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Abstract: The underlying function in reproducing kernel Hilbert space (RKHS) may be degraded
by outliers or deviations, resulting in a symmetry ill-posed problem. This paper proposes a non-
convex minimization model with £y-quasi norm based on RKHS to depict this degraded problem.
The underlying function in RKHS can be represented by the linear combination of reproducing
kernels and their coefficients. Thus, we turn to estimate the related coefficients in the nonconvex
minimization problem. An efficient algorithm is designed to solve the given nonconvex problem by
the mathematical program with equilibrium constraints (MPEC) and proximal-based strategy. We
theoretically prove that the sequences generated by the designed algorithm converge to the noncon-
vex problem’s local optimal solutions. Numerical experiment also demonstrates the effectiveness of
the proposed method.

Keywords: degraded function; nonconvex minimization; convergence analysis; RKHS; symmetry
ill-posed problem

1. Introduction

The reproducing kernel Hilbert space (RKHS, denote as H) has been widely studied in
many studies [1-7]. Its most critical property is that the functions in RKHS can be linearly
represented by reproducing kernel function. In addition, many studies have analyzed the
properties of unitary or binary functions in RKHS. These functions usually can be regarded
as signals or images in discrete form, so as to build optimization models and solve some
application problems, such as image super-resolution and image restoration.

In general, the Hilbert space can be considered as H C L?(PP) which P is a probability
measure on the subset X C R, H is complete for a class of real valued functions f : X — R
with |||l 2(py < 0. Moreover, the reproducing kernel x of H can be defined as: (1) for
any x € X, the function (-, x) blongs to . (2) the function « has so-called reproducing
property, thatis f(x) = (f,x(-,x))y forall f € H,and (., -)3 represents an associated inner
product. By this relation, we could get the Gram matrix K € R"*" by the discretization of
reproducing kernel « (-, x) for x € R”, thus it is easy to get the following discrete formulation
by considering the bias e € R":

g=Ka—+e, €))]

where « € R" is the coefficient we need to estimate, besides, K is a real symmetry matrix.
In the real world, the underlying function g generally will be polluted by outliers and
Gaussian perturbation, which gets the following symmetry ill-posed problem:

y=Ka+e+u+o, 2)
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where u € R" can be viewed as outliers and ¢ € R" stands for Gaussian perturbation.
Our final goal is to accurately estimate the coefficients « and e from the known y and K.
After obtaining « and e, we could calculate the underlying function g by (1). Note that,
solving the problem (2) is quite a chanllenging task, since the variables «, e, u and o in (2)
are all unknown, which leads to a ill-posed problem.

In [8], Papageorfiou et al, considered that the function g can be linearly represented by
coefficient « and constant ¢ as g = Ka + c1, and proposed a kernel regularized orthogonal
maching pursuit (KROMP) method to solve the nonconvex problem. However, the KROMP
method has two weakness: one is that the constant c is not general and flexible; the other is
that the convergence of its algorithm is not guaranteed theoretically. Therefore, this paper
mainly establishes the nonconvex optimization model for the degraded problem (2) in
RKHS, and gives the designed algorithm whose convergence can be guaranteed, finally
shows the effectiveness of the proposed method in some simulation experiments.

Regularized modeling is a promising way to deal with ill-posed problems. Actually,
the variable u representing outliers is generally sparse, which motivates us to formulate
a sparsity-based regularization model. Especially, ¢p-quasi norm that counts the non-
zero elements in a vector is an ideal metric to depict the sparse property. Therefore,
the nonconvex minimization problem for solving the ill-posed problem (2) can be simply
shown as follows,

min O(x,ew) = 5[Kate+u—yl+ LlalB+ Zleld+lulo,  ©)
ae,ucR” 2 2 2

where y1, A1 and A; are positive parameters. The first term in (3) is deduced from the Gaus-
sian perturbation of o under the framework of maximum a posteriori (MAP) estimation.
The second and third terms are two regularized terms to depict the underlying prior for a
and e. The last term is a £yp-quasi norm to depict the sparse prior of outlier u. Note that the
given regularization model (3) is a nonconvex minimization problem due to the nonconvex
property of ¢y term. In general, the ¢y term will be replaced approximately by some other
convex terms (e.g., ¢1 term or hard threshold [9-12]) for simpler computation and conver-
gence guarantee. However, if taking this way, it will lose the accuracy of depicting sparsity,
which may result in unreasonable outcomes.

However, the nonconvex minimization problems usually have the following difficul-
ties which are encountered to solve: (1) Whether the designed algorithm can effectively
solve the minimization model? (2) Whether the convergence analysis of the designed
algorithm can be guaranteed? (3) Whether the initial value affects the convergence of the
designed algorithm? Thus, many studies have been devote to conquer these weaknesses of
nonconvex problems.

Recently, the nonconvex problem can be reformulated as an equivalent minimization
problem based on the mathematical program with equilibrium constraints (MPEC) which
can be effectively solved by the classical algorithms [13-15]. For instance, Yuan et al. [14]
have proposed an equivalent biconvex MPEC formulation for £p-quasi norm of the non-
convex minimization problem. Additionally, the proximal alternating based algorithm
has widely been used to solve the nonconvex and nonsmooth problems [16-24]. In [18],
Bolte et al. propose a proximal alternating linear minimization algorithm (PALM) frame-
work to solve nonconvex and nonsmoothing minimization problem, and give the conver-
gence analysis of the algorithm.

In this paper, we mainly focus on the above mentioned difficulties of nonconvex
minimization problem (3) to design an efficient algorithm with convergence guarantee
theoretically. A simple and representative example is employed to verify the effectiveness
of the proposed method. Besides, the contributions of this work can be summarized as: (1)
New nonconvex minimization modeling based on RKHS; (2) Convergence guarantee of
the designed algorithm for the nonconvex problem.

The outline of this paper is as follows. Section 2 shows the detailed algorithm for the
nonconvex minimization problem (3). In Section 3, the convergence analysis of the given



Symmetry 2021, 13, 2393

30f13

algorithm is given. Numerical results are reported in Section 4. Finally, conclusions are
drawn in Section 5.

2. The Solution for the Nonconvex Minimization Problem

Based on the MPEC lemma of ¢-quasi norm (see more details from [14]), the noncon-
vex minimization problem (3) can be equivalently reformulated the following model:

. A A
min_ ®(we,u,v) = 5 [Ka+e+u—y|3+ 2 a3+ 22 e}

a,e,u,veR"
4
+ (1,1 9) + 10y (V) @)
st.vo|ul =0,

where © represents point-wise multiplication, and ¢y ;) (v) is indicator function projecting
the elements of v into [0, 1]. The constrained minimization problem (4) can be rewritten as
the following unconstrained minimization problem by the penalty strategy:

P(a,e,u,v) = H(a,e,u,v)+ f1(a) + fo(e) + f3(u) + fa(v), (5)

where H(x,e,u,v) = 4[[Ka +e+u—y|3+ 5 vo|ull, file) = 4 al3 fale) = % el
f3() =0, fa(v) = (L1 =v) +97(v).

We utilize the proximal-based algorithm to effectively deal with the unconstrained
problem (5) by alternatingly solving each variable, which leads to the following subproblems:

PR argn})‘in (o — ok, B,XH(txk, ek,uk,vk)> + fi(a) + %Ha — txk||%, (6)
T
ekt e argmein (e — ek, aeH(ak+1,ek, uk,vk)> + fa(e) + EZHe - ek||%, (7)
1)
uFtl e argmuin H(a 1, e u, vb) + f3(u) + %Hu —u|3, (8)
1)
vt ¢ argmin H(a*t!, e uftl v) 4 fi(v) + Ez v —v¥|13, 9)
v

where the related parameters are all nonnegative, i.e., 4y > 0,0, > 0,and 3 = 71 HKTKH I,

T = 72|11y ||, here I, € R™¥™ is identity matrix, and || - ||r represents Frobenius norm,
Y1 > 1, Y2 > 1.

In particular, above subproblems are all convex functions whose closed-form solutions
can be easily calculated as follows:

= (A + 1) (yKT(y — KaF —efF —ub) + lek), (10)
el = (A +1)! (;4 (y — Kol — ek — uk) + Tzek), (11)
SEH I/l(y — Kak+1 — ek+l) 4 (51uk 12)
1+ Bvk O vk + 6 ’
. 1+ 52Vk
k+1 _
vt = min (1,max (0, BT ok T 1 5, ) ) . (13)

We iteratively and alternatingly update a**1, e*1, u*+1 and vF*1 according to (10)~(13).
The final algorithm for the nonconvex minimization problem (3) is summarized in Algorithm 1.

In Algorithm 1, “Max;,,” means the maximum iterations and the “rho” represents the
relative error between adjacent iterations. When the iteration stops, the final underlying
function can be estimated by the relation of (1).
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Algorithm 1: The algorithm to minimize the problem (5)

Input: blurred matrix K, positive parameters A1, Ay, 61 Jo,
and'yl >1,7>1
Initialize: start with any (a°, e0 u’,v0), rho =1,k = 0.
While k < Max;y,, or rho > 1074
(1) Compute &**! solved by Equation (10).
(2) Compute e"*! by Equation (11).
(3) Compute u**! by Equation (12).
(4) Compute vF*+1 by Equation (13).
(5) Update penalty parameter g by g1 = 1.1pF.

k k
(6) Calculate the relative error rho = 18 igl’:\\f 2,
where gh*1 = Kakt1 + 1 and gf = Kak + €.
7k k+1.
Endwhile

Output: «*, and e*

3. Convergence Analysis

For the sake of notational simplicity, we uniform expression || * || as: (1) Frobenius
norm || x || if * is a matrix; (2) /p-norm || * || if * is a vector. Denote that z¥ = (&, ek, u¥, v¥)

and its domain field is R” x R” x R" x R".

Lemma 1. Let the bounded sequence {z*}cy is generated by designed algorithm. Then the
sequence {®(z") } ey sufficiently decreases as follows:

®(2) - @(z1) = O)j2 1 — 242, (14)
where p1 = min{T Sh o 2L2, ‘521, % }. Note that Ty — Ly > 0, 71 — Ly > 0, and Ly is Lipschitz

constant of d, H for a, and Ly is that of 9. H for e.

Proof. Since H(«, e, u,v) is Lipschitz differential for variables « and e, respectively. There
exist positive constants L; and L, which satisfy:

H(ak+1,ek, uk,vk) §H(ock, ek, uk,vk) + <ak+1 — ok, aaH(ock, ek, uk,vk)>
(15)

L
+ 71H{xk—|-l _ Dék||2,
H(lkarl,ekJrl,uk,Vk) SH(lkarl ek uk Vk) + <ek+1 _ ek’ aeH<ak+1, ek, uk,vk))

L (16)
+ 72||ek+1 _ ek||2_

a-subproblem: Based on the designed algorithm, a¥*! is the minimum solution of
a-subproblem in (k + 1)-th iteration, then we have:

(01 — ok, 9, H (o, e u o) + (@) + D =P < A1), a7)
Combine (15) and (17), we have:

H(eM, ek, uf, vk) + £ (") < H(&F, 5, ub, vF) + £ (o)
B 18
+ %Hak+1 _ “kHZ, ( )
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e-subproblem: Based on the designed algorithm, e*! is the minimum solution of
e-subproblem in (k + 1)-th iteration, then we have:

(&1 — e BH (@, & b)) + fo(eh 1) + 21 — e < fo(eh), (19)
Combine (16) and (19), we have:
H(ak 1, e uk, vk) + £ (") < H(ak T, e, ub, vF) + fo(e")

L— 1
+ THekJrl _ ekHZ‘

(20)

u-subproblem: Based on the designed algorithm, u**! is the minimum solution of
u-subproblem in (k + 1)-th iteration, then we have:
H(Dck+1, ek+l/ uk, v )> + f3( ) ZH("‘k—H, ek+1’ uk—&-l[ Vk)> + f3 (uk+1)
5 (21)
+ 2 -,

v-subproblem: Based on the designed algorithm, vf*! is the minimum solution of
v-subproblem in (k + 1)-th iteration, then we have:

H(wk+1,ek+l,uk+1,vk) +f4(Vk) ZH(OLk+1,ek+1,uk+1,Vk+l) +f4(vk+1)

5 (22)
+ E2 ||Vk+1 _ Vk||2,

According to (18), (20)—(22), we have:

(D(Zk) _ (I)( k+1)
= H(a", e ub,v5) + fi(a )—H( ek, uf, vF)
— A@) + H(a* e ub, v + fo ()
_ lkarl,ekJrl/uk,Vk) _fz(ek+1) + H(wk+l,ek+lluklvk)
uk) _ H(ak+l ek+l uk+l vk) _f3(uk+l)
ak+l,ek+1,uk+l,vk) —l—f4(Vk) (23)
akJrl’ ek+1, uk+1’vk+1> _ f4 (Vk+1)

H(
+ f3(
+ H(
H(

—L —L
! 5 1 ||ak+1 _“kH2+ © 5 ZHekJrl _ek”Z
Oy kbl _ k2, 92 kel _ k2
S L s A

v

k+1 k12
> prflz =275,
where p; = min{1-1 Ll T22L2, 521, %}. Thus, the consequence of Lemma 1 obviously

holds. [

Lemma 2. Let the bounded sequence {z*}cn be generated by the designed algorithm. Then:

1 < pa|24T — 2", (24)
where d*+1 € 3®(Z1), and py = dmax{u||[KTK| + 7, u| K| + p + o, u||K|| + u + 61,
2BM? + 55}, which the contant M > 0 is bounded-value of the sequence {z}icy and 9 is
subdifferential operator.
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Proof. Obviously, a**! satisfies the first-order optimal condition of a-subproblem because
of a*¥*1 is the k-th solution of the a-subproblem. Similar to the other variables, then we

have:
0 € 9 H(ak, e, uf,vF) + 0 f; (1) + 7 (a1 — oF),

(
0 € deH (a1, ek, uf,vF) + afy (1) + 1 (eFH — &),
0e auH<“k+l k+1 uk+ v >+af3<uk+1) +51(uk+l _uk)’
= BVH(akH,ekH,ukH,ka) +af4(Vk+1) + 52(Vk+1 *Vk).

Since the object function & is continuous and differentiable for each variable, we have:

(25)

aaq)(ukJrll ek+1 uk+1lvk+l) _ E)aH(ock+l,ek+l,uk+l,vk+l) T afl (akJrl),
8e<1>(:xk+1, ek-‘rl k+1,Vk+1) _ aeH(“k-&-l’ ek+1, k+1,Vk+1) +af2(ek+1), 26)
au¢(ak+1/ ek+1 uk+1lvk+l) _ auH(ak+l,ek+l, uk+llvk+1) + af3(uk+1)/
BVCD(ak“ ek—‘rl uk+1,Vk+l) _ avH(Oék-H, ekH, uk+1 Vk+1) + af4(vk+1)

As the sequence {z"};cy is bounded, there exists M > 0 such that ||zF|| < M holds.
Then, combine (25) and (26), we have:

|
< [|ouH (&, eFHT uk kY g F(ak, ek ub,vE) — 1 (aF ! — ab)|
110eH (aFH, 41 b+ k) _ o p(ak ek, uk, vk) — 1y (eFHT — ek
T [9aH (kL et bt yR) g F(ak L kL gkl gky g (kT gky)|
+[| = & =V
KT (Kak ! + &1 b1y — uKT (Kak + e+ ub) — 7 (k1 — )|
[ (Kak ! ek gk ) (Kb 4 e 4 ub) — ek — b))
FIBH 0 v 0 bt vk o vk @ uk ! — 6 (uf ! — oty
+ | = ST =V (27)
KK [ — )+ p | K[ — & + p | K][[u T — u¥|

+ T1||"¢kJrl - “kH
k+1

IN

IN

+ T — e+ pu T — ||+ ol — e

+ ‘3||Vk+1 @vk-i-l ® uk-‘rl _ Vk ® Vk ® uk+1||

+51|’uk+1 _ukH +52HVk+l _VkH

(HIKTK] 470 ) @447 — 6 4+ (RlIK]| + e+ ) e = e

IN

+ (UK + g 0 [a T = k]| 4 (28M2 + 8 ) [V — |
k+1 —Zk”,

IN

2|z

where py = 4 max{u||K K| + 7, u||K|| + ¢ + @, u||K|| + p + 61,2BM? + 6, }. Thus, Equa-
tion (24) holds. O

Lemma 3. Let the bounded sequence {z*}cy be generated by designed algorithm and the initial
variable z° be bounded. Then the sequence {®(z*) }ien is bounded.

Proof. Obviously, the continuous function ® is proper and coercive, since there exists & — oo
if and only if ||z|| — co. Thus, the sequence ®(z*) is bounded because the sequence {z*}
generated by the designed algorithm is bounded. O
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Lemma 4. The function ®(z) in Equation (3) is a Kurdyka-Lojasiewicz (KL) function (The
definition of a KL function and some examples can be found in [18]).

Proof. According to the definition and some examples for the Kb function in [18,25],
f1, f2, f3, fa, H are polynomial functions which are obviously real analytic functions. Thus,
®(z) is a KL function. O

Theorem 1. Let the sequence {z*}icn be bounded which is generated by the designed algorithm.
Then the sequence {z*}cn converges to a critical point.

Proof. Since the sequence {z¢}cy is bounded, so it must exist a subsequence {z* }gen
which converges to a critical point Z satisfying lim; e zF1 = 2. Since the function ®(z) is
continuous, then the sequence {CID(zk'i)}qu is converged to ®(z), i.e., lim; ;0 O(zh) =
D(2).

According to Lemmas 1-3, it means that the sequence {®(z") } sy is also converged.
Thus, the sequence {®(zF)};cn and the subsequence {CD(qu)}qu will converge to the
same function value as follows:

lim ®(zF) = ®(2). (28)

k—o0

If there is an index k such that ®(z") = ®(z). It is obviously that the sequence {z};cn
up to a stationary point and the corresponding function value does also not change based
on Lemma 1, i.e., ®(z"1) = ®(z). Thus, it is the critical point of {z*} and the conclusion
of Theorem 1 is obviously established.

Next part will prove that Theorem 1 still holds when the index k is nonexistent.

Based on Lemma 1, it implies that for any k > 0, we have:

d(z) < (). (29)

From (28), it implies that for any # > 0, there exists k1 € N, so we have the following
inequation when k > kq,
O(z) < d(z) +1. (30)

Denote a set of limit points of the sequence {z"} as #(2°), and let dist(Z, 9(z°)) express
the minimum distance between one point z and a set 8(z%), i.e.,

dist (2", 9(2") ) 2 min{||2¥ — 2] : z € 8(2°)}.
Based on Lemma 2, ®(z) is a continuous and differential function, and we have
0 € 9®(z) since ||d**1|| — 0as k — co. It implies that for any € > 0, there exists a positive
index k, € N, when k > k», then:
dist(zk,ﬁ(zo)) <e. (31)
Set I = max{ky, ky}, and for each k > I, there exists:

021¢z: dist(2",8(2")) < e} N {z: ®(2) < B(2) < B(2) +77}. (32)

From the Lemma 4, ®(z) is a KL function in domain Q). Thus, there is a concave
function ¢ such that:

¢’ (CID(zk) - cp(z))dist(o, acp(zk)) > 1. (33)
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Moreover, based on the concavity of ¢, it has:

(@) —(2)) < p(@(F) —@(2)) + ¢/ (@(2") - @(2) ) (@) - @(2")).

Denote @4 = ¢(®(z") — ®(z)) — ¢(P(27) — ®(z)) for all nonnegative integers p,
and g € N. Combine Equation (33), Lemmas 1 and 2, we have:

Opii1 = ¢/ (@(2F) — (2) ) (0(2) - (1))

> ¢/ (@) — @(2) Jpr]|F — 2P (34)
1 -

> -l = 2 2
P2

which can be rewritten as follows:

k _Zk+lH2 < P2

2 Ok Il2* —2"1|. (35)
It is a well-known inequality 2+/af < « + B for any «, B > 0, thus, we have:
2 _ - 2
2|l2¢ — 21| < 2\/p®k,k+l||zk — 21 < |2 - 21|+ 2. (36)
£1 £1
Taking summation to (36) fori =41, - - - , k, it has the following inequation:
k ) ) k ) ) 02 k
2 ) 2 =27 < 3 2 =2+ 05 ) O
i=111 i=I11 P1 iz
' (37)
< Ll =2 2+ RO,
i=l+1 P1
that is: )
S )
Yl =2 < [ =2 4 B2 (38)
i=1+1 01

According to the definition of ©®, we have limy_,oc ©; 11411 = @ (Cb(zl*l) - @(Z))
Thus,

k Il k
lim ||zi — zi+1|| = ||zi — ziHH + lim ||zi — Zit1 I
koo z; 1:21 koo i:lz—&-l
(39)

l . .
< Yl =2 2 =2l o (o) - 0(2)
i=1 1

< —+o00.

Thus, {z*} is a Cauchy sequence, and has a finite length. Because of the completeness
of Hilbert space, the Cauchy sequence {z'} is also certainly a convergence sequence.
Thus, the sequence {z} generated by designed algorithm converges to a critical point
z* = (a*,e*,u*, v*). Moreover, the convergence of the sequence generated by the designed
algorithm can be guaranteed for any initial value. [

4. Numerical Result

In this section, we conduct some simple simulation examples to show the effectiveness
of the proposed method. We choose f as the ground-truth function (discrete form as f)
and add Gaussian noise and sparse outliers to generate the observation. The proposed
method is compared with the kernel-based regression using orthogonal matching pursuit
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(KROMP) method [8], and the parameters of KROMP method are selected according to
the range mentioned in the literature. The parameters of the proposed method in the
experiment set empirically to: = 10, A; € [1073,102], A, € [1073,10], B = 0.01,7; = 1.1,
v2 = 1071, and it should be noted that better visual and numerical results can be obtained
by fine-tuning the parameters more carefully.

The related error (ReErr) for the quantitative evaluation, which is a commonly index
to measure the effect of restoration, and it is defined as:

ReErr = 7||f—g||2, (40)
1£]l2

where g is the restoration result which is estimated by different methods. Experiments are
implemented in MATLAB (R2016a) on a desktop with 16Gb RAM and Inter(R) Core(TM)
CPU i5-4590: @3.30GHz.

Example 1. The binary continuous function f is a given as follows:

flx,y) = 505inc<7u/x2 + y2>, (41)

where x € [—1,1], y € [—1,1] (two dimensions, respectively, take 21 discrete points), sinc(x) =
%. After discretization of f, 20 dB Gaussian noise and 10% outlier noise were added to obtain

the final degraded data.

In order to show the experimenta results of different examples, we will show the
ground-truth data, the degraded data polluted by noise and outliers, and the restored
outcome calculated by the proposed method and the KROMP method, respectively.

Example 2. The binary continuous function f is a given as follows:

siny/x2 + 12 )
- \/m 4 ( )

where x € [—8,8], y € [—8,8] (two dimensions, respectively, take 31 discrete points), sinc(x) =
%. After discretization of f which is a binary continuous function, 10 dB Gaussian noise and

10% outlier noise were added to obtain the final degraded data.

flxy)

From Figures 1 and 2, although the shape of ground-truth in Example 2 is similar to
that of Example 1 (see Figures 1a and 2a), in fact, the degree of degradation of Example 2
is much greater than that of Example 1, which the function value and the degree of noise
pollution are different (see Figures 1b and 2b). The proposed method has obvious restorated
outcomes, and can effectively recover original data (see Figure 1c, however the restorated
outcomes of the KROMP method still have obvious noise residual in Figures 1d and 2d. It
also shows the effectiveness of the proposed method.

Example 3. The binary continuous function f is a given as follows

flx,y) = xeXP(—x2 — 1/2), (43)

where x € [—2,2], y € [—2,2] (two dimensions, respectively, take 21 discrete points). After dis-
cretization of f which is a binary continuous function, 10 dB Gaussian noise and 5% outlier noise
were added to obtain the final degraded data.

It can be seen that even in the case of extremely large external pollution, such as
Example 3 in Figure 3b, the proposed method can obtain more accurate recovery data
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(Figure 3c) than the KROMP method (Figure 3d). In addition, the relative error (ReErr)
results from Example 1 to Example 3 are shown in Table 1, and the better results have been
bolded. It is obvious that the proposed method has smaller relative errors compared with
the KROMP method, which verifies the effectiveness of the proposed method.

Table 1. The ReErr results from Example 1 to Example 3 (Bold: the best).

KROMP Proposed
Example 1 0.128 0.116
Example 2 0.257 0.159
Example 3 0.178 0.117
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Figure 1. In Example 1, the ground-truth f was degraded by 20 dB Gaussian noise and 10% outliers,
and the visual results of restoration by each method were obtained. (a) Ground-truth; (b) degraded;
(c) the restored outcome by the proposed method, (d) the restored outcome by the KROMP method.
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Figure 2. In Example 2, the real data f was degraded by 10 dB Gaussian noise and 10% outliers,

and the visual results of restoration by each method were obtained. (a) Ground-truth; (b) degraded;
(c) the restored outcome by the proposed method, (d) the restored outcome by the KROMP method.
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Figure 3. In Example 3, the real data f was degraded by 10 dB Gaussian noise and 5% outliers,

and the visual results of restoration by each method were obtained. (a) Ground-truth; (b) degraded;
(c) the restored outcome by the proposed method, (d) the restored outcome by the KROMP method.

5. Conclusions

In this paper, we proposed a new nonconvex modeling to deal with a challenging
symmetry ill-posed problem. An efficient algorithm for solving the given nonconvex
problem is designed by MPEC and the proximal-based regularization. Theoretically,
the bounded sequence generated by the designed algorithm can be guaranteed to converge
to the nonconvex problem’s local optimal solution. Furthermore, the convergence of the
designed algorithm can be guaranteed for any initial value. The numerical experiments
show that the proposed method can achieve better restoration results. For example, our
method could obtain smaller relative error comparing with benchmark KROMP approach,
besides, could interpolate more mesh points and significantly reduce noise.
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