML policy datasets mentioned above
were used as the source to generate the random requests. Since there is a distinct lack of

5. Results and Discussion

Several experiments were conducted to measure the accuracy of the proposed match-
ing functions in resolving naming heterogeneity that occurs between the attribute values
of a request and a policy. These experiments aimed to show the strengths and weaknesses
of the proposed solution in resolving naming heterogeneity between a request and a policy
with respect to the subject, resource, action, and condition.

The proposed matching functions were implemented in Java and XACML policy
language with Java 1.6.0 10. The match task was first conducted manually by three
professional human experts who were either familiar with database management or English
linguistics. Sun’s XACML implementation [11] was chosen as the comparison since several
related works, such as [8–10,48], have selected Sun’s XACML implementation for their
results comparison, with the strong justification that Sun’s XACML implementation is an
open source. However, these works focused on the efficiency of their engine in processing
the requests, whereas this work focuses on the accuracy of resolving naming heterogeneity
between a request and a policy.

In this work, six sets of XACML policies (http://sourceforge.net/projects/xacmlpdp/
(accessed on 29 March 2017)) were taken from [9] that have been designed for a university
and a conference management domain, namely: CodeA, CodeB, CodeC, CodeD, Continue-a,
and Continue-b. Continue-a and Continue-b are designed for a conference management
while CodeA, CodeB, CodeC, and CodeD are designed for a real-world web application
supporting the university domain. Another two sets of policies that have been analyzed
were taken from [49]. Those policies are based on the RBAC model and are designed
for a university (http://www3.cs.stonybrook.edu/stoller/ccs2007/university-policy.txt
(accessed on 29 March 2017)) and a health care (http://www3.cs.stonybrook.edu/stoller/
ccs2007/healthcare.txt (accessed on 29 March 2017)) institution. The RBAC policies are
presented in the syntax and structure of XACML with positive effects since negative autho-

http://sourceforge.net/projects/xacmlpdp/
http://www3.cs.stonybrook.edu/stoller/ccs2007/university-policy.txt
http://www3.cs.stonybrook.edu/stoller/ccs2007/healthcare.txt
http://www3.cs.stonybrook.edu/stoller/ccs2007/healthcare.txt

Symmetry 2021, 13, 2394 17 of 26

rizations are not supported in the RBAC model [3]. These sets of policies were modified by
adding additional condition context since initially these policies do not contain condition
context. This modification was necessary for the purpose of evaluating the accuracy of
the proposed matching functions. A request-generation technique [50] was used to gen-
erate 10,000 requests at random since most of the real-world systems use less than 10,000
policies [16]. Eight sets of the modified XACML policy datasets mentioned above were
used as the source to generate the random requests. Since there is a distinct lack of real
request datasets in a distributed environment, the domain ontologies related to university
(http://swat.cse.lehigh.edu/onto/univ-bench.owl (accessed on 29 March 2017)), confer-
ence management (http://data.semanticweb.org/ns/swc/swc2009-05-09.html (accessed
on 29 March 2017)), and health care institution (https://loinc.org/discussion-documents/
document-ontology/loinc-document-ontology-axisvalues?force_toc:int=1 (accessed on 29
March 2017)) domains were selected as the source to generate the random requests.

In order to measure the accuracy of the matching results in each experiment, Precision
(P), Recall (R), and F-Measure (F), originating from the information retrieval field, were
used [43]. Each experiment was conducted five times. The match results of P, R, and F in
matching the attribute values of a request and a policy by the proposed solution and the
Sun’s XACML implementation were compared to the real match results obtained by the
human experts. The results were analyzed at various values of similarity thresholds. The
match results of P, R, and F are presented in Tables 11–18.

Table 11. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the CodeA policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
ImplementationSimilarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 56.57 * 56.57 * 56.57 * 100 100 100 [−43.43, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 86.67 * 93.55 * 100 100 100 100 [−13.33, 0]

Recall (R)

Subject 52.22 42.22 42.22 42.22 42.22 5.56 [36.66, 46.66]
Resource 100 100 100 100 100 100 [0, 0]
Action 88.33 56.67 43.33 43.33 43.33 20.00 [23.33, 68.33]
Condition 33.12 19.05 18.47 18.47 18.47 1.27 [17.20, 31.85]

F-Measure (F)

Subject 68.61 59.38 59.38 59.38 59.38 10.53 [48.85, 58.08]
Resource 72.26 * 72.26 * 72.26 * 100 100 100 [−27.74, 0]
Action 93.81 72.34 60.47 60.47 60.47 33.33 [27.14, 60.48]
Condition 47.93 31.65 31.18 31.18 31.18 2.52 [28.66, 45.41]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Table 12. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the CodeB policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 53.94 * 53.94 * 53.94 * 100 100 100 [−46.06, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 97.53 * 100 100 100 100 100 [−2.47, 0]

http://swat.cse.lehigh.edu/onto/univ-bench.owl
http://data.semanticweb.org/ns/swc/swc2009-05-09.html
https://loinc.org/discussion-documents/document-ontology/loinc-document-ontology-axisvalues?force_toc:int=1
https://loinc.org/discussion-documents/document-ontology/loinc-document-ontology-axisvalues?force_toc:int=1

Symmetry 2021, 13, 2394 18 of 26

Table 12. Cont.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Recall (R)

Subject 53.92 45.10 45.10 45.10 45.10 12.70 [32.40, 41.22]
Resource 100 100 100 100 100 100 [0, 0]
Action 93.20 56.31 40.78 40.78 40.78 13.59 [27.19, 79.61]
Condition 31.98 25.51 25.51 25.51 25.51 5.26 [20.25, 26.72]

F-Measure (F)

Subject 70.06 62.16 62.16 62.16 62.16 22.61 [39.55, 47.45]
Resource 70.08 * 70.08 * 70.08 * 100 100 100 [−29.92, 0]
Action 96.48 72.05 57.93 57.93 57.93 23.93 [34.00, 72.55]
Condition 48.17 40.65 40.65 40.65 40.65 10.00 [30.65, 38.17]

* The proposed solution match results are worse than the Sun’s XACML implementation match result.

Table 13. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the CodeC policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 50.00 * 50.00 * 50.00 100 100 100 [−50.00, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 92.36 * 98.04 * 100 100 100 100 [−7.64, 0]

Recall (R)

Subject 53.92 45.10 45.10 45.10 45.10 12.75 [32.35, 41.17]
Resource 100 100 100 100 100 100 [0, 0]
Action 95.21 56.16 39.73 39.73 39.73 10.96 [28.77, 84.25]
Condition 60.92 46.01 42.02 42.02 42.02 11.34 [30.68, 49.58]

F-Measure (F)

Subject 70.06 62.16 62.16 62.16 62.16 22.61 [39.55, 47.45]
Resource 66.67 * 66.67 * 66.67 * 100 100 100 [−33.33, 0]
Action 97.54 71.93 56.86 56.86 56.86 19.75 [37.11, 77.79]
Condition 73.42 62.63 59.17 59.17 59.17 20.38 [38.79, 53.04]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Table 14. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the CodeD policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 53.94 * 53.94 * 53.94 * 100 100 100 [−46.06, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 93.17 * 98.36 * 100 100 100 100 [−6.83, 0]

Recall (R)

Subject 38.51 31.76 31.76 31.76 31.76 9.46 [22.30, 29.05]
Resource 100 100 100 100 100 100 [0, 0]
Action 91.41 56.44 41.72 41.72 41.72 15.95 [25.77, 75.46]
Condition 70.22 47.08 44.12 44.12 44.12 13.60 [30.52, 56.62]

Symmetry 2021, 13, 2394 19 of 26

Table 14. Cont.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

F-Measure (F)

Subject 55.61 48.21 48.21 48.21 48.21 17.28 [30.93, 38.33]
Resource 70.08 * 70.08 * 70.08 * 100 100 100 [−29.92, 0]
Action 95.51 72.16 58.87 58.87 58.87 27.51 [31.36, 68.00]
Condition 80.08 63.68 61.22 61.22 61.22 23.95 [37.27, 56.13]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Table 15. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the UniversityStoller policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 65.70 * 91.67 * 100 100 100 100 [−34.30, 0]
Action 61.07 * 100 100 100 100 100 [−38.93, 0]
Condition 89.69 * 92.85 * 98.98 * 100 100 100 [−10.31, 0]

Recall (R)

Subject 50.52 35.01 34.98 34.98 34.98 17.01 [17.97, 33.51]
Resource 43.86 36.11 33.25 33.25 33.25 31.33 [1.92, 12.53]
Action 61.66 59.45 59.45 59.45 59.45 40.55 [18.90, 21.11]
Condition 47.98 39.04 38.02 37.04 37.04 9.13 [27.91, 38.85]

F-Measure (F)

Subject 67.12 51.86 51.83 51.83 51.83 29.07 [22.76, 38.05]
Resource 52.60 51.81 49.91 49.91 49.91 47.71 [2.20, 4.89]
Action 61.36 74.57 74.57 74.57 74.57 57.70 [3.66, 16.87]
Condition 62.52 54.97 54.93 54.06 54.06 16.73 [37.33, 45.79]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Table 16. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the Continue-a policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 13.33 * 62.07 * 82.35 * 100 100 100 [−86.67, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

Recall
(R)

Subject 66.12 66.12 66.12 66.12 66.12 50.00 [16.12, 16.12]
Resource 100 100 77.78 77.78 77.78 47.22 [30.56, 52.78]
Action 74.07 74.07 74.07 74.07 74.07 74.07 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

F-Measure (F)

Subject 79.60 79.60 79.60 79.60 79.60 99.00 [19.40, 19.40]
Resource 23.53 76.60 80.00 97.15 97.15 64.15 [−40.62, 33.00]
Action 85.10 85.10 85.10 85.10 85.10 85.10 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Symmetry 2021, 13, 2394 20 of 26

Table 17. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the Continue-b policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 13.33 * 62.07 * 82.35 * 100 100 100 [−86.67, 0]
Action 100 100 100 100 100 100 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

Recall
(R)

Subject 66.12 66.12 66.12 66.12 66.12 50.00 [16.12, 16.12]
Resource 100 100 77.78 77.78 77.78 47.22 [30.56, 52.78]
Action 74.07 74.07 74.07 74.07 74.07 74.07 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

F-Measure (F)

Subject 79.60 79.60 79.60 79.60 79.60 99.00 [19.40, 19.40]
Resource 23.53 76.60 80.00 97.15 97.15 64.15 [−40.62, 33.00]
Action 85.10 85.10 85.10 85.10 85.10 85.10 [0, 0]
Condition 100 100 100 100 100 100 [0, 0]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

Table 18. Precision (P), Recall (R), and F-measure (F) of the proposed solution with different similarity thresholds and the
Sun’s XACML implementation for the HealthCare policy.

Evaluation
Metric Attributes

Percentage (%)
Improvement
[Lowest,
Highest]

Proposed Solution
Sun’s XACML
Implementation

Similarity Threshold (τ)

0.2 0.4 0.6 0.8 1.0

Precision (P)

Subject 100 100 100 100 100 100 [0, 0]
Resource 68.20 * 69.53 * 100 100 100 100 [−31.80, 0]
Action 60.71 * 100 100 100 100 100 [−39.29, 0]
Condition 81.04 * 97.35 * 100 100 100 100 [−18.96, 0]

Recall (R)

Subject 88.37 86.82 82.95 82.95 82.95 45.51 [37.44, 42.86]
Resource 26.56 17.25 15.45 15.45 15.45 13.76 [1.69, 12.80]
Action 80.68 80.68 80.68 80.68 80.68 80.68 [0, 0]
Condition 45.13 42.69 42.69 42.69 42.69 23.20 [19.49, 21.93]

F-Measure (F)

Subject 93.83 92.95 90.68 90.68 90.68 63.49 [27.19, 30.34]
Resource 38.44 27.53 26.76 26.76 26.76 24.19 [2.57, 14.25]
Action 69.28 * 89.31 89.31 89.31 89.31 89.31 [−20.03, 0]
Condition 57.97 59.35 59.84 59.84 59.84 37.66 [20.31, 22.18]

* The proposed solution match results are worse than the Sun’s XACML implementation match results.

The Improvement column in these tables presents the range of improvement achieved by
the proposed solution as compared with the Sun’s XACML implementation with regard to
P, R, and F. The range of improvement is presented by [Lowest, Highest], where Lowest = the
lowest value of P (R or F) achieved by the proposed solution minus the value of P (R or F)
achieved by the Sun’s XACML implementation and Highest = the highest value of P (R or
F) achieved by the proposed solution minus the value of P (R or F) achieved by the Sun’s
XACML implementation.

As shown in these tables, the Sun’s XACML implementation is able to attain perfect P
in terms of matching the attribute values of subject, resource, action, and condition of a
request and a policy. This indicates that the Sun’s XACML implementation never retrieved

Symmetry 2021, 13, 2394 21 of 26

a false positive, thus, zero false positive was produced, and all the match results returned
by the Sun’s XACML implementation were true positives, which are the same results as
those produced by the human experts. Nevertheless, the Sun’s XACML implementation,
which adopted the simple string equal matching function, will only return 0 if the strings
are different and 1 if they are exactly the same; thus, it does not take into consideration
the naming heterogeneity issues. Therefore, the number of false negatives of the Sun’s
XACML implementation is higher than the proposed solution. As a consequence, the R
achieved by the Sun’s XACML implementation is lower compared to the R achieved by
the proposed solution because most of the match results between the attribute values of
subject, resource, action, and condition of a request and a policy were not returned by the
Sun’s XACML implementation.

It is observed that in the proposed solution, the result of P increased, and the result of
R decreased, when the similarity threshold is set to a higher value. The proposed solution
returned the same results of P, R, and F for different similarity thresholds for Continue-a and
Continue-b policies, since both policies used the same attribute values. The only difference
between Continue-a and Continue-b is the number of policies. It was also observed that
there are two cases which have caused the proposed solution unable to achieve perfect
precision in matching the attribute values of a request and a policy.

• The proposed solution could not produce accurate match results when there are simi-
larities in terms of characters presented in the terms being matched while these terms
are actually not matched. For example, the terms ExternalGrades and InternalGrades
that appeared in the Continue-a policy are considered matched in the proposed solu-
tion. The application of N-gram with trigram (3) on the strings ExternalGrades and
InternalGrades gained a similarity score of 0.6, which satisfied the similarity thresh-
old when it was set to at least 0.6. However, ExternalGrades and InternalGrades are
considered not matched by the human experts. Referring to Tables 16 and 17, the
proposed solution achieved a low value of P in matching the resource attribute of a re-
quest and a policy when the similarity threshold is 0.2. This is because the terms in the
resource attribute of Continue-a and Continue-b policies have some similarities in terms
of characters presented, thus making N-gram produce a higher similarity score than
the similarity threshold 0.2 but lower than 0.4. In another example, Paper− review−
content_rc and Paper− review− in f o− submissionStatus_rc are considered matched
by the proposed solution since the similarity score of these terms is 0.27, which is
higher than the similarity threshold 0.2. However, Paper− review− content_rc and
Paper− review− in f o− submissionStatus_rc are considered not matched by the hu-
man experts. Thus, the proposed solution produced a false positive in this case.

• The proposed solution failed to match the terms that contain semantic relationship but
do not have similarities in terms of characters presented. However, these terms are in
fact matched. For example, Research Assistant in a request and Faculty Member in a
policy. In this case, the proposed solution returned false match. Based on the human
experts, Research Assistant is a hyponym of Faculty Member.

From the experiments, it is obvious that the higher the similarity threshold, the higher
the percentage of P in matching the attribute values of a request and a policy. Furthermore,
the proposed solution achieved higher percentages of R and F compared with the Sun’s
XACML implementation. This is due to the fact that N-gram and WordNet are utilized in
the proposed matching functions.

For most of the datasets, the proposed solution obtained negative improvement based
on Lowest calculation with respect to P in matching the resource, action, and condition
attribute of a request and a policy. This is because the Sun’s XACML implementation
supports simple string equal matching function and thus produced zero false positive,
while the number of false positives produced by the proposed solution exceeds the number
of true positives. The proposed solution achieved the highest negative improvement in
Continue-a and Continue-b datasets. This is because among the datasets, Continue-a and
Continue-b datasets contained the largest number of attribute values which have similarities

Symmetry 2021, 13, 2394 22 of 26

in terms of characters but are actually not matched; thereby, the number of false positives
that is produced by the proposed solution is the highest in the Continue-a and Continue-
b datasets. Considering naming heterogeneity, the proposed solution resulted in lower
improvement value in P but higher improvement value in R and F compared with the
Sun’s XACML implementation. The reason is that the Sun’s XACML implementation is
restrictive to simple string equal matching, which does not consider functions that can
resolve naming heterogeneity in matching the attribute value of a request and a policy.

In addition, the proposed solution resulted in no improvement based on the Highest
calculation with respect to P for all sets of policies. This is because the proposed solution
achieved 100% of P in matching the attribute values of a request and a policy when the
similarity threshold is set to a higher value. The Sun’s XACML implementation also
achieved 100% of P for all sets of policies since the Sun’s XACML implementation never
gained false positives. However, since the proposed solution is able to resolve naming
heterogeneity, the number of false negatives of the proposed solution is lower than the Sun’s
XACML implementation. Thus, the R and F obtained by the proposed solution for most of
the policies are higher than the R and F obtained by the Sun’s XACML implementation.
Therefore, we can conclude that the proposed solution is better compared with the Sun’s
XACML implementation.

Figures 2 and 3 present the improvement based on the Lowest calculation and Highest
calculation, respectively, in retrieving the application policies achieved by the proposed
solution, as compared with the Sun’s XACML implementation. Based on Figure 2, we
observed that there was no improvement made in terms of P by the proposed solution
and, for most of the datasets, the proposed solution obtained negative improvement. The
Sun’s XACML implementation never retrieved false positives in retrieving the applicable
policies since the Sun’s XACML implementation supported simple string equal matching
function that does not consider naming heterogeneity; all the matches returned by the
Sun’s XACML implementation in matching the attribute values of the requests and the
policies are true positives, which are the same matched results as those produced by the
human experts.

Symmetry 2021, 13, x FOR PEER REVIEW 23 of 26

implementation. Therefore, we can conclude that the proposed solution is better com-
pared with the Sun’s XACML implementation.

Figures 2 and 3 present the improvement based on the Lowest calculation and Highest
calculation, respectively, in retrieving the application policies achieved by the proposed
solution, as compared with the Sun’s XACML implementation. Based on Figure 2, we ob-
served that there was no improvement made in terms of P by the proposed solution and,
for most of the datasets, the proposed solution obtained negative improvement. The Sun’s
XACML implementation never retrieved false positives in retrieving the applicable poli-
cies since the Sun’s XACML implementation supported simple string equal matching
function that does not consider naming heterogeneity; all the matches returned by the
Sun’s XACML implementation in matching the attribute values of the requests and the
policies are true positives, which are the same matched results as those produced by the
human experts.

Figure 2. The improvement based on the lowest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

Figure 3. The improvement based on the highest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

However, the number of false negatives of the Sun’s XACML implementation in re-
trieving the applicable policies is higher than the proposed solution. The reason is that the
proposed solution is able to resolve the naming heterogeneity; thus, the proposed solution
could reduce the number of false negatives in retrieving the applicable policies. This
caused the R and F achieved by the proposed solution higher than the R and F achieved

Figure 2. The improvement based on the lowest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

However, the number of false negatives of the Sun’s XACML implementation in
retrieving the applicable policies is higher than the proposed solution. The reason is that
the proposed solution is able to resolve the naming heterogeneity; thus, the proposed
solution could reduce the number of false negatives in retrieving the applicable policies.
This caused the R and F achieved by the proposed solution higher than the R and F achieved

Symmetry 2021, 13, 2394 23 of 26

by the Sun’s XACML implementation. Thus, the proposed solution still outperforms the
Sun’s XACML implementation in terms of R and F for all sets of policies.

Symmetry 2021, 13, x FOR PEER REVIEW 23 of 26

implementation. Therefore, we can conclude that the proposed solution is better com-
pared with the Sun’s XACML implementation.

Figures 2 and 3 present the improvement based on the Lowest calculation and Highest
calculation, respectively, in retrieving the application policies achieved by the proposed
solution, as compared with the Sun’s XACML implementation. Based on Figure 2, we ob-
served that there was no improvement made in terms of P by the proposed solution and,
for most of the datasets, the proposed solution obtained negative improvement. The Sun’s
XACML implementation never retrieved false positives in retrieving the applicable poli-
cies since the Sun’s XACML implementation supported simple string equal matching
function that does not consider naming heterogeneity; all the matches returned by the
Sun’s XACML implementation in matching the attribute values of the requests and the
policies are true positives, which are the same matched results as those produced by the
human experts.

Figure 2. The improvement based on the lowest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

Figure 3. The improvement based on the highest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

However, the number of false negatives of the Sun’s XACML implementation in re-
trieving the applicable policies is higher than the proposed solution. The reason is that the
proposed solution is able to resolve the naming heterogeneity; thus, the proposed solution
could reduce the number of false negatives in retrieving the applicable policies. This
caused the R and F achieved by the proposed solution higher than the R and F achieved

Figure 3. The improvement based on the highest calculation in retrieving the applicable policies
achieved by the proposed solution as compared with the Sun’s XACML implementation.

Based on Figure 3, we observed that the proposed solution obtained no improvement
in terms of P for all sets of policies. This is because the proposed solution with similarity
threshold set to a higher value and the Sun’s XACML implementation, both achieved 100%
of P in retrieving the applicable policies. However, since the proposed solution is able to
resolve the naming heterogeneity, the number of false negatives of the proposed solution
in retrieving the applicable policies is lower than the Sun’s XACML implementation. This
made the R and F obtained by the proposed solution higher than the R and F obtained by
the Sun’s XACML implementation. Therefore, the proposed solution still performs better
than the Sun’s XACML implementation in terms of R and F for all sets of policies.

6. Conclusions

This research addresses the significant need in resolving naming heterogeneity for
XACML policy evaluation. The proposed matching functions are proven to be capable
of resolving naming heterogeneity between the attribute values of a request and a policy
during policy evaluation by considering both the syntactic and terminological variations.
The proposed solution achieved higher percentage of P and F when the similarity threshold
is set to a higher value. Besides, it also achieved higher percentage of R compared with
the Sun’s XACML implementation. Various experiments have been accomplished, and
the results confirmed that our proposed solution has significantly outperformed the Sun’s
XACML implementation for the six sets of XACML policies that have been considered in
the work. Most importantly, the results show that the improvement made by our solution in
terms of Recall and F-measure, compared with the Sun’s XACML implementation, reached
up to 70% and 57%, respectively.

The proposed solution can be further enhanced by considering other factors which
could affect the authorization decisions, such as obligations, in which some actions should
be launched once certain conditions are satisfied. Besides, the issue of providing a secure
mapping of XACML policies and rules for relations with encrypted data using symmetric
keys needs to be investigated. A design XML encryption algorithm, which uses symmetrical
or asymmetrical keys to achieve the element level encryption before identifying policies
and user rules for the encrypted XML elements, is required. Last but not least, further
enhancement to the proposed solution in this area can be carried out by investigating the

Symmetry 2021, 13, 2394 24 of 26

spatial context of a request and a policy which is organized based on the logical data model
to be used by the geographic information system (GIS).

Author Contributions: Conceptualization, T.P.K., H.I., F.S. and N.I.U.; methodology, T.P.K. and H.I.;
validation, T.P.K., H.I. and A.A.A.; formal analysis, T.P.K., H.I., F.S. and N.I.U.; investigation, T.P.K.,
H.I., F.S., N.I.U. and A.A.A.; resources, T.P.K. and H.I.; writing—original draft preparation, T.P.K.
and H.I.; writing—review and editing, H.I., F.S., N.I.U. and A.A.A.; visualization, T.P.K. and H.I.;
supervision, H.I., F.S., N.I.U. and A.A.A.; project administration, H.I.; funding acquisition, H.I. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Universiti Putra Malaysia under the Journal Publishing
Initiative Year 2020 scheme (9053006).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Universiti Putra Malaysia for funding this
research work. All opinions, findings, conclusions and recommendations in this paper are those of
the authors and do not necessarily reflect the views of the funding agencies. We thank the anonymous
reviewers for their comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tejada, S.; Knoblock, C.A.; Minton, S. Learning object identification rules for information integration. Inf. Syst. 2001, 26, 607–633.

[CrossRef]
2. Thilakanathan, D.; Chen, S.; Nepal, S.; Calvo, R. SafeProtect: Controlled Data Sharing With User-Defined Policies in Cloud-Based

Collaborative Environment. IEEE Trans. Emerg. Top. Comput. 2015, 4, 301–315. [CrossRef]
3. Toosi, A.N.; Calheiros, R.N.; Buyya, R. Interconnected Cloud Computing Environments: Challenges, Taxonomy, and Survey. J.

ACM Comput. Surv. 2014, 7, 1–47. [CrossRef]
4. Trivellato, D.; Zannone, N.; Glaundrup, M.; Skowronek, J.; Etalle, S. A Semantic Security Framework for Systems of Systems. Int.

J. Coop. Inf. Syst. 2013, 22, 1–35. [CrossRef]
5. Trivellato, D.; Spiessens, F.; Zannone, N.; Etalle, S. POLIPO: Policies & Ontologies for Interoperability, Portability, and Autonomy.

In Proceedings of the 10th IEEE International Conference on Policies for Distributed Systems and Networks (POLICY), London,
UK, 20–22 July 2009; pp. 110–113.

6. Castano, S.; Ferrara, A.; Montanelli, S.; Racca, G. Semantic Information Interoperability in Open Networked Systems. In
Proceedings of the International Conference on Semantics of a Networked World (LCSNW), Paris, France, 17–19 June 2004;
pp. 215–230.

7. Drozdowicz, M.; Ganzha, M.; Paprzycki, M. Semantically Enriched Data Access Policies in eHealth. J. Med. Syst. 2016, 40, 238.
[CrossRef]

8. Ammar, N.; Malik, Z.; Bertino, E.; Rezgui, A. XACML Policy Evaluation with Dynamic Context Handling. J. IEEE Trans. Knowl.
Data Eng. 2015, 27, 2575–2588. [CrossRef]

9. Liu, A.X.; Chen, F.; Hwang, J.; Xie, T. Designing Fast and Scalable XACML Policy Evaluation Engines. IEEE Trans. Comput. 2010,
60, 1802–1817. [CrossRef]

10. Ngo, C.; Demchenko, Y.; de Laat, C. Decision Diagrams for XACML Policy Evaluation and Management. J. Comput. Secur. 2015,
49, 1–16. [CrossRef]

11. Proctor, S. Sun’s XACML Implementation. 2004. Available online: http://sunxacml.sourceforge.net (accessed on 29 March 2017).
12. Ciuciu, I.; Zhao, G.; Chadwick, D.W.; Reul, Q.; Meersman, R.; Vasquez, C.; Hibbert, M.; Winfield, S.; Kirkham, T. Ontology based

Interoperation for Securely Shared Services: Security Concept Matching for Authorization Policy Interoperability. In Proceedings
of the 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 7–10 February 2011;
pp. 1–5.

13. Ferrini, R.; Bertino, E. Supporting RBAC with XACML+OWL. In Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies (SACMAT), Stresa, Italy, 3–5 June 2009; pp. 145–154.

14. Hu, L.; Ying, S.; Jia, X.; Zhao, K. Towards an Approach of Semantic Access Control for Cloud Computing. In Proceedings of the
1st IEEE International Conference on Cloud Computing, Beijing, China, 1–4 December 2009; pp. 145–156.

15. Husain, M.F.; Al-Khateeb, T.; Alam, M.; Khan, L. Ontology based policy interoperability in geo-spatial domain. Comput. Stand.
Interfaces 2011, 33, 214–219. [CrossRef]

http://doi.org/10.1016/S0306-4379(01)00042-4
http://doi.org/10.1109/TETC.2015.2502429
http://doi.org/10.1145/2593512
http://doi.org/10.1142/S0218843013500044
http://doi.org/10.1007/s10916-016-0581-7
http://doi.org/10.1109/TKDE.2015.2415473
http://doi.org/10.1109/TC.2010.274
http://doi.org/10.1016/j.cose.2014.11.003
http://sunxacml.sourceforge.net
http://doi.org/10.1016/j.csi.2010.03.011

Symmetry 2021, 13, 2394 25 of 26

16. Mohan, A.; Blough, D.M.; Kurc, T.; Post, A.; Saltz, J. Detection of Conflicts and Inconsistencies in Taxonomy based Authorization
Policies. In Proceedings of the 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Atlanta, GA, USA,
12–15 November 2011; pp. 590–594.

17. Priebe, T.; Dobmeier, W.; Schläger, C.; Kamprath, N. Supporting Attribute based Access Control in Authorization and Authentica-
tion Infrastructures with Ontologies. J. Softw. 2007, 2, 27–38. [CrossRef]

18. Takabi, H. A Semantic based Policy Management Framework for Cloud Computing Environments. Ph.D. Thesis, University of
Pittsburgh, Pittsburgh, PA, USA, 12 July 2013.

19. Zhao, H. Security Policy Definition and Enforcement in Distributed Systems. Ph.D. Thesis, Columbia University, New York, NY,
USA, 12 September 2012.

20. Dia, O.A.; Farkas, C. A Practical Framework for Policy Composition and Conflict Resolution. Int. J. Secur. Softw. Eng. 2012, 3,
1–26. [CrossRef]

21. Duan, L.; Zhang, Y.; Chen, S.; Zhao, S.; Wang, S.; Liu, D.; Liu, R.P.; Cheng, B.; Chen, J. Automated Policy Combination for Secure
Data Sharing in Cross-Organizational Collaborations. IEEE Access 2016, 4, 3454–3468. [CrossRef]

22. Haguouche, S.; Jarir, Z. Generic Access Control Model and Semantic Mapping Between Heterogeneous Policies. Int. J. Technol.
Diffus. 2018, 9, 52–65. [CrossRef]

23. Ioannidis, S. Security Policy Consistency and Distributed Evaluation in Heterogeneous Environments. Ph.D. Thesis, University
of Pennsylvania, Philadelphia, PA, USA, 2005.

24. Mazzoleni, P.; Crispo, B.; Sivasubramanian, S.; Bertino, E. XACML Policy Integration Algorithms. ACM Trans. Inf. Syst. Secur.
2008, 11, 1–29. [CrossRef]

25. Rao, P.; Lin, D.; Bertino, E.; Li, N.; Lobo, J. Fine-grained integration of access control policies. Comput. Secur. 2011, 30, 91–107.
[CrossRef]

26. Shafiq, B.; Joshi, J.B.D.; Bertino, E.; Ghafoor, A. Secure interoperation in a multidomain environment employing RBAC policies.
IEEE Trans. Knowl. Data Eng. 2005, 17, 1557–1577. [CrossRef]

27. Ferrini, R. EXAMS: An Analysis Tool for Multidomain Policy Sets. Ph.D. Thesis, University of Bologna, Bologna, Italy, 20 March
2009.

28. Kalam, A.A.E.; Deswarte, Y.; Baina, A.; Kaaniche, M. Access Control for Collaborative Systems: A Web Services based Approach.
In Proceedings of the IEEE International Conference on Web Services (ICWS), Salt Lake City, UT, USA, 9–13 July 2007; pp. 1064–
1071.

29. Lin, D.; Rao, P.; Ferrini, R.; Bertino, E.; Lobo, J. A Similarity Measure for Comparing XACML Policies. IEEE Trans. Knowl. Data
Eng. 2012, 25, 1946–1959. [CrossRef]

30. Lin, D.; Rao, P.; Bertino, E.; Lobo, J. An Approach to Evaluate Policy Similarity. In Proceedings of the 12th ACM symposium on
Access Control Models and Technologies (SACMAT), Sophia Antipolis, France, 20–22 June 2007; pp. 1–10.

31. Ahmadi, S.; Nassiri, M.; Rezvani, M. XACBench: A XACML policy benchmark. Soft Comput. 2020, 24, 16081–16096. [CrossRef]
32. Deng, F.; Zhang, L.; Zhang, C.; Ban, H.; Wan, C.; Shi, M.; Chen, C.; Zhang, E. Establishment of rule dictionary for efficient XACML

policy management. Knowl. Based Syst. 2019, 175, 26–35. [CrossRef]
33. Deng, F.; Wang, S.; Zhang, L.; Wei, X.; Yu, J. Establishment of attribute bitmaps for efficient XACML policy evaluation. Knowl.

Based Syst. 2018, 143, 93–101. [CrossRef]
34. Dıaz-Lopez, D.; Dolera-Tormo, G.; Gomez-Marmol, F.; Martınez-Perez, G. Managing XACML Systems in Distributed Environ-

ments through Meta-Policies. Comput. Secur. 2015, 48, 92–115. [CrossRef]
35. Li, Y.; Deng, F. A Graph and Clustering-Based Framework for Efficient XACML Policy Evaluation. Int. J. Coop. Inf. Syst. 2020, 29,

1–17. [CrossRef]
36. Marfia, F.; Neri, M.A.; Pellegrini, F.; Colombetti, M. Using OWL Reasoning for Evaluating XACML Policies. In Proceedings of the

International Conference on E-Business and Telecommunications, Colmar, France, 20–22 July 2015; pp. 343–363.
37. Mourad, A.; Tout, H.; Talhi, C.; Otrok, H.; Yahyaoui, H. From model-driven specification to design-level set-based analysis of

XACML policies. Comput. Electr. Eng. 2016, 52, 65–79. [CrossRef]
38. Mourad, A.; Jebbaoui, H. SBA-XACML: Set-based Approach Providing Efficient Policy Decision Process for Accessing Web

Services. Expert Syst. Appl. 2014, 42, 165–178. [CrossRef]
39. Skandhakumar, N.; Reid, J.; Salim, F.; Dawson, E. A policy model for access control using building information models. Int. J.

Crit. Infrastruct. Prot. 2018, 23, 1–10. [CrossRef]
40. Turkmen, F.; Hartog, J.D.; Ranise, S.; Zannone, N. Formal analysis of XACML policies using SMT. Comput. Secur. 2017, 66, 185–203.

[CrossRef]
41. Shvaiko, P.; Euzenat, J. A Survey of Schema-based Matching Approaches. J. Data Semant. IV 2005, 3730, 146–171.
42. Kuang, T.P.; Ibrahim, H.; Sidi, F.; Udzir, N.I. Heterogeneity XACML Policy Evaluation Engine. In Proceedings of the Malaysian

National Conference of Databases (MaNCoD), Selangor, Malaysia, 17 September 2014; pp. 230–238.
43. Do, H.-H.; Melnik, S.; Rahm, E. Comparison of Schema Matching Evaluations. In Proceedings of the Web, Web-Services, and

Database Systems, Erfurt, Germany, 7–10 October 2003; pp. 221–237.
44. Liu, L.; Zhang, S.; Diao, L.; Cao, C. An Iterative Method of Extracting Chinese ISA Relations for Ontology Learning. J. Comput.

2010, 5, 870–877. [CrossRef]

http://doi.org/10.4304/jsw.2.1.27-38
http://doi.org/10.4018/jsse.2012100101
http://doi.org/10.1109/ACCESS.2016.2585185
http://doi.org/10.4018/IJTD.2018100104
http://doi.org/10.1145/1330295.1330299
http://doi.org/10.1016/j.cose.2010.10.006
http://doi.org/10.1109/TKDE.2005.185
http://doi.org/10.1109/TKDE.2012.174
http://doi.org/10.1007/s00500-020-04925-5
http://doi.org/10.1016/j.knosys.2019.03.015
http://doi.org/10.1016/j.knosys.2017.12.004
http://doi.org/10.1016/j.cose.2014.10.004
http://doi.org/10.1142/S0218843020400018
http://doi.org/10.1016/j.compeleceng.2015.09.021
http://doi.org/10.1016/j.eswa.2014.07.031
http://doi.org/10.1016/j.ijcip.2018.08.005
http://doi.org/10.1016/j.cose.2017.01.009
http://doi.org/10.4304/jcp.5.6.870-877

Symmetry 2021, 13, 2394 26 of 26

45. Mohan, A.; Blough, D.M. An Attribute-based Authorization Policy Framework with Dynamic Conflict Resolution. In Proceedings
of the 9th Symposium on Identity and Trust on the Internet (IDTRUST), Gaithersburg, MD, USA, 13–15 April 2010; pp. 37–50.

46. Miller, G.A. WordNet: A Lexical Database for English. J. Commun. ACM 1995, 38, 39–41. [CrossRef]
47. Sabou, M.; Lopez, V.; Motta, E. Ontology Selection for the Real Semantic Web: How to Cover the Queen’s Birthday Dinner?

In Proceedings of the 15th International Conference on Managing Knowledge in a World of Networks (EKAW’06), Podêbrady,
Czech Republic, 2–6 October 2006; pp. 96–111.

48. Deng, F.; Zhan, L.Y. Elimination of Policy Conflict to Improve the PDP Evaluation Performance. J. Netw. Comput. Appl. 2017, 80,
45–57. [CrossRef]

49. Stoller, S.D.; Yang, P.; Ramakrishnan, C.R.; Gofman, M.I. Efficient Policy Analysis for Administrative Role Based Access Control.
In Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS), Alexandria, VA, USA, 31
October–2 November 2007; pp. 445–455.

50. Martin, E.; Xie, T.; Yu, T. Defining and Measuring Policy Coverage in Testing Access Control Policies. In Proceedings of
the International Conference on Information and Communications Security (ICICS), Raleigh, NC, USA, 4–7 December 2006;
pp. 139–158.

http://doi.org/10.1145/219717.219748
http://doi.org/10.1016/j.jnca.2016.12.001

	Introduction
	Related Works
	Preliminaries
	Definitions and Notations
	Illustrative Example

	Naming Heterogeneity Resolution
	String Equal
	Synonym Equal
	Hyponym
	Syntactical Synonym Equal
	Syntactical Hyponym
	Syntactical Equal
	Hyponym Common Word
	Abbreviation Equal

	Results and Discussion
	Conclusions
	References

