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Abstract: In this article, we focus on the efficient estimators of the derivative of the nonparametric
function in the nonparametric quantile regression model. We develop two ways of combining
quantile regression information to derive the estimators. One is the weighted composite quantile
regression estimator based on the quantile weighted loss function; the other is the weighted quantile
average estimator based on the weighted average of quantile regression estimators at a single quantile.
Furthermore, by minimizing the asymptotic variance, the optimal weight vector is computed, and
consequently, the optimal estimator is obtained. Furthermore, we conduct some simulations to
evaluate the performance of our proposed estimators under different symmetric error distributions.
Simulation studies further illustrate that both estimators work better than the local linear least square
estimator for all the symmetric errors considered except the normal error, and the weighted quantile
average estimator performs better than the weighted composite quantile regression estimator in
most situations.

Keywords: nonparametric regression model; the derivative of nonparametric function; composite
quantile regression; weighted quantile average estimator

1. Introduction

Consider the following general nonparametric regression model:

Y = m(T) + σ(T)ε, (1)

where Y ∈ R is the response variable, and T is a scalar covariate independent of ε, where ε
is the random error. m(t) = E(Y|T = t) is an unknown smooth function, and σ(T) is a non-
negative function which represents the standard deviation of the model error ε. E(ε) = 0
and var(ε) = 1. As we all know, lots of estimation methods, including the kernel regression
method, the spline smoothing method,the orthogonal series approximation method and
the local polynomial method, have been investigated for estimating the nonparametric
regression function m(t). The relevant works can be referred but not limited to [1–5].
However, we need to estimate m′(t), that is, the derivative of m(t), in many situations.
Therefore, in this article, we intend to derive the efficient estimators of m′(t).

Since the seminal work of Koenker and Bassett [6], quantile regression has been
deeply studied in the literature and applied in econometrics, biomedicine and other fields.
It referred to Koenker [7] for comprehensive treatments. Based on the quantile regression,
Zou and Yuan [8] proposed composite quantile regression (abbreviated as CQR) for linear
models. It assumes that the regression coefficients are the same across different quantile
regression models by combining the strength across multiple quantile regression models.
The advantage of the CQR method is that it can improve the relative efficiency of the
relevant estimators significantly and is usually used in regression models with non-normal
error distribution. Kai et al. [9] introduced the local CQR for the general nonparametric
regression model. As a kind of nonlinear smoother, the local CQR method does not require
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finite error variance and hence can work well even when the error distribution has infinite
variance. Meanwhile, the local CQR method can significantly improve the estimation
efficiency of local linear least squares for some cases. Kai et al. [10] applied the local CQR
method to a semiparametric varying coefficient partially linear model, and the results
showed that the local CQR method outperformed both the least squares and the single
quantile regression. Jiang et al. [11] applied the two step CQR method to the single index
model and established its efficiency. Ning and Tang [12] considered the estimation and test
issues for CQR method with missing covariates. Recently, many researchers applied the
COR method to other various models under different data cases. It can be referred but not
limited to [13–19].

To make full use of quantile information, one may consider combining information
over different quantiles by the criterion function of the estimation procedure or com-
bining information based on estimators at different quantiles. In this article, we argue
that, although a composite quantile regression estimator based on the aggregated crite-
rion function may outperform the ordinary least square estimator for some non-normal
distributions, it is noted that simple averaging usually does not make full use of all the
information of quantiles. Information at different quantiles are correlated, and improperly
using multiple quantile information may even reduce the efficiency. Roughly speaking,
simple average delivers good estimators when the error distribution is close to normal. In
fact, for nonparametric regression, a simple averaging-based composite quantile regression
estimator is asymptotically equivalent to the local least squares estimator. However, the
main purpose of combining quantile information is to improve efficiency when the error
distribution is not normal and the ordinary least square method does not work well. It is
therefore important to combine quantile information appropriately to achieve efficiency. In
this paper, we mainly study optimal combination of quantile regression information for
estimating the derivative of nonparametric function. As stated above, we intend to propose
and develop two ways of combining quantile information. One is the weighted local CQR
estimator based on weighted quantile loss functions, and the other is the weighted quantile
average estimator based on a weighted average of quantile regression estimators at single
quantiles. Our proposed estimators inherit many advantages. Both the theoretical results
and simulation studies further illustrate that both the weighted local CQR estimator and
the weighted quantile average estimator work better than the common local linear least
square estimator for all the symmetric errors considered except the normal error, and the
weighted quantile average estimator performs better than the weighted composite quantile
regression estimator in most situations.

The rest of the paper is organized as follows. The weighted local CQR estimator and
the weighted quantile average estimator are proposed in Section 2. Meanwhile, the main
theoretical results including asymptotic normality and the optimal weights are presented.
In Section 3, the asymptotic relative efficiency of the weighted local CQR estimator and the
weighted quantile average estimator are compared. The feasibility of our proposed method
is verified by random simulations in Section 4. The technical proofs of the theoretical
results are presented in Section 5. Conclusions are added in Section 2.

2. Methodology

Firstly, we give some conditions and notations, which are required in our subsequent
discussions. Let f (·) and F(·) be the density function and cumulative distribution function
of the error, respectively. Denote fT(·) as the marginal density function of the covariate T.
Let T be the σ− field generated by {T1, T2, · · · , Tn}. Choose kernel K(·) as a symmetric
density function and allow the following:

µj =
∫

ujK(u)du and νj =
∫

ujK2(u)du, j = 0, 1, 2, · · ·

ck = F−1(τk) and τkk′ = min(τk, τ′k)− τkτ′k.

The following Conditions (C1)–(C4) are needed for Theorems 1–3:
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(C1) m(·) has a continuous 3-th derivative in the neighborhood of t0;
(C2) fT(·), the marginal density function of T, is differentiable and positive in the neigh-

borhood of t0;
(C3) The conditional variance σ2(·) is continuous in the neighborhood of t0;
(C4) f (·), the density function of the error ε, is always positive on its support.

2.1. Weighted Composite Quantile Regression Estimation

Let Q(τ) be the τ− quantile of ε and QY|T(τ|t) be the conditional τ−th quantile of
Y given T = t. Then, the nonparametric regression model (1) has the following quantile
regression representation:

QY|T(τ|t) = m(t) + σ(t)Q(τ). (2)

Suppose that (ti, Yi), i = 1, · · · , n are independent and identically distributed random
samples from model (2). We consider estimating m′(·) at t0 over {τk, k = 1, 2, · · · , q} jointly
based on the following weighted local quadratic CQR loss function:

(â1, · · · , âq, b̂1, b̂2) = argmin
a1,··· ,aq ,b1,b2

q

∑
k=1

ωk

n

∑
i=1

ρτk{Yi − ak − b1(ti − t)− b2
2
(ti − t)2}K( ti − t

h
), (3)

where ρτk (z) = τkz − zI(z≤0), k = 1, · · · , q are the quantile loss functions at q quantile
positions τk = k/(q + 1), respectively, and ωk ≥ 0, k = 1, · · · , q with ∑

q
k=1 ωk = 1 are

weights. Hereinafter, we use ω = (ω1, · · · , ωq)T to denote the weight vector in different
scenarios whenever no confusion arises. Then, the weighted local quadratic composite
quantile regression (WCQR) estimator for m′(t0) is given by:

m̂′WCQR(t0) = b̂1. (4)

In the subsequent Theorem 1, we present the asymptotic bias, variance and asymptotic
normality of m̂′WCQR(t0), and the proofs can be found in Section 5.

Theorem 1. Suppose that t0 is an interior point of the support of fT(·). Under the regularity
conditions (C1)− (C4), if h→ 0 and nh3 → ∞, then the asymptotic conditional bias and variance
of m̂′WCQR(t0) are given, respectively, by:

bias{m̂′WCQR(t0)|T } =
1
6

m′′′(t0)
µ4

µ2
2

h2 + op(h2), (5)

var{m̂′WCQR(t0)|T } =
1

nh3
ν2σ2(t0)

µ2
2 fT(t0)

Rω(q) + op(
1

nh3 ), (6)

where

Rω(q) =
∑

q
k=1 ∑

q
k′=1 ωkωk′τkk′

{∑q
k=1 ωk f (ck)}2

. (7)

Furthermore, we have the following asymptotic normal result:

√
nh3{m̂′WCQR(t0)−m′(t0)−

1
6

m′′′(t0)
µ4

µ2
2

h2} D−→ N{0,
ν2σ2(t0)

µ2
2 fT(t0)

Rω(q)}, (8)

where “ D−→” stands for convergence in distribution.

Remark 1. If we use equal weights ωk =
1
q , k = 1, · · · , q over all quantiles, then the asymptotic

variance of the unweighted local quadratic CQR estimator is given by ν2σ2(t0)

µ2
2 fT(t0)

R(q), where:
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R(q) =
∑

q
k=1 ∑

q
k′=1 τkk′

{∑q
k=1 f (ck)}2

.

However, the importance of information at different quantiles are often different, and the
information at different quantiles are correlated—depending on the error distribution. Thus, it is
essential to optimally combine these quantiles’ information together.

From Theorem 1, the asymptotic variance of m̂′WCQR(t0) depends on the weight vector
ω through Rω(q), thus, a natural way to select the optimal weight vector is to minimize
Rω(q) in (7). It is easy to know that the optimal weight vector ω∗ is the solution of the
following optimization problem:

ω∗ = argminRω(q) = argmin
∑

q
k=1 ∑

q
k′=1 ωkωk′τkk′

{∑q
k=1 ωk f (ck)}2

.

such that ∑
q
k=1 ωk = 1 and ∑

q
k=1 ωkck f (ck) = 0.

2.2. Weighted Quantile Average Estimation

As described in Section 2.1, the WCQR estimator combines the information at different
quantiles by means of the criterion function. In the following, we consider an alternative
approach which combines information based on the estimators at different quantiles. As
stated in Section 1, we focus on the estimation of m′(t). For a fixed τk, 0 < τk < 1, consider
the local quadratic nonparametric quantile regression:

(â, b̂1, b̂2) = argmin
a,b1,b2

n

∑
i=1

ρτk{Yi − a− b1(ti − t)− b2

2
(ti − t)2}K( ti − t

h
). (9)

The solution of b1 in the above optimization, denoted as m̂′(τk, t0), provides an
estimator for m′(t0). In the following, we construct the weighted quantile averaging
nonparametric estimator for m′(t0) based on the weighted average of m̂′(τk, t0) over τk,
τk = k/(q + 1), k = 1, 2, · · · , q :

m̂′WQAE(t0) =
q

∑
k=1

ωkm̂′(τk, t0), (10)

where ω = (ω1, ω2, · · · , ωq)T satisfies the following conditions:

q

∑
k=1

ωk = 1, (11)

q

∑
k=1

ωkF−1(τk) = 0. (12)

The introduction of ω can eliminate the bias term caused by the asymmetric random
error. Meanwhile, the weight vector ω satisfying conditions (11) and (12) can guarantee the
estimation consistency and asymptotic unbiasedness of m̂′WQAE(t0) asymptotically, which
can also be seen from the proof of the asymptotic properties of m̂′WQAE(t0) in Section 5. In
these weight vectors, which satisfy conditions (11) and (12), we can select the optimal one
by optimization. The details are discussed in the subsequent Section.

In the subsequent Theorem 2, we present the asymptotic bias, variance and asymptotic
normality of m̂′WAQE(t0), and the proofs can be found in Section 5.

Theorem 2. Suppose that t0 is an interior point of the support of fT(·), and the weight vector
ω satisfies conditions (10) and (11). Under the regularity Conditions (C1)–(C4) in Section 5, if
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h→ 0 and nh3 → ∞, then the asymptotic conditional bias and variance of the weighted quantile
average estimation m̂′WQAE(t0) are given, respectively, by:

bias{m̂′WQAE(t0)|T } =
1
6

m
′′′
(t0)

µ4

µ2
2

h2 + op(h2), (13)

var{m̂′WQAE(t0)|T } =
1

nh3
ν2σ2(t0)

µ2
2 fT(t0)

Jω(q) + op(
1

nh3 ), (14)

where Jω(q) = ωT Hω, H is the q× q matrix with the (k, k′)− th element τkk′
f (ck) f (ck′ )

, that is

Jω(q) =
q

∑
k=1

q

∑
k′=1

ωkωk′τkk′

f (ck) f (ck′)
. (15)

Furthermore, conditioning on T , we have the following asymptotic normal distribution:

√
nh3{m̂′WQAE(t0)−m′(t0)−

1
6

m′′′(t0)
µ4

µ2
2

h2} D−→ N{0,
ν2σ2(t0)

µ2
2 fT(t0)

Jω(q)}. (16)

Remark 2. If we simply use equal weights in (14), then the resulting unweighted quantile average
estimator for m′(t0) has the asymptotic normality in Theorem 2 with Jω(q) replaced by:

J(q) =
1
q2

q

∑
k=1

q

∑
k′=1

τkk′

f (ck) f (ck′)
.

Remark 3. From Theorem 2, the covariance matrix of m̂′WQAE(t0) depends on the weight vector
through Jω(q), thus, a natural way to select the optimal weight vector is to minimize Jω(q) in (14).

The following Theorem gives the optimal weight vector and the optimal weighted
quantile average estimation of m′(t0).

Theorem 3. Supposing that the Conditions (C1)− (C4) hold, then the optimal weight vector
minimizing Jω(q) is:

ω? =
(cT H−1c)H−11− (1T H−1c)H−1c
(cT H−1c)(1T H−11)− (1T H−1c)2

, (17)

where c is a q− dimensional column vector with k-th element ck = F−1(τk) and 1 is a q−
dimensional column vector with all elements 1. Furthermore, the corresponding conditionally
variance of the optimal weighted quantile average estimation of m̂′WQAE(t0), denoted as m̂′∗WQAE(t0),
is given by:

var{m̂′∗WQAE(t0)|T } =
1

nh3
ν2σ2(t0)

µ2
2 fT(t0)

Jω∗(q) + op(
1

nh3 ),

where:

Jω∗(q) =
q

∑
k=1

q

∑
k′=1

ω∗k ω∗k′τkk′

f (ck) f (ck′)
.

Comparing the weighted local quadratic CQR estimation, the weighted quantile
average estimation and the local quadratic least squares estimators for m′(t0), we see that
they have the same leading bias term 1

6 m
′′′
(t0)

µ4
µ2

2
h2, whereas their asymptotic variances

are different.

3. Comparison of Asymptotic Efficiency

The WQAE differs from the WCQR estimator in several aspects. While the WCQR
estimator is based on the aggregation of several quantile loss functions, the WQAE is
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based on a weighted average of separate estimators from different quantiles. As a result,
computing the WQAE only involves q separate parameter minimization problems, whereas
the WCQR requires solving a larger parameter minimization problem. In addition, to
ensure a proper loss function, the weights ωk, k = 1, · · · , n in Rω(q) are restricted to be
non-negative; by contrast, the weights ωk, k = 1, · · · , n in Jω(q) can be negative. Obviously,
it is computationally appealing to impose less constraint on the weights.

From Theorem 1, the mean square of error (MSE) of the WCQR estimation m̂′WCQR(t0)
is given by:

MSE{m̂′WCQR(t0)} = {
1
6

m′′′(t0)
µ4

µ2
}2h4 +

1
nh3

ν2σ2(t0)

µ2
2 fT(t0)

Rω(q) + op(h4 +
1

nh3 ).

Thus, the optimal variable bandwidth minimizing MSE{m̂′WCQR(t0)} is:

hopt
WCQR = Rω(q)1/7[

27ν2σ2(t0)

fT(t0){m′′′(t0)µ4}2 ]
1/7n−1/7.

From Theorem 2, the MSE of the WQAE m̂′WAQE(t0) is given by:

MSE{m̂′WQAE(t0)} = {
1
6

m′′′(t0)
µ4

µ2
}2h4 +

1
nh3

ν2σ2(t0)

µ2
2 fT(t0)

Jω(q) + op(h4 +
1

nh3 ).

Thus, the optimal variable bandwidth minimizing MSE{m̂′WAQE(t0)} is:

hopt
WAQE = Jω(q)1/7[

27ν2σ2(t0)

fT(t0){m′′′(t0)µ4}2 ]
1/7n−1/7.

4. Simulation Studies

In this Section, we implement simulation studies to compare the finite sample perfor-
mance of our WQAE with those of the WCQR and the local linear least square estimates.
In all examples, the kernel function is chosen to be the Gaussian kernel function, and the
number of replications is set to be 400. Similar to Kai et al. [9], we use the short-cut strategy
to select the bandwidth in our simulation studies.

An important quantity to valuate the performance of different estimators is the average
squared errors (ASE), which can be represented by:

ASE(ĝ) =
1

ngrid

ngrid

∑
i=1
{ĝ(uk)− g(uk)}2

with g being m′(·) in the simulation, where {uk, k = 1, 2, · · · , ngrid} are the grid points at
which the estimator ĝ(·) of g is evaluated. Set ngrid = 200 and set the grid points to evenly
distribute over the interval on which m′(·) is estimated. Furthermore, we can also evaluate
the different estimators ĝ1 and ĝ2 of m′(·) via the ratio of the average squared errors (RASE)
defined by:

RASE(ĝ1, ĝ2) =
ASE(ĝ2)

ASE(ĝ1)
.

In the simulation below, we compare the finite behaviors of these three estimators un-
der different conditions, including different symmetric or asymmetric errors, homoscedas-
tic or heteroscedastic models.

4.1. Homoscedastic Model

We consider the following homoscedastic model:

Model 1 : Y = sin(2T) + 2 exp(−16T2) + 0.5ε,

where the covariate T follows N(0, 1), and the nonparametric regression function is m(t) =
sin(2t) + 2 exp(−16t2). In our simulation, we generate 400 random samples, each covering
n = 200 observations. Our aim is to estimate the derivative of m(t) over [−1.5, 1.5]. It is
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noted that the Cauchy distribution is the truncated Cauchy distribution on [−10, 10]. We
investigate the finite sample behaviors of the WCQR, WQAE and LSE (the local linear least
squares estimator) separately according to the RASE and ASE under the models under
some symmetric and asymmetric errors in the next two examples.

Example 1. In this example, we consider Model 1 under different symmetric error distributions.
The mean and standard deviations of RASEs with 400 simulations are established in Table 1. The
following can be seen for Table 1:

(1) Under the standard normal error N(0, 1), the LSE estimator is the best one among these three
estimators, and WQAE performs nearly as well as WCQR.

(2) Under the non-normal and symmetric errors, WCQR is consistently superior with WQAE
and LSE methods, LSE especially performs consistently the worst. Obviously, our RASEs are
significantly larger than 1.

Table 1. The biases and standard deviations for RASEs in Example 1.

ε
RASE(m̂′

WQAE, m̂′
WCQR) RASE(m̂′

WQAE, m̂′
LSE)

q = 5 q = 9 q = 19 q = 5 q = 9 q = 19

N(0, 1) 0.9823 0.9745 0.9379 0.9217 0.9391 0.9264
(0.0784) (0.1028) (0.1235) (0.1332) (0.1213) (0.1229)

Laplace 1.0696 1.1052 1.1143 1.3076 1.2919 1.2298
(0.1765) (0.2354) (0.2689) (0.3757) (0.3723) (0.3326)

t(3) 1.0235 1.0536 1.1137 1.6441 1.5678 1.4705
(0.1329) (0.2092) (0.2901) (0.8123) (0.8002) (0.6790)

U[−1, 1] 1.2243 1.4221 1.4765 1.1268 1.4373 1.6057
(0.2029) (0.3048) (0.3832) (0.2035) (0.3414) (0.4565)

Cauchy 1.3066 1.5016 1.5831 2.2993 2.2939 2.1652
(0.3960) (0.5601) (0.6746) (0.9127) (0.9850) (0.9245)

Example 2. In this example, we consider Model 1 under different asymmetric error distributions.
The mean and standard deviations of ASEs with 400 simulations are presented in Table 2. It is
noted that “F(4, 6)′′ denotes the centralized F(4, 6). The following can be seen for Table 2:

(1) WCQR, whose bias is non-vanishing and does not approach to zero under asymmetric errors,
breaks down. So, WCQR is the worst in the case of asymmetric errors.

(2) For all the asymmetric errors considered, WQAE performs consistently better than local linear
least squares.

Table 2. The means and standard deviations for ASEs in Example 2.

Distribution of ε
ASE(m̂′

WQAE) ASE(m̂′
WCQR) ASE(m̂′

LSE)q = 5 q = 9 q = 19 q = 5 q = 9 q = 19

N(0, 1) 0.0297 0.0302 0.0339 0.1302 0.0883 0.0565 0.0426
(0.0185) (0.0180) (0.0220) (0.0275) (0.0227) (0.0181) (0.0264)

Laplace 0.0223 0.0226 0.0289 0.0871 0.0614 0.0422 0.0377
(0.0121) (0.0132) (0.0333) (0.0200) (0.0268) (0.0299) (0.0719)

t(3) 0.0492 0.0480 0.0483 0.1191 0.0888 0.0665 0.0515
(0.0243) (0.0243) (0.0245) (0.0348) (0.0286) (0.0248) (0.0231)

U[−1, 1] 0.0528 0.0525 0.0543 0.0960 0.0786 0.0647 0.0570
(0.0257) (0.0251) (0.0252) (0.0343) (0.0303) (0.0269) (0.0267)

Cauchy 0.0194 0.0205 0.0213 0.0450 0.0366 0.0300 0.0223
(0.0172) (0.0209) (0.0231) (0.0153) (0.0146) (0.0155) (0.0192)
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4.2. Heteroscedastic Model

In this subsection, we mainly consider the following heteroscedastic model:

Model 2 : Y = Tsin(2πT) + σ(T)ε,

where the covariate T follows N(0, 1), σ(t) = (2 + cos(2πt))/10, and the nonparametric
regression function is m(t) = t sin(2πt). Our aim is to estimate the derivative of m(t)
on [−1.5, 1.5]. In our simulation, we generate 400 random samples, each having n = 200
observations. Similar to the arguments in the homoscedastic model, we evaluate their
behaviors under symmetric and asymmetric errors in the following Examples 3 and 4.

Example 3. We consider Model 2 under different symmetric error distributions in this example.
The simulation results of biases and standard deviations of RASEs over 400 simulations are
summarized in Table 3. We have the following findings:

(1) Under the standard normal error N(0, 1), LSE outperforms both WQAE and WCQR. Even
for normal errors, our RASEs are a little smaller than 1.

(2) For all the symmetric errors considered except the normal error, WQAE performs significantly
better than the LSE, and our RASEs are obviously greater than 1 compared with the LSE.
Furthermore, WQAE performs better than WCQR in most cases.

Table 3. The biases and standard deviations for RASEs in Example 3.

ε
RASE(m̂′

WQAE, m̂′
WCQR) RASE(m̂′

WQAE, m̂′
LSE)

q = 5 q = 9 q = 19 q = 5 q = 9 q = 19

N(0, 1) 0.9841 0.9749 0.9532 0.9328 0.9476 0.9357
(0.0518) (0.0642) (0.0767) (0.1211) (0.1115) (0.1109)

Laplace 0.9963 1.0152 1.0130 1.0658 1.0636 1.0417

t(3) 1.0368 1.0657 1.0688 1.3067 1.2584 1.1891
(0.1886) (0.2442) (0.2638) (0.7175) (0.5569) (0.4523)

U[−1, 1] 1.0859 1.0830 0.9387 1.1836 1.2602 1.1277
(0.1335) (0.2008) (0.2842) (0.2804) (0.3641) (0.4413)

Cauchy 1.1273 1.1784 1.1683 1.5532 1.5329 1.4596
(0.2488) (0.3176) (0.3371) (0.4678) (0.4672) (0.4234)

Example 4. In this example, we consider Model 2 under different asymmetric error distributions.
The simulation results of biases and standard deviations of RASEs over 400 simulations are
summarized in Table 4. Similar to Example 2, the simulation results show the following:

(1) WCQR breaks down for its non-vanishing bias in the case of asymmetric errors. Therefore,
WCQR performs the worst among the three estimators.

(2) For all the asymmetric errors considered, WQAE performs consistently better than local linear
least squares.



Symmetry 2021, 13, 2387 9 of 15

Table 4. The means and standard deviations for ASEs in Example 4.

ε
ASE(m̂′

WQAE) ASE(m̂′
WCQR) ASE(m̂′

LSE)q = 5 q = 9 q = 19 q = 5 q = 9 q = 19

N(0, 1) 0.0249 0.0287 0.0348 0.0711 0.0644 0.0553 0.0752
(0.0383) (0.0514) (0.0562) (0.0779) (0.1101) (0.1245) (0.2549)

Laplace 0.0312 0.0323 0.0451 0.0831 0.0678 0.0556 0.0724
(0.1021) (0.0902) (0.1179) (0.0824) (0.0723) (0.0638) (0.1357)

t(3) 0.0369 0.0365 0.0376 0.0783 0.0602 0.0476 0.0434
(0.0198) (0.0183) (0.0192) (0.0190) (0.0169) (0.0158) (0.0221)

U[−1, 1] 0.0321 0.0302 0.0329 0.0567 0.0465 0.0392 0.0387
(0.0169) (0.0173) (0.0171) (0.0194) (0.0177) (0.0166) (0.0214)

Cauchy 0.0348 0.0375 0.0414 0.1061 0.0833 0.0657 0.0569
(0.0219) (0.0316) (0.0455) (0.0277) (0.0274) (0.0301) (0.0526)

5. Proofs

Before embarking on the proofs of Theorems 1–3, we first give and prove Lemma 1.
Suppose that the kernel function K has the finite support [−M, M]. The following notations
are needed to present our theoretical results:

Denote
uk =

√
nh{ak −m(t0)− σ(t0)ck}, k = 1, · · · , q,

and
vj = hj

√
nh{j!bj −m(j)(t0)}/j!, j = 1, 2.

Set xi = (ti − t0)/h, Ki = K(xi) and ∆i,k = uk√
nh

+ v1xi√
nh

+
v2x2

i√
nh

. Write di,k = ck{σ(ti)−

σ(t0)}+ ri,2, ri,2 = m(ti)−m(t0)−m′(t0)(ti − t0)− m′′(t0)
2 (ti − t0)

2. Define η∗i,k = I{εi ≤
ck − di,k/σ(ti)− τk}, and let W∗ = (w∗11, . . . , w∗1q, w∗21, w∗22)

T , with

w∗1k =
ωk√
nh

n

∑
i=1

Kiη
∗
i,k, k = 1, . . . , q, w∗2j =

1√
nh

q

∑
k=1

ωk

n

∑
i=1

Kix
j
i η
∗
i,k, j = 1, 2.

Furthermore, let S11 be a q× q diagonal matrix with diagonal elements {ωk f (ck), k =
1, . . . , q}; S12 be a be a q × 2 matrix with (k, j)− element ωk f (ck)µj, k = 1, · · · , q and
j = 1, 2. S21 = ST

12; and S22 be a 2× 2 diagonal with diagonal elements µ2∑
q
k=1ωk f (ck) and

µ4∑
q
k=1 ωkf (ck). In addition, let Sn,11 be a q× q diagonal matrix with diagonal elements

{ωk f (ck)∑
n
i=1Ki/(nh σ(ti)), k = 1, . . . , q}, let S12 be a q × 2 matrix with (k, j)− element

ωk f (ck)∑
n
i=1Kix

j
i /(nh σ(ti)), k = 1, . . . , q and j = 1, 2. Sn,21 = ST

n,12, and let Sn,22 be a 2× 2
diagonal with diagonal elements ∑

q
k=1ωk f (ck)∑

n
i=1Kix2

i /(nh σ(ti)). Similarly, let Σ11 be a
q× q matrix with (k, k′)− element ν0ωkωk′τkk′ , k, k′ = 1, . . . , q, let Σ12 be a q× 2 matrix with
(k, j)− element νjωk∑

q
k′=1ωk′τkk′ , k = 1, . . . , q and j = 1, 2. Σ21 = ΣT

12, and let Σ22 be a 2× 2
matrix with (j, j′)− element νj+j′∑

q
k,k′=1ωkωk′τkk′ for j, j′ = 1, 2.

Define:

S =

[
S11 S12
S21 S22

]
, Sn =

[
Sn,11 Sn,12
Sn,21 Sn,22

]
,

Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.
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Partition
(
S−1ΣS−1) into four submatrices as follows:

S−1ΣS−1 =

[(
S−1ΣS−1)

11

(
S−1ΣS−1)

12(
S−1ΣS−1)

21

(
S−1ΣS−1)

22

]
,

where (·)11 stands for the top left-hand q× q submatrix, and (·)22 stands for the bottom
right-hand element.

Lemma 1. Denote θ̂n = (û1, . . . , ûq, v̂1, v̂2)
T as the minimizer of the weighted local quadratic

CQR loss. Under regularity Conditions (C1)–(C4), we have:

θ̂n +
σ(t0)

fT(t0)
S−1E[W∗n |T ]

D−→ MVNq+2

{
0,

σ2(t0)

fT(t0)
S−1ΣS−1

}
.

Proof of Lemma 1. The proof is similar to that of Theorem 5 of Kai et al. [9]. We divide the
whole procedure into three steps:

Step 1 Minimizing the weighted local quadratic CQR loss is equivalent to minimizing
Ln(θ), defined as:

Ln(θ) =
q

∑
k=1

ωkuk

{ n

∑
i=1

Kiη
∗
i,k√

nh

}
+

2

∑
j=1

νj

q

∑
k=1

ωk

{ n

∑
i=1

Kix
j
i η
∗
i,k√

nh

}
+

q

∑
k=1

ωkBn,k(θ).

with respect to θ = (u1, . . . , uq, v1, v2)
T , where

Bn,k(θ) =
n

∑
i=1

(
Ki

∫ ∆i,k

0

[
I
{

εi ≤ ck −
di,k

σ(ti)
+

z
σ(ti)

}
− I
{

εi ≤ ck −
di,k

σ(ti)

}]
dz
)

.

For further details, see the proofs of Lemma 2 in Kai et al. [9].
Step 2 Under regularity conditions (C1)–(C4), we have:

Ln(θ) =
1
2

θTSnθ + (W∗n )
Tθ + op(1).

For further details, see the proof of Lemma 2 of Kai et al. [9].
Step 3 It is easy to obtain:

1
nh

n

∑
i=1

Kix
j
i

P−→ fT(t0)µj, j = 0, 1, 2,

where P−→ stands for convergence in probability. Thus we have:

Sn
P−→ fT(t0)

σ(t0)
S =

fT(t0)

σ(t0)

[
S11 S12
S21 S22

]
.

Together with the results of Step 2, we have:

Ln(θ) =
1
2

fT(t0)

σ(t0)
θTS θ + (W∗n )

Tθ + op(1).

Note that the convex function Ln(θ) − (W∗n )Tθ converges in probability to the
convex function θTS θ fT(t0)/(2σ(t0)). Then, it can be deduced from the convexity
lemma of Pollard [20] that the quadratic approximation to Ln(θ) holds uniformly
for θ in any compact set, which leads to:

θ̂n = − σ(t0)

fT(t0)
S−1W∗n + op(1).

Finally, similar to the procedures of Theorem 5 in Kai et al. [9], we have:



Symmetry 2021, 13, 2387 11 of 15

W∗n |T − E[W∗n |T ]
D−→ MVNq+2{0, fT(t0)Σ}.

This completes the proof.

Proof of Remark 1. If we use equal weights ωk =
1
q , k = 1, · · · , q over all quantiles, then

we have:

Rw(q) =
∑

q
k=1 ∑

q
k′=1

1
q

1
q τkk′

{∑q
k=1

1
q f (ck)}2

=

1
q2 ∑

q
k=1 ∑

q
k′=1 τkk′

1
q2 {∑

q
k=1 f (ck)}2

=
∑

q
k=1 ∑

q
k′=1 τkk′

{∑q
k=1 f (ck)}2

.
= R(q).

Therefore, the asymptotic variance of the unweighted local quadratic CQR estimator

can by given by ν2σ2(t0)

µ2
2 fT(t0)

R(q).

Proof of Remark 2. If we use equal weights ωk =
1
q , k = 1, · · · , q over all quantiles, then

we have:

Jw(q) =
q

∑
k=1

q

∑
k′=1

1
q

1
q τkk′

f (ck) f (c′k)

=
1
q2

q

∑
k=1

q

∑
k′=1

τkk′

f (ck) f (c′k)
.
= J(q),

then the resulting unweighted quantile average estimator for m′(t0) has the asymptotic
normality in Theorem 2 with Jω(q) replaced by:

J(q) =
1
q2

q

∑
k=1

q

∑
k′=1

τkk′

f (ck) f (ck′)
.

Proof of Theorem 1. We apply Lemma 1 to obtain the asymptotic normality of m̂′WCQR(t0).
It is easy to obtain:

S12 = (0q×1, µ2ωk f (ck)q×1),

and

S22 = diag{µ2

q

∑
k=1

ωk f (ck), µ4

q

∑
k=1

ωk f (ck)}.

Since S11 = diag{ω1 f (c1), · · · , ωq f (cq)},

(S−1)22 = (S22 − S21S−1
11 S12)

−1 = diag[{µ2

q

∑
k=1

ωk f (ck)}−1, {(µ4 − µ2
2)

q

∑
k=1

ωk f (ck)}−1].

Note that (S−1)21 = −(S−1)22S21S−1
11 . Thus, we have:

(S−1)21 = (0q×1, [
µ2

(µ4 − µ2
2)∑

q
k=1 ωk f (ck)

]1q×1)
T .
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where 0q×1 and 1q×1 denote the q− dimensional column vector with all entries of 0 and 1,
respectively. Denote e = (1, 0)T . By Lemma 1, we can obtain:

bias{m̂′WCQR(t0)|T } = − σ(t0)

h fT(t0)

1√
nh

eT{(S−1)21E[W∗1n|T ] + (S−1)22E[W∗2n|T ]}

= − σ(t0)

h fT(t0)

1
µ2 ∑

q
k=1 ωk f (ck)

1√
nh

E[w∗21|T ].

Note that:

E[w∗2j|T ] =
1√
nh

n

∑
i=1

Kix
j
i

q

∑
k=1

ωk[F{ck −
di,k

σ(ti)
} − F(ck)].

Similarly, we have:

q

∑
k=1

ωk[F{ck −
di,k

σ(ti)
} − F(ck)] = −

q

∑
k=1

ωk f (ck)
ri,2

σ(ti)
{1 + op(1)}.

Therefore:

bias{m̂′WCQR(t0)|T } =
1

nh2
σ(t0)

fT(t0)

n

∑
i=1

Kixi
ri,2

σ(ti)
{1 + op(1)}.

It is easy to obtain:

1
nh

n

∑
i=1

Kixi
ri,2

σ(ti)
=

fT(t0)m′′′(t0)

6σ(t0)

µ4

µ2
h3{1 + op(1)}.

Thus, we obtain:

bias{m̂′WCQR(t0)|T } =
1
6

m′′′(t0)
µ4

µ2
h2 + op(h2).

Furthermore, the conditional variance of m̂′WCQR(t0) is:

var{m̂′WCQR(t0)|T } =
1

nh3
σ2(t0)

fT(t0)
eT()e + op(

1
nh3 )

=
1

nh3
ν2

µ2
2

σ2(t0)

fT(t0)
Rω(q) + op(

1
nh3 ).

which completes the proof.

Proof of Theorem 2. It is easy to see that:

E{m̂′(τk, t0)|T }

= − 1

h
√

nh
σ(t0)

fT(t0) f (ck)

1
µ2

E[w∗21|T ] + m′(t0)

= − 1
nh2

σ(t0)

fT(t0) f (ck)

1
µ2

n

∑
i=1

Kixi

[
F
(
ck −

di,k

σ(ti)

)
− F(ck)

]
+ m′(t0)

=
1

nh2
σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi
di,k

σ(ti)

(
1 + op(1)

)
+ m′(t0)

=
1

nh2
σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi
ck{σ(ti)− σ(t0)}+ ri,2

σ(ti)

(
1 + op(1)

)
+ m′(t0).



Symmetry 2021, 13, 2387 13 of 15

Then, we have:

bias{m̂′WQAE(t0)|T } = E{m̂′WQAE(t0)|T } −m′(t0)

= E
{ q

∑
k=1

ωkm̂′(τk, t0)|T
}
−m′(t0) =

q

∑
k=1

ωk
[
E{m̂′(τk, t0)|T } −m′(t0)

]
=

q

∑
k=1

ωk

[ 1
nh2

σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi
ck{σ(ti)− σ(t0)}+ ri,2

σ(ti)

(
1 + op(1)

)]
=

1
nh2

σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi

q

∑
k=1

ωk
ck{σ(ti)− σ(t0)}+ ri,2

σ(ti)

(
1 + op(1)

)
.

Using the condition ∑
q
k=1 ωkck = 0, we obtain:

bias{m̂′WQAE(t0)|T } =
1

nh2
σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi

q

∑
k=1

ωk
ri,2

σ(ti)

(
1 + op(1)

)
=

1
nh2

σ(t0)

fT(t0)

1
µ2

n

∑
i=1

Kixi
ri,2

σ(ti)

(
1 + op(1)

)
.

By using the following fact:

1
nh

n

∑
i=1

Kixi
ri,2

σ(ti)
=

fT(t0)m′′′(t0)

6σ(t0)

µ4

µ2
h3(1 + op(1)

)
,

we obtain:
bias{m̂′WQAE(t0)|T } =

1
6

m′′′(t0)
µ4

µ2
2

h2 + op(h2). (18)

var{m̂′WQAE(t0)|T } = var{
q

∑
k=1

ωkm̂′(τk, t0)|T }

= var{− 1

h
√

nh
σ(t0)

fT(t0)

1
µ2

q

∑
k=1

ωk
f (ck)

ω∗21|T }

=
1

nh3
σ2(t0)

f 2
T(t0)

1
µ2

2
var{

q

∑
k=1

ωk
f (ck)

ω∗21|T }.

Using the similar arguments in Kai et al. [9], we have:

var{
q

∑
k=1

ωk
f (ck)

(ω∗21 −ω21)|T } = op(1).

Thus, we have:

var{m̂′WQAE(t0)|T } =
1

nh3
σ2(t0)

f 2
T(t0)

1
µ2

2
var{

q

∑
k=1

ωk
f (ck)

ω21|T }

=
1

n2h4
σ2(t0)

f 2
T(t0)

1
µ2

2
var{

n

∑
i=1

Kixi

q

∑
k=1

ωk
f (ck)

ηi,k|T }. (19)

Denote ξ = ∑n
i=1 KixiQi, where Qi = ∑

q
k=1

ωk
f (ck)

ηi,k. Note that cov(ηi,k, ηi,k′) = τkk′

and cov(ηi,k, ηj,k′) = 0, if i 6= j. It is easy to obtain EQ2
i = Jω(q), where

Jω(q) =
q

∑
k=1

q

∑
k′=1

ωkωk′τkk′

f (ck) f (ck′)
.
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It is easy to obtain that E(K2
i x2

i ) = h fT(t0)ν2(1 + op(1)). Therefore:

var(ξ|T ) = nEξ2E(K1x1)
2 = nh fT(t0)ν2 Jω(q){1 + op(1)}.

Combined with the result (13), we have:

var{m̂′WQAE(t0)} =
1

nh3
ν2

µ2
2

σ2(t0)

fT(t0)
Jω(q) + op(

1
nh3 ).

which completes the proof.

Proof of Theorem 3. The optimal ω∗ can be obtained by solving the following optimiza-
tion problem:

minJω(q) = min
q

∑
k=1

q

∑
k′=1

ωkωk′τkk′

f (ck) f (ck′)
,

where ω satisfies ∑
q
k=1 ωk = 1 and ∑

q
k=1 ωkck = 0. With the help of the Lagrange multiplier

method, we can obtain the optimal weight vector. This leads to the corresponding minimum
conditional variance of m̂′∗WQAE.

6. Conclusions

In this article, we mainly investigated the efficient estimators of the derivative of the
nonparametric function in the nonparametric quantile regression model (1). We devel-
oped two ways of combining quantile regression information to derive the estimators of
m′(t). One is the weighted composite quantile regression estimator based on the quantile
weighted loss functions, and the other is the weighted quantile average estimator based on
the weighted average of quantile regression estimators at a single quantile. Furthermore,
by minimizing the asymptotic variance, the optimal weight vector is computed, and conse-
quently, the optimal estimator can be obtained. Moreover, we conduct some simulations
to compare the performance of our proposed estimators to the local linear least square
estimator under different symmetric error distributions. Simulation studies illustrate that
both the estimators works better than the local linear least square estimator for all the
symmetric errors considered except the normal error, and the weighted quantile average
estimator performs better than the weighted composite quantile regression estimator in
most situations.
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