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Abstract: In order to acquire the hysteretic behavior of the asymmetrical composite joints with
concrete-filled steel tube (CFST) columns and unequal high steel beams, 36 full-scale composite
joints were designed, and the CFST hoop coefficient (ξ), axial compression ratio (n0), concrete
cube compressive strength (f cuk), steel tube strength (f yk), beam, and column section size were
taken as the main control parameters. Based on nonlinear constitutive models of concrete and the
double broken-line stress-hardening constitutive model of steel, and by introducing the symmetric
contact element and multi-point constraint (MPC), reduced-scale composite joints were simulated
by ABAQUS software. By comparing with the test curves, the rationality of the modeling method
was verified. The influence of various parameters on the seismic performance of the full-scale
asymmetrical composite joints was investigated. The results show that with the increasing of f cuk,
the peak load (Pmax) and ductility of the specimens gradually increased. With the increasing of n0,
the Pmax of the specimens gradually increases firstly and then gradually decreases after reaching a
peak point. The composite joints have good energy dissipation capacity and the characteristic of
stiffness degradation. The oblique struts force mechanism in the full-scale asymmetrical composite
joint domain is proposed. By introducing influence coefficients (ξ1 and ξ2), the expression of shear
bearing capacity of composite joints is obtained by statistical regression, which can provide theoretical
support for the seismic design of asymmetrical composite joints.

Keywords: concrete-filled steel tube columns; unequal height H-shaped steel beams; composite
joints; ABAQUS; seismic behavior; force mechanism; shear bearing capacity

1. Introduction

From the structural damage of the Northridge Earthquake in the United States [1],
the Hanshin Earthquake in Japan [2], and the Wenchuan Earthquake [3] and the Yushu
Earthquake in China [4], it could be seen that the traditional bolt-welded hybrid beam-
column joints showed poor seismic resistance [5]. The joint would have different degrees
of brittle fracture when encountering an earthquake. Based on numerous experimental
studies, two new types of ductile energy-consuming joints have been proposed by the
American Steel Structure Association and the Welding Association, namely weakened joints
and reinforced joints. The composite joints with concrete-filled steel tube (CFST) columns
and unequal high steel beams proposed in this paper belonged to a kind of reinforced
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joints. They were composed of unequal height I-steel beams and square steel tube concrete
composite columns. The square steel tube was filled with concrete, which indicated the
outer square steel tube had a good restraint effect on the core concrete. Therefore, the
concrete was under the tri-axial stress state. At the same time, the buckling and instability
damage of the square steel tube under low cyclic load were effectively avoided by the
existence of concrete. This type of composite joints could not only significantly improve
the deformation capacity but also greatly improve the shear bearing capacity.

Numerous research studies have been carried out on the seismic behavior of composite
joints by scholars at home and abroad. In 2014, tests on six concrete-filled square steel tube
column–composite beam joints were conducted to studied the seismic performance by Fan
et al. [6], and the results showed that the joints had good shear capacity, stiffness, ductility,
and other seismic behavior. In 2015, Li et al. [7] carried out axial compression and low cyclic
load tests on eight reduced-scale joints of a high-strength concrete beam and column, and
the results indicated that the bonding stress of reduced-scaled joints of the high-strength
concrete beam and column could be improved by the existence of an axial compression load.
In 2016, a reinforced concrete column–steel beam connection joint model was established by
Ghods et al. [8], and the analysis results showed that this kind of joint had good stiffness and
bearing capacity. In 2017, Jeddi et al. [9] conducted quasi-static tests on new-type reduced-
scale joints with high-strength concrete beam and column, and the results showed that the
joints had good seismic performance and could be applied to frame structures in earthquake
zones. In 2019, Ghomi et al. [10] carried out tests on four full-scale GFRP RC beam-column
joints, and the performance of the specimens was evaluated in terms of mode of failure,
hysteresis diagram, energy dissipation, and strain in the reinforcement. The results showed
that GFRP RC beam–column joints could withstand multiple cyclic loadings, and the
horizontal displacement reached 8% of story drift without exhibiting brittle failure. In 2020,
Bian et al. [11] conducted low cyclic loading tests on 14 reduced-scale beam-column joints,
and the results showed that the bearing capacity of welded joints was poor. After adding
stiffeners, the bearing capacity and energy dissipation capacity of joints were significantly
improved. In 2013, quasi-static tests on beam–column T-section steel connection joints
under low cyclic load were carried out by Zheng [12], and the hysteretic curve and the
failure mode could be obtained. The study showed that the size of T-section steel had a
great influence on the hysteretic performance of the connection joints. In 2015, low cyclic
load test and finite element analysis on special-shaped asymmetrical CFST composite
columns–steel beam joints with angle connections was carried out by Liu et al. [13], and
the results showed that the failure of such joints was caused by the buckling of steel beam
flanges in the joint area. In 2017, Mou et al. [14] conducted low-cyclic loading tests on seven
reduced-scale joints of highly unequal H-shaped steel beam–square steel columns with
outer strengthening rings, and the shear capacity, hysteretic performance, deformation
capacity, and failure mode of the joint domain were obtained, respectively. The results
indicated that this type of joint had good deformation capacity and energy dissipation
capacity. In 2018, through the monotonous static loading test and finite element numerical
simulation of two middle joints, Xia et al. [15] found that the stiffness and the bending
bearing capacity of the columns can be improved by the outer sleeve. In 2020, Dai et al. [16]
studied the shear bearing capacity of H-shaped steel concrete column–steel beam joints
constrained by a circular steel tube and the calculation formula of shear bearing capacity of
this new type of joints was proposed. In 2019, Xu et al. [17–19] carried out experimental
research on the seismic performance of reduced-scale asymmetrical composite joints, which
consisted of concrete-filled steel square tubular columns and H-shaped unequal height
steel beams. The hysteretic curves and skeleton curves of this kind of joints were obtained,
and parameter analysis were carried out by OpenSees software. The calculation expression
for shear bearing capacity of this kind of joints was derived. Although most research
studies were carried out on the seismic behavior of the reduced-scale composite joints with
CFST columns and unequal high-steel beams, few studies on the seismic behavior of the
full-scale joints have been reported.
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Based on the experimental verification, ABAQUS finite element software is adopted to
study the seismic behavior of full-scale composite joints with CFST columns and unequal
high steel beams in this paper. The influence of different parameters on the seismic perfor-
mance and shear capacity for the joint domain is conducted, and the failure mechanism
of this new type of joint is obtained. The calculation formula for the shear capacity of
asymmetrical composite joints can be obtained by statistical regression.

2. Finite Element Model
2.1. Material Constitutive Model
2.1.1. Constitutive Model of Concrete

Constitutive models of confined concrete have been proposed successively by Han [20],
Teng [21], and Pagoulatou [22], and the constitutive model of unconfined concrete has been
given in the Code for Design of Concrete Structures (GB50010-2010) [23]. The comparisons
of different constitutive models are illustrated in Figure 1. Through comparative analysis,
the constraint constitutive model proposed by Han is adopted as the constitutive model of
concrete. The expressions are shown in Formulas (1)–(11), and the physical significance of
each variable in the formula is shown in reference [20]. During finite element modeling, the
plastic damage model of concrete is selected [24], which can take the stiffness degradation
of concrete under low-cyclic loading into account.

Figure 1. Constitutive models of concrete.

The following formula represents the stress–strain curve of concrete subjected to
uniaxial compression [20]:

y =

{
2·x− x2 (x ≤ 1)

x
β0(x−1)n+x (x > 1) (1)

where:
x =

ε

ε0
(2)

y =
σ

σ0
(3)

σ0 = fc (4)

ε0 = εc + 800·ξ0.2·10−6 (5)

εc = (1300 + 12.5· fc)·10−6 (6)

η

{
2 (circular steel tube)

1.6 + 1.5
x (Square steel tube)

(7)

β0

 (2.36× 10−5)[0.25+(ξ−0.5)7]· f 0.5
c ·0.5 ≥ 0.12 (circular steel tube)

f 0.1
c

1.2
√

1+ξ
(Square steel tube)

. (8)
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The following formula represents the stress–strain curve of concrete subjected to
uniaxial tensile [20]:

y =

{
1.2·x− 0.2·x6 (x ≤ 1)

x
0.31·σ2

P ·(x−1)1.7+x
(x > 1) (9)

where x = εc
εP

, y = σc
σP

. σP denotes the peak tensile stress, εP refers to the peak strain under
tension, and these variables are calculated respectively according to the following formula:

σP = 0.26× (1.25· fc)
2/3 (10)

εP = 34.276× σP(µ·ε). (11)

2.1.2. Constitutive Model of Steel

Considering the Baushenge effect [25], the constitutive model of steel adopts a double
broken-line stress-hardening constitutive model. The expression is shown in Equation (12).
The constitutive model is shown in Figure 2. The maximum plastic strain is 0.01, and the
elastic modulus and Poisson’s ratio are 2.01 × 105 Mpa and 0.3, respectively.

σ =

 Esε
(

ε ≤ εyk

)
fyk + E1

(
ε− εyk

) (
ε ≥ εyk

) (12)

Figure 2. Constitutive model of steel.

2.2. Finite Element Modeling
2.2.1. Establishment of Parts and Contact Mode

ABAQUS finite element software can accurately simulate the performance of engineer-
ing materials and has a great advantage in solving nonlinear problems. It can simulate the
force and deformation of specimens ideally. Therefore, based on ABAQUS finite element
software, this paper carries out a study on the seismic performance of the full-scale joints.
Three-dimensional geometric models of square steel tubes, unequal height steel beams, and
core confined concrete are created as shown in Figure 3. The eight-joint hexahedral element
type C3D8H is used to simulate square steel tubes, unequal height steel beams, and core
confined concrete [26,27]. The nonlinear symmetrical contact between the steel tube and
concrete is simplified as normal hard contact and tangential friction contact. The outer wall
of the steel tube and the ring plate, along with the ring plate and the beams, are bonded to
simulate welding. In order to prevent flanges and webs from buckling, transverse stiffeners
are set at the beam ends.
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Figure 3. Three-dimensional geometric model.

2.2.2. Boundary Conditions and Loading

According to the simplified calculation models of the joints, three reference points are
set at the bottom of the columns and the two ends of the beams, namely RP1, RP2, and
RP3. The reference points are respectively coupled with the bottom of the columns and
the cross-section of the ends of the beams, and the hinge connection is achieved by using
MPC to constrain the reference points. Vertical force and horizontal cyclic load are applied
to the top of the columns, and the displacement and the rotation angle are not restricted.
The displacement (UZ) of the left ends for beams in the Z-direction is constrained by RP1,
the displacements (UX, UZ) of the bottom ends for columns in the X and Z directions are
constrained by RP2, and the displacements (UX, UZ) of the right ends for beams in the X
and Z directions are constrained by RP3. The MPC constraint at the beam ends and column
ends is shown in Figure 4.

Figure 4. Detailed diagram of MPC constraints: (a) low beam; (b) bottom of column; (c) high beam.

3. Experimental Verification of Finite Element Model
3.1. Overview of Existing Test

In order to verify the rationality of finite element models of full-scale composite joints
with CFST columns and unequal high steel beams, four frame joints with concrete-filled steel
square tubular columns and H-shaped unequal height steel beams according to the reduction
ratio of 1:3 designed by Xu [19] were selected. The specific parameters of the four specimens
are shown in Table 1. The cubic compressive strength of concrete in the square steel tube is
40 Mpa. The yield strength and ultimate strength of the steel tube are 307 MPa and 419 MPa,
respectively, and the yield strength and ultimate strength of the steel beams are 324 MPa and
439 MPa, respectively. The axial compression ratio of the columns is set as 0.4.
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Table 1. Specific parameters of four specimens.

Specimen
No.

I-Shaped High Steel Beam I-Shaped Low Steel Beam CFST Column

Length
l/mm

Section Size
/mm4

Length
l/mm

Section Size
/mm4

Length
l/mm

Section Size
/mm3

CFSTJ-1

1010 280 × 100 × 6 × 8 1010

80 × 100 × 6 × 8

1735 200 × 200 × 6
CFSTJ-2 130 × 100 × 6 × 8
CFSTJ-3 180 × 100 × 6 × 8
CFSTJ-4 230 × 100 × 6 × 8

3.2. Mesh Division

Taking specimen CFSTJ-1 and specimen CFSTJ-2 as examples, the finite element
models of different mesh sizes are established. The specimens are divided into three mesh
sizes, namely 200 mm, 110 mm (50 mm is adopted as the size of meshing in joint domain),
and 50 mm. The load–displacement skeleton curves of specimens with different mesh
sizes can be obtained. The comparisons are shown in Figure 5. Through comparisons, the
peak point of the skeleton curves obtained by the second meshing size coincides with the
skeleton curves obtained by the test, which can prove that both are in good agreement.
It can be seen that the simulation curves obtained by the second meshing size can better
simulate the experimental situation, so this method is adopted to meshing. The mesh of
the specimens is subdivided partially in the joint domain, as shown in Figure 6.

Figure 5. Comparisons of skeleton curves of specimens with different meshing sizes: (a) specimen
CFSTJ-1; (b) specimen CFSTJ-2.

Figure 6. Mesh division of the specimens with partial densification.
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3.3. Comparison and Verification of Results

The above-mentioned meshing method is used to carry out finite element modeling
and analysis, and the load–displacement hysteretic curves of the specimens are obtained,
as shown in Figure 7. It can be seen from Figure 7 that the hysteresis curves are relatively
full and have a certain pinching effect, which indicates that the specimens have strong
energy dissipation capacity. The hysteresis curves obtained by simulations are in good
agreement with the experimental hysteresis curves. The skeleton curves of the specimens
extracted by the hysteresis curves are shown in Figure 8. It can be seen that the slopes of
the skeleton curves obtained by the simulations are greater than the slopes of the skeleton
curves obtained by the tests at the initial stage. It indicates that the initial stiffness of the
skeleton curves obtained by the simulations are larger than the initial stiffness of the test
skeleton curves. With the increasing of loading, the stiffness of the specimens gradually
degrades. After the peak point of the curves, the load-bearing capacity of the specimens
begins to decrease slowly. However, the ductility of the specimens is still good.

Figure 7. Comparisons of hysteresis curves between simulations and tests: (a) specimen CFSTJ-1;
(b) specimen CFSTJ-2; (c) specimen CFSTJ-3; (d) specimen CFSTJ-4.

The test ultimate bearing capacity (N+
t , N−t ) and simulated ultimate bearing capacity

(N+
s , N−s ) of the four specimens subjected to positive and negative loading can be obtained

by skeleton curves, and the data are shown in Table 2. The mean value of the ultimate
bearing capacity (Nt) obtained from the tests is compared with that of the ultimate bearing
capacity (Ns) obtained from the simulations, and the maximum error is 9.8%, which can
meet the accuracy requirements of engineering. The rationality and accuracy of the finite
element models are verified. The stress cloud diagram of the models and failure modes of
tests are shown in Figure 9.
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Figure 8. Comparisons of skeleton curves between simulations and tests: (a) specimen CFSTJ-1;
(b) specimen CFSTJ-2; (c) specimen CFSTJ-3; (d) specimen CFSTJ-4.

Table 2. Comparisons of ultimate bearing capacity between simulations and tests.

Specimen
No.

N+
t

/kN
N−t
/kN

Nt
/kN

N+
s

/kN
N−s
/kN

Ns
/kN

∣∣∣Nt−Ns
Nt

∣∣∣ × 100%

CFSTJ-1 157.20 −150.62 153.91 149.23 −155.40 152.32 1.0%
CFSTJ-2 158.17 −173.20 165.69 154.98 −155.25 155.15 6.4%
CFSTJ-3 165.09 −180.02 172.56 159.93 −158.42 159.18 7.8%
CFSTJ-4 176.88 −194.39 185.64 166.63 −167.97 167.30 9.8%

Figure 9. Stress cloud diagram of models and failure modes of tests: (a) specimen CFSTJ-1;
(b) specimen CFSTJ-2.
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4. Parameter Analysis
4.1. Design of Full-Scale Specimens

In order to study the seismic behavior of full-scale asymmetrical composite joints with
CFST columns and unequal high steel beams, 36 joints are designed with a CFST hoop
coefficient (ξ), axial compression ratio (n0), compressive strength of cubic concrete (f cuk),
strength of steel tubes (f yk), and cross-sectional size of beams and columns as the main
control parameters. The specific parameters of the specimens are shown in Table 3, and the
specific size of specimen J1 is shown in Figure 10. The length of the column is 5205 mm,
and the length of the beam is 3030 mm. The steel beam adopts H-shaped welded steel
beam. Transverse stiffeners are installed near the ends of the simply-supported beams to
improve the overall stability of the beams. To ensure the reliable connection between the
ends of beams and columns, the annular enclosed connecting plate is adopted as the upper
flange of the beam end, while the lower flange adopts the open connecting plate.

Table 3. Parameters of specimens.

Specimen
No.

D
/mm2

t
/mm

f cuk
/MPa

f yk
/MPa ξ n0

h1 × b1 × t1 × t2
/mm4

h2 × b2 × t3 × t4
/mm4

J1 450 × 450 10 40 235 0.559 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J2 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J3 550 × 550 10 40 235 0.452 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J4 600 × 600 10 40 235 0.412 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J5 500 × 500 10 30 235 0.666 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J6 500 × 500 10 50 235 0.400 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J7 500 × 500 10 60 235 0.333 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J8 500 × 500 10 70 235 0.286 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J9 500 × 500 10 80 235 0.250 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14

J10 500 × 500 8 40 235 0.395 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J11 500 × 500 12 40 235 0.607 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J12 500 × 500 14 40 235 0.718 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J13 500 × 500 16 40 235 0.831 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J14 500 × 500 16 40 235 0.500 0.1 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J15 500 × 500 16 40 235 0.500 0.3 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J16 500 × 500 16 40 235 0.500 0.4 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J17 500 × 500 16 40 235 0.500 0.5 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J18 500 × 500 16 40 235 0.500 0.6 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J19 500 × 500 10 40 235 0.500 0.2 800 × 300 × 10 × 14 540 × 300 × 10 × 14
J20 500 × 500 10 40 235 0.500 0.2 760 × 300 × 10 × 14 540 × 300 × 10 × 14
J21 500 × 500 10 40 235 0.500 0.2 720 × 300 × 10 × 14 540 × 300 × 10 × 14
J22 500 × 500 10 40 235 0.500 0.2 680 × 300 × 10 × 14 540 × 300 × 10 × 14
J23 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 460 × 300 × 10 × 14
J24 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 420 × 300 × 10 × 14
J25 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 380 × 300 × 10 × 14
J26 500 × 500 10 40 345 0.734 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J27 500 × 500 10 40 490 1.042 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J28 500 × 500 10 40 630 1.340 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 14
J29 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 8 × 14
J30 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 12 × 14
J31 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 14 × 14
J32 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 16 × 14
J33 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 10
J34 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 12
J35 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 16
J36 500 × 500 10 40 235 0.500 0.2 840 × 300 × 10 × 14 540 × 300 × 10 × 18

Note: D is the dimension of the concrete-filled square steel tube column; t is the wall thickness of the square steel tube; f cuk and f yk are the
standard values of the concrete cube compressive strength and steel tube yield strength, respectively. ξ is the hoop coefficient; n0 is the axial
compression ratio; h1, b1, t1, and t2 are the height, flange width, web thickness, and flange thickness of the high beam, respectively. h2, b2, t3
and t4 are the height, flange width, web thickness, and flange thickness of the low beam, respectively.
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Figure 10. The specific size of specimen J1: (a) dimensions of beams and columns (mm); (b) connecting plate size (mm);
(c) beam section size (mm).

4.2. The Main Parametric Analysis
4.2.1. Compressive Strengths of Concrete Cubes (f cuk)

The hysteresis curves and skeleton curves with different f cuk are shown in Figure 11.
The peak load (Pmax) and ultimate load (Pu) of the specimens are shown in Table 4. It can
be found from Figure 11 and Table 4 that with the increasing of f cuk, the peak load (Pmax)
of the specimens gradually increases. The f cuk increases from 30 to 40 Mpa, 50 Mpa, 60
Mpa, 70 Mpa and 80 Mpa in turn, and the Pmax of the specimen increases from 490.196 to
503.375 kN, 509.765 kN, 517.574 kN, 521.854 kN, and 525.442 kN, which increases by 2.69%,
4.00%, 5.59%, 6.46%, and 7.19%, respectively. When f cuk exceeds 60 Mpa, the increasing of
Pmax is no longer obvious. It can be seen that the restraint effect of steel tubes on ordinary
concrete is significant, but the restraint effect on high-strength concrete is not obvious.

Figure 11. Comparisons of curves of joints with different strengths of concrete: (a) hysteretic curves;
(b) skeleton curves.

Table 4. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

f cuk
/MPa

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 30 503.38 60.74 438.71 31.60 402.04 91.24 2.89
J5 40 490.20 59.10 458.63 35.57 394.07 90.29 2.54
J6 50 509.77 54.79 448.67 31.87 408.95 94.25 2.96
J7 60 517.57 62.59 450.48 31.74 413.62 99.18 3.12
J8 70 521.85 65.94 450.93 30.98 417.98 101.09 3.26
J9 80 525.44 69.56 448.22 30.71 423.41 101.03 3.29
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Ductility is one of the important indicators of the seismic performance of the spec-
imens, which can reflect the stiffness, bearing capacity, and energy dissipation of the
specimens. It is represented by the ductility coefficient (µ), and the expression is shown
in Formula (13).

µ = ∆u/∆y (13)

where ∆u refers to the ultimate displacement and ∆y denotes the yield displacement.
In this paper, the Park method [28] is adopted to calculate the equivalent yield point of

the specimens, as shown in Figure 12. Based on the P-∆ curves, the equivalent yield point
can be obtained by finding the corresponding point of 0.7 times as Pmax on the curves, and
the yield load (Py) can be calculated, as shown in Table 4. The peak displacement (∆max),
yield displacement, ultimate displacement, and the ductility coefficient of the specimens
are shown in Table 4. With the increasing of f cuk, µ gradually increases. When the f cuk
increases from 30 to 40 Mpa, 50 Mpa, 60 Mpa, 70 Mpa, and 80 Mpa in turn, µ increases from
2.54 to 2.89, 2.96, 3.12, 3.26, and 3.29, which increases by 13.78%, 16.54%, 22.83%, 28.35%,
and 29.53%, respectively. It can be found that f cuk has a significant effect on the ductility
of specimens.

Figure 12. The yield point is determined by Park method.

4.2.2. Axial Compression Ratios (n0)

The hysteresis curves and skeleton curves of the specimens with different n0 are
shown in Figure 13. The load, displacement, and ductility coefficients of the specimens at
each stage are shown in Table 5. It can be seen from Figure 13 and Table 5 that with the
increasing of n0, the Pmax of the specimens gradually increases firstly and then gradually
decreases after reaching a peak point. When n0 increases from 0.1 to 0.3 and 0.4, the Pmax
of the specimens increases from 558.98 to 630.92 kN and 652.91 kN, which increases by
12.87% and 16.81%, respectively. When n0 increases from 0.4 to 0.5 and 0.6, the Pmax of the
specimens decreases from 652.91 to 648.94 kN and 630.45 kN, which decreases by 0.60%
and 3.44%, respectively. It can be seen that the axial compression ratio has a significant
effect on the Pmax of the specimens. When the axial compression ratio is controlled as
the value of 0.4, the load-bearing capacity of the specimens reaches maximum. When
n0 increases from 0.1 to 0.3 and 0.4, the µ of the specimens increases from 2.66 to 2.94 and
3.02, which increases by 10.53% and 13.53%, respectively. When n0 increases from 0.4 to
0.5 and 0.6, the µ of the specimens decreases from 3.02 to 2.85 and 2.79, which decreases
by 5.63% and 7.62%, respectively. It can be seen that the axial compression ratio has a
significant effect on the ductility of the specimens. When the axial compression ratio is not
more than 0.4, the ductility of the specimens can be maintained above 3, which indicates
the asymmetrical composite joint has good deformability.
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Figure 13. Comparisons of curves of joints with different axial pressure ratios: (a) hysteretic curves;
(b) skeleton curves.

Table 5. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No. n0

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J14 0.1 558.98 66.14 492.59 38.30 444.78 101.85 2.66
J15 0.3 630.92 66.42 548.73 36.43 504.90 107.07 2.94
J16 0.4 652.91 66.01 563.21 34.57 521.93 104.31 3.02
J17 0.5 648.94 66.07 547.39 33.83 519.02 96.40 2.85
J18 0.6 630.45 55.06 529.26 32.44 501.64 90.48 2.79

4.2.3. The Heights of the Low Beams (h2)

The hysteretic curves and skeleton curves of specimens with different h2 are shown
in Figure 14. Load, displacement, and ductility coefficients of specimens at each stage
are shown in Table 6. It can be seen from Figure 14 and Table 6 that when h2 increases
from 380 to 420 mm, 460 mm, and 540 mm, the Pmax of the specimens increases from
488.20 to 491.28 kN, 494.58 kN, and 503.38 kN, which increases by 0.63%, 1.31%, and 3.11%,
respectively. It can be found that with the increasing of h2, the Pmax of the specimens is not
improved significantly. Table 6 shows that the height of the low beams has no significant
influence on the ductility of the specimens.

Figure 14. Comparisons of curves of joints with different heights of low beams: (a) hysteretic curves;
(b) skeleton curves.
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Table 6. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

h2
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J23 460 494.58 66.07 438.37 32.96 395.25 95.68 2.90
J24 420 491.28 66.23 427.16 33.20 392.26 98.39 2.96
J25 380 488.20 60.25 432.94 33.99 390.56 101.19 2.98
J2 540 503.38 60.74 438.71 31.60 402.04 91.24 2.89

4.2.4. Wall Thicknesses of Square Steel Tubes (t)

The hysteresis curves and skeleton curves of the specimens with different t are shown
in Figure 15, and the load, displacement, and ductility coefficients of the specimens at each
stage are shown in Table 7. It can be seen from Figure 15 that when t of the specimens
increases from 8 to 10 mm, 12 mm, 14 mm, and 16 mm, Pmax of the specimens increases
from 454.53 to 503.38 kN, 547.97 kN, 575.80 kN, and 600.86 kN in turn, which increases by
10.75%, 20.56%, 26.68%, and 32.19%, respectively. It can be seen that with the increasing
of t, the constraint effect of steel tubes is enhanced, and the Pmax of specimens is improved
more significantly. When the t of the specimens increases from 8 to 10 mm, 12 mm, 14 mm,
and 16 mm, the µ of the specimens increases from 2.84 to 2.89, 2.98, 3.01, and 3.03 in turn,
which increases by 1.76%, 4.93%, 5.65%, and 6.69%, respectively. It can be seen that with the
increasing of t, the ductility of the specimens gradually increases, but t has no significant
influence on the ductility of the specimens. When the wall thickness of square steel tubes is
no less than 14 mm, the ductility of the specimens can be kept above 3, and the composite
joints have good deformation ability.

Figure 15. Comparisons of curves of joints with different wall thicknesses of square steel tubes:
(a) hysteretic curves; (b) skeleton curves.

Table 7. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

t4
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 10 503.38 60.74 438.71 31.60 402.04 91.24 2.89
J10 8 454.53 50.75 390.27 28.18 362.92 79.96 2.84
J11 12 547.97 65.80 477.65 34.47 435.36 102.74 2.98
J12 14 575.80 66.07 507.07 35.18 461.07 106.06 3.01
J13 16 600.86 66.21 546.01 34.74 479.91 105.33 3.03

4.2.5. Flange Thicknesses of Low Beams (t4)

The hysteretic curves and P-∆ skeleton curves of the specimens with different t4 are
shown in Figure 16. The load, displacement, and ductility coefficients of the specimens
at each stage are shown in Table 8. As we can see from Figure 16 and Table 8, when t4
increases from 10 to 12 mm, 14 mm, 16 mm, and 18 mm in turn, the Pmax of the specimens
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increases from 503.05 to 511.08 kN, 503.38 kN, 516.44 kN, and 516.90 kN, respectively,
indicating little influence on the Pmax of specimens. When t4 increases from 10 to 12 mm,
14 mm, 16 mm, and 18 mm in turn, the µ of the specimens increases by 5.44%, 12.45%,
12.45%, and 13.62%, respectively. It can be seen that with the increasing of t4, the ductility
of the specimens gradually increases.

Figure 16. Comparisons of curves for joints with different flange thicknesses of low beams:
(a) hysteretic curves; (b) skeleton curves.

Table 8. Load, displacement, and ductility coefficients of specimens at each stage.

Specimen
No.

t4
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 14 503.38 60.74 438.71 31.60 402.04 91.24 2.89
J33 10 503.05 56.86 462.14 35.96 402.44 92.50 2.57
J34 12 511.08 59.37 459.42 33.79 408.86 91.72 2.71
J35 16 516.44 61.97 457.04 31.02 413.15 89.60 2.89
J36 18 516.90 58.66 477.76 31.41 413.52 91.80 2.92

4.2.6. Web Thicknesses of Low Beams (t3)

The hysteretic curves and P-∆ skeleton curves of the specimens with different t3 are
shown in Figure 17. The load, displacement, and ductility coefficients of the specimens
at each stage are shown in Table 9. As we can see from Figure 17 and Table 9, when t3
increases from 8 to 10 mm, 12 mm, 14 mm, and 16 mm in turn, the Pmax of the specimens
increases from 482.19 to 503.38 kN, 503.76 kN, 503.41 kN, and 503.52 kN, which increases
by 4.39%, 4.47%, 4.40%, and 4.42%, respectively. It can be seen that t3 has little influence on
the Pmax and µ of the specimens.

Figure 17. Comparisons of curves for joints with different web thicknesses of low beams: (a) hysteretic
curves; (b) skeleton curves.
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Table 9. Load, displacement, and ductility coefficients of specimens at each stage.

Specimen
No.

t3
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 10 503.38 60.74 438.71 31.60 402.04 91.24 2.89
J29 8 482.19 67.37 430.56 38.03 385.75 110.27 2.90
J30 12 503.76 60.94 420.71 31.07 403.00 91.18 2.93
J31 14 503.41 61.42 444.14 31.20 402.73 91.72 2.94
J32 16 503.52 58.28 446.52 31.67 402.82 91.72 2.90

4.2.7. The Heights of the High Beams (h1)

The hysteresis curves and P-∆ skeleton curves of specimens with different h1 are
shown in Figure 18. The load, displacement, and ductility coefficients of specimens at each
stage are shown in Table 10. As we can see from Figure 18 and Table 10, when h1 decreases
from 840 to 800 mm, 760 mm, 720 mm, and 680 mm in turn, the Pmax of the specimens
decreases from 503.38 to 491.89 kN, 483.67 kN, 472.88 kN, and 460.77 kN, which decreases
by 2.28%, 3.91%, 6.06%, and 8.46%, respectively. It can be seen that with the decreasing of
h1, the Pmax of specimens gradually decrease, and the descending branch of the skeleton
curves slow down. When h1 decreases from 840 to 800 mm, 760 mm, 720 mm, and 680 mm,
in turn, µ increases from 2.89 to 3.01, 3.03, 3.30, and 3.53, which increases by 4.15%, 4.84%,
14.19%, and 22.15%, respectively. It can be seen that with the decreasing of h1, the ductility
of the specimens gradually increases. The descending branch of skeleton curves for each
specimen is relatively gentle, which indicates that although the weld bead cracks at a later
stage, the specimen still has good bearing capacity. When the height of the high beam is
less than 800 mm, the ductility of the specimens can be kept above 3, and the composite
joints have good deformation ability.

Figure 18. Comparisons of curves for joints with different heights of the high beams: (a) hysteretic
curves; (b) skeleton curves.

Table 10. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

h1
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 840 503.38 60.74 437.35 31.60 402.04 91.24 2.89
J19 800 491.89 66.01 437.35 32.76 391.90 98.50 3.01
J20 760 483.67 66.35 428.30 33.65 385.38 101.92 3.03
J21 720 472.88 66.31 416.98 33.91 376.22 111.80 3.30
J22 680 460.77 70.78 404.75 33.91 368.35 119.70 3.53
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4.2.8. Cross-Sectional Sizes of Square Steel Tubes (D)

The hysteresis curves and P-∆ skeleton curves of specimens with different D are
shown in Figure 19. The load, displacement, and ductility coefficients of the specimens
at each stage are shown in Table 11. It can be seen from Figure 19 and Table 11 that when
D increases from 450 mm × 450 mm to 500 mm × 500 mm, 550 mm × 550 mm, and
600 mm × 600 mm in turn, the Pmax of the specimens increase from 408.71 to 503.38 kN,
582.66 kN, and 649.29 kN, which increases by 23.16%, 45.56%, and 58.86%, respectively.
It can be seen that with the increasing of D, the Pmax of specimens increase significantly.
When D increases from 450 mm × 450 mm to 500 mm × 500 mm, 550 mm × 550 mm, and
600 mm × 600 mm in turn, the µ of the specimens increases from 2.37 to 2.89, 3.51, and
3.57, which increases by 21.94%, 48.10%, and 50.63% respectively. It can be seen that with
the increasing of D, the ductility of the specimens gets better and better.

Figure 19. Comparisons of curves for joints with different cross-sectional dimensions: (a) hysteretic
curves; (b) skeleton curves.

Table 11. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

D
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J1 450 × 450 408.713 55.06 365.7 37.96 330.05 90.08 2.37
J2 500 × 500 503.375 60.74 438.71 31.6 402.04 91.24 2.89
J3 550 × 550 582.66 66.47 493.2 29.61 466.51 104.06 3.51
J4 600 × 600 649.29 75.1 551.44 30.44 518.66 108.82 3.57

4.2.9. Yield Strengths of Steel Tubes (f yk)

The hysteresis curves and P-∆ skeleton curves of specimens with different f yk are
shown in Figure 20. The load, displacement, and ductility coefficients of the specimens
at each stage are shown in Table 12. It can be seen from Figure 20 and Table 12 that with
the increasing of f yk, Pmax increases significantly. When f yk increases from 235 to 345 MPa,
490 MPa, and 630 MPa, in turn, Pmax of specimens increase from 503.38 to 649.08 kN,
808.17 kN, and 952.91 kN, which increases by 28.94%, 60.55%, and 89.3%, respectively.
It can be seen that with the increasing of yield strengths of steel tubes, the Pmax of the
specimens increases significantly. When f yk increases from 235 to 345 MPa, 490 MPa,
and 630 MPa in turn, the µ of specimens decreases from 2.89 to 2.43, 2.20, and 1.79,
which decreases by 15.92%, 23.88%, and 38.06%, respectively. It can be seen that with the
increasing of f yk, the ductility of the specimens becomes smaller, and the deformation
capacity becomes worse. In practical engineering design, it is suggested that steel tubes
with high strengths not be used.
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Figure 20. Comparisons of curves for joints with different yield strengths of steel tubes: (a) hysteretic
curves; (b) skeleton curves.

Table 12. Load, displacement, and ductility coefficients of the specimens at each stage.

Specimen
No.

f yk
/mm

Pmax
/kN

∆max
/mm

Py
/kN

∆y
/mm

Pu
/kN

∆u
/mm µ

J2 235 503.38 60.74 438.71 31.60 402.04 91.24 2.89
J26 345 649.08 75.97 571.36 47.32 519.26 114.91 2.43
J27 490 808.17 89.77 731.18 67.10 646.54 147.74 2.20
J28 630 952.91 110.91 882.85 89.06 762.33 159.44 1.79

4.3. Energy Dissipation Capacity

Energy dissipation of structure is the energy expression of structural ductility. The
more energy the structure absorbs and dissipates when it encounters an earthquake, the
safer the structure will be, the fuller the hysteretic curves will be, and the larger the
surrounding area will be. Energy dissipation coefficient E and equivalent viscous damping
coefficient ξ are used to judge the energy dissipation capacity of the structure. The energy
dissipation coefficient is calculated as shown in Figure 21, and the calculation formulas [29]
are shown in Formulas (14) and (15); here, S represents the surrounding area. Energy
dissipation coefficient (E) and equivalent viscous damping coefficient (ξ) corresponding to
hysteretic loops of peak loading for 36 groups of specimens are shown in Table 13. Taking
specimen J1 as an example, the ξ of each hysteretic loop (Q) is shown in Figure 22.

E =
SABC + SCDA
SOBE + SODF

(14)

ξ =
1

2π

SABC + SCDA
SOBE + SODF

(15)

Figure 21. Schematic diagram for calculating E.
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Table 13. E and ξ of 36 specimens.

Specimen No. h1 × b1 × t1 × t2
/mm4

h2 × b2 × t3 × t4
/mm4

E
(Peak Load)

ξ
(Peak Load)

J1 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.755 0.279
J2 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.651 0.263
J3 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.681 0.268
J4 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.612 0.257
J5 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.685 0.268
J6 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.627 0.259
J7 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.623 0.258
J8 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.607 0.256
J9 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.604 0.255
J10 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.607 0.256
J11 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.682 0.268
J12 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.647 0.262
J13 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.641 0.261
J14 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.737 0.277
J15 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.569 0.250
J16 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.483 0.236
J17 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.574 0.251
J18 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.719 0.274
J19 800 × 300 × 10 × 14 540 × 300 × 10 × 14 1.659 0.264
J20 760 × 300 × 10 × 14 540 × 300 × 10 × 14 1.631 0.260
J21 720 × 300 × 10 × 14 540 × 300 × 10 × 14 1.689 0.269
J22 680 × 300 × 10 × 14 540 × 300 × 10 × 14 1.538 0.245
J23 840 × 300 × 10 × 14 460 × 300 × 10 × 14 1.640 0.261
J24 840 × 300 × 10 × 14 420 × 300 × 10 × 14 1.644 0.262
J25 840 × 300 × 10 × 14 380 × 300 × 10 × 14 1.638 0.261
J26 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.400 0.223
J27 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.134 0.181
J28 840 × 300 × 10 × 14 540 × 300 × 10 × 14 1.018 0.162
J29 840 × 300 × 10 × 14 540 × 300 × 8 × 14 1.664 0.265
J30 840 × 300 × 10 × 14 540 × 300 × 12 × 14 1.635 0.260
J31 840 × 300 × 10 × 14 540 × 300 × 14 × 14 1.630 0.260
J32 840 × 300 × 10 × 14 540 × 300 × 16 × 14 1.632 0.260
J33 840 × 300 × 10 × 14 540 × 300 × 10 × 10 1.630 0.260
J34 840 × 300 × 10 × 14 540 × 300 × 10 × 12 1.715 0.273
J35 840 × 300 × 10 × 14 540 × 300 × 10 × 16 1.743 0.278
J36 840 × 300 × 10 × 14 540 × 300 × 10 × 18 1.765 0.281

Figure 22. ξ of each loop of J1 joint.
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It can be seen from Table 13 that ξ of the composite joints under peak load is between
0.2 and 0.3. Previous studies have shown that the ξ of reinforced concrete joints under
peak load is 0.1, while that of steel-reinforced concrete joints is about 0.3 [30]. Therefore,
the ξ of all specimens is between ξ of reinforced concrete joints and ξ of steel-reinforced
concrete joints. It can be seen that this kind of new asymmetrical composite joints have
better energy dissipation capacity.

4.4. Stiffness Degradation

The stiffness of the specimens can be expressed by the secant stiffness (K) [31], which
is defined as:

K =
|+Pi|+ |−Pi|
|+∆i|+ |−∆i|

(16)

where ±Pi is the positive and negative peak load of each hysteresis loop, and ±∆i is the
positive and negative displacement corresponding to peak load. The influence of various
parameters on K of specimens is shown in Figure 23. It can be seen from Figure 24 that with
the increasing of displacement, the K value of all specimens gradually decreases, which
shows the characteristics of stiffness degradation. It can be seen from Figure 23a that with
the increasing of cross-sectional sizes of square steel tubes, K and the energy dissipation
of the specimens gradually increases. It can be seen from Figure 23b that the compressive
strength of cubic concrete has no obvious influence on K of the specimens. It can be seen
from Figure 23c that with the increasing of wall thicknesses of the square steel tubes, K of
the specimens gradually increases, but the increasing rate decreases. It can be seen from
Figure 23d that with the increasing of axial compression ratio, K of specimens increases
significantly, and the stiffness degrades significantly. It can be seen from Figure 23e,f that
the heights of the high beams and the low beams have basically no effect on the K of
specimens. It can be seen from Figure 23g that with the increasing of yield strengths of the
steel tubes, K of the specimens is basically the same at the early stage. At the later stage, the
steel tube enters the yielding stage, and K of the specimens increases significantly. It can
be seen from Figure 23h that the web thickness and the flange thickness of the low beams
have basically no effect on K of the specimens.

Figure 23. Cont.
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Figure 23. Comparisons of stiffness degradation curves of each group of specimens: (a) different cross-sectional sizes of the
square steel tubes; (b) different compressive strengths of cube concrete; (c) different wall thicknesses of the square steel
tubes; (d) different axial compression ratios; (e) different heights of the high beams; (f) different heights of the low beams;
(g) different yield strengths of steel tubes; (h) different web thicknesses of the low beams; (i) different flange thicknesses of
the low beams.

Figure 24. The stress mechanism of concrete in the joint domain.

5. Shear Bearing Capacity
5.1. Stress Mechanism of Joints

At present, the shear failure mechanism of concrete at beam–column joints includes
four mechanisms: diagonal strut mechanism, truss mechanism, shear friction mechanism,
and constraint mechanism [32]. A diagonal strut mechanism is suitable for the joint applied
by the vertical force and horizontal force. Oblique principal stress can be formed in the
concrete of the joint domain. With the change of horizontal directions, oblique principal
stress alternates positively and negatively, and a diagonal strut organization of concrete
is formed [33]. The joints fail under compression, and the concrete in the core area of the
joints achieves ultimate shear capacity, as shown in Figure 24. Due to the differences of
heights between the left sides and right sides of the beams, shear yield firstly occurs in
the upper core region and a baroclinic zone is formed in the core region of the joint at the



Symmetry 2021, 13, 2381 21 of 26

initial loading stage. Under the constraint effect of steel tubes, the baroclinic zone becomes
a baroclinic bar to bear shear loading. With the increasing of shear load, the whole yield
area increases. At this time, the core concrete has not been completely crushed, and the
bearing capacity can continue to increase. When reaching the limit state, the concrete in the
core zone crushes, and the joint fails.

5.2. Shear Capacity of Joint Domain

Xu [17] believes that the diagonal strut in the core area of the joints is composed of the
main diagonal strut and the constrained diagonal strut, and the sum of the shear capacity
of these two bars in the horizontal direction is the shear capacity for the core area of
joints. Based on this theory, the equation is established by using the virtual work principle,
and the calculation shown in Formula (17) for the shear capacity of the asymmetrical
composite joints with CFST columns and unequal height steel beams is obtained. The
physical significance of each variable is shown in the literature [17]. The calculated value
(Vj) by Equation (17) of the shear bearing capacity of 36 specimens is compared with the
simulated value (Vt), as shown in Figure 25.

Vj =
1.8t(b− 2t)

√
f 2
sy − σ2

s
√

3
+ ξηy fcbc(hc − Dtanα)cosαsinα + 2sinα

√
bt2 fsyξηy fchc (17)

Figure 25. Comparisons of shear capacity for 36 specimens.

It can be seen that there is a large error between Vj and Vt, so it is not suitable for
this formula to calculate the shear bearing capacity of composite joints. According to
the mechanism of joints, the shear capacity of joints is mainly composed of steel tubes
and diagonal strut of concrete. The calculated shear capacity of the joint domain can be
expressed as follows:

Vj = Vs + Vc (18)

where Vs is the shear capacity of steel tubes in joint domain, and Vc is the shear capacity of
concrete in the joint domain.

5.2.1. Shear Capacity of Concrete in Joint Domain

The horizontal shear force is resisted by concrete through the diagonal strut structure.
According to the force mechanism of the diagonal strut of concrete, the shear capacity
of concrete is taken as the horizontal component of the ultimate strength of the diagonal
strut. The formula for the shear capacity of concrete at joint domain can be derived by
reference [32] as follows:

Vc = fcbabccosθa (19)

where fc is the axial compressive strength of concrete; ba is equivalent width of the diag-
onal strut; bc is the cross-sectional width of the concrete; and θa is the angle of concrete
diagonal strut.
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The height of the column is used to represent ba, and its calculation formula is
as follows:

ba = αa·
√

h2
c + h2

b = γahc (20)

where γa = αa

√
1 + β2

j , αa is the ratio of ba to the diagonal length of the joint domain, and
its value is taken as 0.3 [34]. β j is the ratio of the heights of beams to columns, namely

β j =
hb
hc

.
θa can be calculated according to the following formula:

cosθa =
hc0 − α′s√

(hc0 − α′s)
2 +

(
hb − t f

)2
(21)

where hc0 is the effective heights of columns. α′s is the distance between the resultant point
of compressive reinforcement and the compression edge. hb is the height of the beams. t f
is the flange thickness of steel beams.

The formula for the shear strength of concrete in the joint domain can be obtained by
combining the above expressions:

Vc = 0.3· fc

√
1 + β2

j hcbccosθ. (22)

5.2.2. Shear Capacity of Steel Tubes in Joint Domain

The calculation formula for shear stress of symmetrical steel beam–column joints is
given in Standard for the design of steel structure of China [35], namely:
Mb1 + Mb2 = 4

3 × fv × Vp, and Vs = fv·S. For asymmetrical beam–column joints, it
is necessary to introduce the shear capacity correction factor (ϕ) [36]:

(Mb1 + Mb2)·ϕ =
4
3
× fv ×Vp (23)

ϕ = a0.78
(

D
t

)0.41
(

b f

t f

)−0.31

(1− n)0.5 (24)

VP = 1.8× hb1 × hc1 × tw. (25)

The formula for Vs is as follows:

Vs =
(Mb1 + Mb2)·S·ϕ
2.4× hb1·hc1·tw

(26)

where Mb1 and Mb2 are the bending moments at both ends of the joints. S is the cross-
sectional area of the steel tubes. a is the ratio of the heights on two sides. D is the width of

the steel tubes. t is the wall thickness of the steel tubes.
b f
t f

is the ratio of width to thickness
of the flange. n is the axial compression ratio. hb1 is the height between centerlines of
flanges of high beams. hc1 is the heights of webs of low beams. tw is the thickness of
webs in the joint domain. The force state of the steel tubes in the joint domain is shown
in Figure 26.
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Figure 26. The force state of the steel tubes in the joint domain.

Compared with equal-height steel beams, unequal-height steel beams are subjected to
asymmetric shear under cyclic loading, which will result in changes of the shear capacity
for steel tubes and concrete. In order to take changes into consideration, the influence
coefficients of concrete (ξ1) and steel tubes (ξ2) are introduced into Formula (18), and the
shear capacity formula for composite joint domain is obtained by combining Formulas (18),
(22) and (26):

Vj = ξ1·
(Mb1 + Mb2)·S·ϕ
2.4× hb1·hc1·tw

+ 0.3·ξ2 fc

√
1 + β2

j hcbccosθ. (27)

The Levenberg–Marquardt (LM) optimization algorithm based on 1stOpt software is
used to fit the data of 36 specimens. After 17 iterations, ξ1 and ξ2 are taken as 0.941 and
1.132, respectively. Submitting it into Formula (27), the formula for calculating the shear
bearing capacity of the composite joint domain with CFST columns and unequal high steel
beams can be obtained as follows:

Vj = 0.941· (Mb1 + Mb2)·S·ϕ
2.4 × hb1·hc1·tw

+ 0.3396· fc

√
1 + β2

j hcbccosθ. (28)

According to Formula (28), the shear bearing capacity of the joint domain of 36 specimens
can be calculated, and Vj is compared with Vt, as shown in Table 14. The dispersion degree
of Vj and Vt can be seen in Figure 27, and the maximum error (Errormax) is 6.08%. It can be
seen that the formula has high calculation accuracy and can meet engineering needs [37,38].

Figure 27. Comparisons between Vt and Vj for 36 specimens.
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Table 14. Comparisons between Vj and Vt for 36 specimens.

Specimen No. Vt
/kN

Vj
/kN Vt/Vj

|Vt−Vj|
Vt

× 100%

J1 4669.98 4937.71 0.95 5.73
J2 7954.73 8035.40 0.99 1.01
J3 9365.43 9480.90 0.99 1.23
J4 10,446.63 10,627.83 0.98 1.73
J5 7045.66 7042.40 1.00 0.05
J6 8614.23 8793.55 0.98 2.08
J7 8502.30 8825.83 0.96 3.81
J8 9872.72 10,252.92 0.96 3.85
J9 10,766.66 11,231.68 0.96 4.32
J10 5979.56 6181.45 0.97 3.38
J11 7980.75 8055.29 0.99 0.93
J12 8696.14 8723.85 0.99 0.32
J13 9166.14 9161.51 1.00 0.05
J14 8903.58 8914.46 0.99 0.12
J15 8598.74 8627.62 0.99 0.34
J16 7998.45 8062.77 0.99 0.80
J17 7522.83 7615.24 0.98 1.23
J18 7199.33 7310.84 0.98 1.55
J19 8136.54 8206.47 0.99 0.86
J20 6020.75 6215.62 0.96 3.24
J21 5394.80 5626.63 0.95 4.30
J22 4592.46 4871.67 0.94 6.08
J23 14,328.78 14,033.06 1.02 2.06
J24 17,194.81 16,729.85 1.03 2.70
J25 23,547.71 22,707.60 1.04 3.57
J26 8499.26 8547.77 0.99 0.57
J27 8552.20 8597.59 0.99 0.53
J28 7417.76 7530.14 0.98 1.51
J29 11,634.10 11,497.49 1.01 1.17
J30 7083.73 7215.83 0.98 1.86
J31 6466.99 6635.51 0.97 2.61
J32 5947.72 6146.90 0.97 3.35
J33 7959.84 8040.21 0.99 1.01
J34 7685.80 7782.35 0.99 1.26
J35 7548.19 7652.87 0.99 1.39
J36 7714.58 7809.43 0.99 1.23

6. Conclusions

The full-scale finite element models of 36 asymmetrical composite joints with CFST
columns and unequal high steel beams were established reasonably. The influence regular-
ity of different parameters on the hysteretic performance of the asymmetrical composite
joints was clarified. The expression for the shear bearing capacity of asymmetrical full-scale
composite joints is obtained. The specific conclusions are as follows:

(1) With the increasing of f cuk, the peak load and ductility of the specimens gradually
increase. With the increasing of the wall thickness of the square steel tubes and sectional
sizes of square steel tubes, the peak load and ductility of the specimens can be significantly
improved. It can be seen that the steel tube has a significant restraint effect on concrete.
When the axial compression ratio is 0.4, the specimens have better bearing capacity and
ductility. ξ of the composite joints under peak load is between 0.2 and 0.3, which shows that
this new type of composite joints has better energy dissipation capacity. With the increasing
of displacement, K of all specimens gradually decreases, which shows the characteristics of
stiffness degradation.

(2) The shear capacity of this type of joints is mainly composed of the shear capacity
of steel tubes and diagonal strut of concrete. Shear yielding firstly occurs in the upper core
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region and diagonal struts are formed in the core joint region at the initial loading stage.
With the increasing of shear loading, the whole yield area increases. When reaching the
limit state, the concrete in the core zone crushes, and the joint fails.
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