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Abstract: Materials with nanoscale phase separation are considered. A system representing a
heterophase mixture of ferromagnetic and paramagnetic phases is studied. After averaging over
phase configurations, a renormalized Hamiltonian is derived describing the coexisting phases. The
system is characterized by direct and exchange interactions and an external magnetic field. The
properties of the system are studied numerically. The stability conditions define the stable state
of the system. At a temperature of zero, the system is in a pure ferromagnetic state. However, at
finite temperature, for some interaction parameters, the system can exhibit a zeroth-order nucleation
transition between the pure ferromagnetic phase and the mixed state with coexisting ferromagnetic
and paramagnetic phases. At the nucleation transition, the finite concentration of the paramagnetic
phase appears via a jump.

Keywords: nanoscale phase separation; quasi-equilibrium system; heterophase mixture; zeroth-order
transition; nucleation point

1. Introduction

Phase transitions are commonly characterized by the appearance of non-analyticities
in the system’s thermodynamic characteristics. The classification of phase transitions is
usually connected with the non-analyticities in the derivatives of thermodynamic potentials.
Thus, the non-analyticity in the first-order derivatives implies a first-order phase transition,
the non-analyticity in the second-order derivatives of a thermodynamic potential defines a
second-order phase transition [1].

Recently, the possible existence of zeroth-order phase transitions has been brought
to attention [2]; it is possible when a thermodynamic potential itself exhibits a discontinu-
ity. Zeroth-order phase transitions have been found in the physics of black holes [3–11],
holographic superconductors [12–15], and holographic ferromagnets and antiferromag-
nets [16,17]. The zeroth-order phase transition was also found for some spin models with
long-range interactions [18,19]. Note that for the systems with long-range interactions,
microcanonical and canonical ensembles are not necessarily equivalent [20].

Metal-insulator phase transitions in some materials, such as V2O3, were classified
as zeroth-order phase transitions, where the free energy is discontinuous [21,22]. These
phase transitions exhibit the phase coexistence and ramified fractal-like nanoscale phase
separation in the transition region [21–23].

In this way, the zeroth-order phase transitions can occur when at least one of the
features is present: either long-range interactions or nanoscale phase separation. Under
this kind of phase separation, the system represents a mixture of nanoscale regions of
different phases. The probabilistic weights of the phases are self-consistently defined by the
system parameters and thermodynamic variables. Such nanoscale mixtures are also called
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heterophase or mesoscopic, since the linear size of inclusions of one phase inside the matrix
of the other is larger than the interparticle distance but much smaller than the system
linear size. The appearance of mesoscopic heterophase mixtures under nanoscale phase
separation is a very widespread phenomenon arising around many phase transitions that
can be of first or second order. Numerous examples of materials exhibiting the existence
of such mixtures are given in the review articles [24–27]. Recently, the possibility of
superfluid dislocations inside quantum crystals has been discussed [28–30]. Different types
of nanoscale phase separation occur in electrolytes [31–35].

Here we shall concentrate on a heterophase mixture of ferromagnetic and param-
agnetic phases. There exist numerous examples of materials exhibiting the coexistence
of magnetic (ferromagnetic or antiferromagnetic) and paramagnetic phases. Thus, using
the Mössbauer effect, the coexistence of antiferromagnetic and paramagnetic phases is
observed in FeF3 [36], in CaFe2O4 [37], and in a number of orthoferrites, such as LaFeO3,
PrFeO3, NdFeO3, SmFeO3, EuFeO3, GdFeO3, TbFeO3, DyFeO3, YFeO3, HoFeO3, ErFeO3,
TmFeO3, and YbFeO3 [38,39]. Ferromagnetic cluster fluctuations, called ferrons or fluc-
tuons, can arise inside a paramagnetic matrix of some semiconductors [40–45]. In some
materials, magnetic cluster excitations can occur in the paramagnetic region above Tc or
above TN [46–52], causing the appearance of spin waves in the paramagnetic phase, for
instance, in Ni, Fe, EuO, EuS, Pd3Fe, and Gd [53–58]. The coexistence of ferromagnetic and
nonmagnetic phases was also observed in Y2Co7, YCo3, Co(SxSe1−x)2, Co(TixAl1−x)2, and
Lu(Co1−xAlx)2 [59,60]. In colossal magnetoresistance materials, such as La1−xCaxMnO3
and La1−xSrxCoO3, one observes the coexistence of a paramagnetic insulating, or semicon-
ducting, phase and a ferromagnetic metallic phase [61–63], while in La0.67−xBixCa0.33MnO3,
paramagnetic and antiferromagnetic phases coexist [64]. Nanoscale phase separation into
ferromagnetic and paramagnetic regions has been observed in the colossal magnetore-
sistence compound, EuB5.99C0.01 [65]. Many more examples can be found in the review
articles [24–27].

In the present paper, we consider a heterophase system with random phase separation,
where the regions of different phases are randomly distributed in space. By averaging
the phase configurations, we derive a renormalized, effective Hamiltonian of the mixture.
Keeping in mind a spin system, we pass to the quasi-spin representation. Specifically, we
consider a mixture of ferromagnetic and paramagnetic phases. Long-range interactions are
assumed, such that the mean-field approximation becomes, in the thermodynamic limit,
asymptotically exact. The existence of the ferromagnetic–paramagnetic mixture is due to the
competition between direct and exchange interactions. We treat the case when the system
is placed in an external magnetic field. We show that for some system parameters, there
occurs the following situation: at low temperatures, the system is a pure ferromagnet that,
when rising in temperature, can transfer into a mixture of ferromagnetic and paramagnetic
phases at a nucleation point. For some system parameters, this nucleation transition
happens to be a zeroth-order transition.

The plan of the paper is as follows. In Section 2, we recall the Gibbs method of
equimolecular surfaces that are used for describing the spatial phase separation. Section 3
explains how the statistical operator of the mixture with phase separation can be defined
by minimizing the functional information.The random spatial distribution of competing
phases requires the averaging over phase configurations. The results of this averaging are
summarized in Section 4. In Section 5, we pass from the field-operator representation to
spin representation. Although this conversion is based on the known Bogolubov canonical
transformation, it is necessary to recall it in order to elucidate the importance of taking
account of direct particle interactions, in addition to exchange interactions. Keeping in mind
long-range interactions, in Section 6, we derive the free energy of the mixture. Section 7
formulates the stability conditions that make it straightforward to separate stable states
from unstable ones. In Section 8, we present the results of the numerical calculations and
accompany them with discussions and conclusions.
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2. Spatial Phase Separation

The description of a two-phase system with spatial phase separation starts with the
Gibbs method [66] of equimolecular separating surfaces, where the system of volume V
and number of particles N is considered to be separated into two parts, with the total
volumes Vf and the particle numbers N f , so that

V = V1 + V2 , N = N1 + N2 . (1)

The regions V f occupied by different phases are assumed to be randomly distributed
in space. Their spatial locations are described by the manifold indicator functions

ξ f (r) =
{

1 , r ∈ V f
0 , r 6∈ V f

, (2)

where
Vf ≡ mes V f ( f = 1, 2) .

The Hilbert space of microscopic states of the system is the tensor product

H = H1
⊗
H2 (3)

of the weighted Hilbert spaces [24–26] corresponding to the phases f = 1, 2. The algebra of
observables in this space is given by the direct sum of the algebra representations on the
corresponding subspaces

A(ξ) = A1(ξ1)
⊕
A2(ξ2) . (4)

For instance, the system energy Hamiltonian reads as

Ĥ(ξ) = Ĥ1(ξ1)
⊕

Ĥ2(ξ2) , (5)

with the general form of the phase replica Hamiltonians

Ĥ f (ξ f ) =
∫

ξ f (r)ψ
†
f (r)

[
− ∇

2

2m
+ U(r)

]
ψ f (r) dr+

+
1
2

∫
ξ f (r) ξ f (r

′) ψ†
f (r) ψ†

f (r
′) Φ(r− r′) ψ f (r

′) ψ f (r) drdr′ , (6)

where Φ(r) is an interaction potential, U(r) is an external potential, and the field operators
ψ f (r) are columns with respect to internal degrees of freedom, such as spin. The number-
of-particle operator is

N̂(ξ) = N̂1(ξ1) + N̂2(ξ2) , (7)

with the number-of-particle operators of each phase

N̂ f (ξ f ) =
∫

ξ(r) ψ†
f (r) ψ f (r) dr . (8)

Here and below, we set the Planck and Boltzmann constants to one.

3. System Statistical Operator

The general procedure of defining the statistical operator for a system is by minimizing
the information functional, taking account of the prescribed constraints. The latter is the
normalization condition

Tr
∫

ρ̂(ξ) Dξ = 1 , (9)

the definition of the system energy

Tr
∫

ρ̂(ξ) Ĥ(ξ) Dξ = E , (10)
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and of the total number of particles in the system

Tr
∫

ρ̂(ξ) N̂(ξ) Dξ = N . (11)

Here and in what follows, the trace operation is taken over the whole Hilbert space (3),
and Dξ implies the averaging over phase configurations describing the random locations
and shapes of separated phases.

The information functional in the Kullback–Leibler form [67,68] reads as

I[ ρ̂ ] = Tr
∫

ρ̂(ξ) ln
ρ̂(ξ)

ρ̂0(ξ)
Dξ + α

[
Tr
∫

ρ̂(ξ) Dξ − 1
]
+

+ β

[
Tr
∫

ρ̂(ξ) Ĥ(ξ) Dξ − E
]
+ γ

[
Tr
∫

ρ̂(ξ) N̂(ξ) Dξ − N
]

, (12)

with the Lagrange multipliers α, β = 1/T, and γ = −βµ, and with a trial statistical
operator ρ̂0(ξ) characterizing some a priori information if any. If no a priori information is
available, ρ̂0(ξ) is a constant. Then minimizing the information functional over ρ̂(ξ) yields
the statistical operator

ρ̂(ξ) =
1
Z

exp{−βH(ξ)} , (13)

with the grand Hamiltonian
H(ξ) = Ĥ(ξ)− µN̂(ξ) (14)

and the partition function

Z = Tr
∫

exp{−βH(ξ)} Dξ . (15)

Introducing the effective renormalized Hamiltonian by the relation

exp{−βH̃} =
∫

exp{−βH(ξ)} Dξ (16)

gives the partition function
Z = Tr exp{−βH̃} . (17)

Then we get the grand thermodynamic potential

Ω = −T ln Z . (18)

This picture describes a heterophase system where the phase-separated regions are
random in the sense that they are randomly located in space and can move and change
their shapes. In that sense, strictly speaking, the system is in quasi-equilibrium. However,
the averaging over phase configurations reduces the consideration to an effective system
equilibrium on average [24–26].

4. Averaging over Phase Configurations

In order to explicitly accomplish the averaging over phase configurations, it is nec-
essary to define the functional integration over the manifold indicator functions (2). This
functional integration has been defined and explicitly realized in papers [24,69–73]. Here
we formulate the main results of this functional integration over the manifold indica-
tor functions with the differential measure Dξ, which realizes the averaging over phase
configurations.

Theorem 1. Let us consider the functional
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A f (ξ f ) =
∞

∑
n=0

∫
ξ f (r1) ξ f (r2) . . . ξ f (rn) A f (r1, r2, . . . , rn) dr1dr2 . . . drn . (19)

The integration of this function over the manifold indicator functions gives∫
A f (ξ f ) Dξ = A f (w f ) , (20)

where

A f (w f ) =
∞

∑
n=0

wn
f

∫
A f (r1, r2, . . . , rn) dr1dr2 . . . drn , (21)

while

w f =
1
V

∫
ξ f (r) dr =

Vf

V
(22)

defines the geometric probability of an f -th phase.

Theorem 2. The thermodynamic potential

Ω = −T ln Tr
∫

exp{−βH(ξ)} Dξ , (23)

after the averaging over phase configurations, becomes

Ω = −T ln Tr {−βH̃} = ∑
f

Ω f ≡ Ω(w) , (24)

where
Ω f = −T ln TrH f {−βH f (w f )} ≡ Ω f (w f ) , (25)

and the renormalized Hamiltonian is

H̃ =
⊕

f

H f (w f ) ≡ H̃(w) , (26)

with the phase probabilities w f being the minimizers of the thermodynamic potential,

Ω = abs min
{w f }

Ω(w) , (27)

under the normalization condition

∑
f

w f = 1 , 0 ≤ w f ≤ 1 . (28)

Theorem 3. The observable quantities, given by the averages

〈 Â 〉 = Tr
∫

ρ̂(ξ) Â(ξ) Dξ (29)

of the operators from the algebra of observables (4),

Â(ξ) =
⊕

f

Â f (ξ f ) , (30)

with Â f (ξ f ) defined as in (19), after the averaging over phase configurations, reduce to the form

〈 Â 〉 = Tr ρ̂(w) Â(w) , (31)



Symmetry 2021, 13, 2379 6 of 18

where the renormalized operator of an observable is

Â(w) =
⊕

f

Â f (w f ) , (32)

with Â f (w f ) defined as in (21), and the renormalized statistical operator is

ρ̂(w) =
1
Z

exp{−βH̃(w)} , (33)

with the partition function (17).

The proofs of these theorems are given in the papers [24,69–73].

5. Hamiltonian in Spin Representation

Since we aim to study the magnetic properties of a system with phase separation, it is
useful to transform Hamiltonian (6) into spin representation. For this purpose, we assume
that the system is periodic over a lattice with the lattice sites rj, where j = 1, 2, . . . , N, and
we expand the field operators over Wannier functions:

ψ f (r) = ∑
j

cj f ϕ f (r− rj) . (34)

Keeping in mind well-localized Wannier functions [74], we retain in the Hamiltonian
only the terms expressed through the matrix elements over Wannier functions containing
not more than two lattice sites, since the overlap of Wannier functions located at three or
four different lattice sites is negligibly small.

The remaining matrix elements are: the tunneling term

Tij f = −
∫

ϕ∗f (r− ri)

[
− ∇

2

2m
+ U(r)

]
ϕ f (r− rj) dr , (35)

the term of direct interactions

Φij f =
∫
| ϕ f (r− ri) |2 Φ(r− r′) | ϕ f (r

′ − rj) |2 drdr′ , (36)

and the term of exchange interactions

Jij f = −
∫

ϕ∗f (r− ri) ϕ∗f (r
′ − rj) Φ(r− r′) ϕ f (r

′ − ri) ϕ f (r− rj) drdr′ . (37)

Then the Hamiltonian (6) transforms into the form

H f = −w f ∑
ij
(Tij f + µδij)c†

i f cj f +

+
1
2

w2
f ∑

ij

(
Φij f c†

i f c†
j f cj f ci f − Jij f c†

i f c†
j f ci f cj f

)
. (38)

To exclude self-interactions, one sets

Φjj f ≡ Jjj f = 0 . (39)
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Then we introduce spin operators following the method of canonical
transformations [75–77], generalized in the case of heterophase systems [78–80]. Keeping
in mind the particles with spin one-half, the operators cj f are to be treated as spinors

cj f =

 cj f (↑)

cj f (↓)

 (40)

of two components, one with spin up and the other with spin down. When each lattice site
is occupied by a single particle, the unipolarity condition is valid

c†
j f (↑) cj f (↑) + c†

j f (↓) cj f (↓) = 1 . (41)

The canonical transformations introducing spin operators Sj f , acting on the spaceH f ,
read as

c†
j f (↑) cj f (↑) =

1
2
+ Sz

j f , c†
j f (↑) cj f (↓) = Sx

j f + i Sy
j f

c†
j f (↓) cj f (↓) =

1
2
− Sz

j f . (42)

Employing these canonical transformations and wishing to write the Hamiltonian in a
compact form, we define the average direct interactions

Φ f ≡
1
N ∑

i 6=j
Φij f , (43)

the average exchange interactions

J f ≡
1
N ∑

i 6=j
Jij f , (44)

and the effective chemical potentials

µ f ≡ µ +
1
N ∑

ij
Tij f . (45)

Then Hamiltonian (38) becomes

H f =
1
2

w2
f U f N − w2

f ∑
i 6=j

Jij f Si f · Sj f − w f µ f N , (46)

where
U f ≡ Φ f −

1
2

J f . (47)

For localized particles, the tunneling term Tij f is small and can be neglected. Hence,
as is seen from expression (45), µ f = µ. Then the last term in Hamiltonian (46) be-
comes −w f µN. Such linear scalar terms in w f can be omitted since they enter the
Hamiltonian (26) as w1µ + w2µ = µ, which is as a constant shift. The value (47) char-
acterizes an average potential acting on each particle in the system and is mainly due
to direct interactions that are usually much larger than the exchange interactions. It is
reasonable to assume that this average potential does not depend on the kind of magnetic
phases, so that U f = U. For generality, it is also necessary to take into account an external
magnetic field B0. As a result, we come to the Hamiltonian

H f =
1
2

w2
f UN − w2

f ∑
i 6=j

Jij f Si f · Sj f − w f ∑
j

µ0B0 · Sj f . (48)
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The main feature of the paramagnetic phase is, clearly, the absence of long-range
order. The direct way of taking this into account on the microscopic level is to notice that
the term of exchange interactions (37) essentially depends on the localization of Wanier
functions. From expression (37), it is evident that the better Wannier functions are localized,
the smaller the exchange term. Therefore, accepting that the paramagnetic exchange term
is very small, automatically degrades the long-range order. Keeping this in mind, we set to
zero the paramagnetic exchange interactions, Jij2 = 0. Then the Hamiltonian (48) yields for
the ferromagnetic phase

H1 =
1
2

w2
1UN − w2

1 ∑
i 6=j

Jij1Si1 · Sj1 − w1 ∑
j

µ0B0 · Sj1 , (49)

and for the paramagnetic phase

H2 =
1
2

w2
2UN − w2 ∑

j
µ0B0 · Sj2 . (50)

The external magnetic field is assumed to be directed along the z-axis

B0 = B0ez (B0 ≥ 0) . (51)

Recall that the total system Hamiltonian, according to (26), reads as

H̃ = H1
⊕

H2 . (52)

The order parameters can be defined by the averages

s f ≡
〈

2
N ∑

j
Sz

j f

〉
, (53)

which lie in the interval
0 ≤ s f ≤ 1 ( f = 1, 2) . (54)

For the ferromagnetic phase, there exist such low temperatures where

lim
B0→0

s1 > 0 (T → 0) , (55)

while for the paramagnetic phase at all temperatures, one has

lim
B0→0

s2 = 0 . (56)

Accepting that interparticle interactions are of a long-range order, Hamiltonian (49)
can be simplified by resorting to the mean-field approximation

Sz
i1Sz

j1 = Sz
i1 〈 Sz

j1 〉+ 〈 Sz
i1 〉 Sz

j1 − 〈 Sz
i1 〉〈 Sz

j1 〉 , (57)

where i 6= j. This reduces that Hamiltonian to the form

H1 =
1
2

w2
1

(
U +

1
2

Js2
1

)
N −

(
w2

1 Js1 + w1µ0B0

)
∑

j
Sz

j1 . (58)

6. Free Energy of Mixture

Defining the reduced free-energy in the standard way

F = − T
N

ln Tr e−βH̃ , (59)
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introducing the dimensionless parameters

u ≡ U
J

, h ≡ µ0B0

J
, (60)

where
J ≡ J1 =

1
N ∑

i 6=j
Jij1 , (61)

and measuring temperature in units of J, we come to the mixture free energy

F = F1 + F2 . (62)

Here the free energy of the magnetic component is

F1 =
1
2

w2
1

(
u +

1
2

s2
1

)
− T ln

[
2 cosh

(
w1h + w2

1s1

2T

) ]
, (63)

with the order parameter

s1 = tanh

(
w1h + w2

1s1

2T

)
, (64)

and the free energy of the paramagnetic component is

F2 =
1
2

w2
2 u− T ln

[
2 cosh

(
w2h
2T

) ]
, (65)

with the order parameter

s2 = tanh
(

w2h
2T

)
. (66)

Studying the properties of the free energy, it is convenient to represent it in the form
symmetric with respect to both phase components, introducing the quantity

g f ≡
1
N ∑

i 6=j

Jij f

J
. (67)

By definition, g1 = 1, while g2 → 0. Then the partial free energy

Ff = −
T
N

ln Tr e−βH f (68)

becomes

Ff =
1
2

w2
f

(
u +

1
2

g f s2
f

)
− T ln

[
2 cosh

(
w f h + w2

f g f s f

2T

) ]
, (69)

with the order parameter

s f = tanh

(
w f h + w2

f g f s f

2T

)
. (70)

7. Stability Conditions

The statistical system is stable when it is in the state of the absolute minimum of the
thermodynamic potential, which in the present case is the free energy. The system is in the
mixed state, provided the free energy (62) corresponds to a minimum with respect to the
variables w1, s1, and s2. The variable w2 is expressed through the relation w2 = 1−w1. For
convenience, it is possible to use the notation

w1 ≡ w , w2 = 1− w (71)
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and consider only the variable w, instead of w1 and w2 connected by the normalization
condition. The conditions of the extremum are

∂F
∂s1

= 0 ,
∂F
∂s2

= 0 ,
∂F
∂w

= 0 . (72)

The first and second conditions give the expressions (64) and (66) for the order param-
eters s1 and s2. The third equation, due to the normalization condition, can be written as

∂F
∂w1

=
∂F

∂w2
.

Using the derivative

∂F
∂w f

= w f

(
u− 1

2
g f s2

f

)
− 1

2
hs f

results in the probability of the ferromagnetic component

w =
2u + h(s1 − s2)

4u− s2
1

. (73)

The extremum is a minimum provided the principal minors of the Hessian matrix are
positive. The Hessian matrix is expressed through the second derivatives

∂2Ff

∂w2
f
= u− 1

2
g f s2

f −
1− s2

f

4T

(
h + 2w f g f s f

)2
,

∂2Ff

∂w f ∂s f
= −

1− s2
f

4T
w2

f g f

(
h + 2w f g f s f

)
,

∂2Ff

∂s2
f

=
1
2

w2
f g f

(
1−

1− s2
f

4T
w2

f g f

)
.

For the considered system, we have

∂2F
∂w2 = 2u− 1

2
s2

1 −
1− s2

1
4T

(h + 2ws1)
2 −

1− s2
2

4T
h2 ,

∂2F
∂w∂s1

= −
1− s2

1
4T

w2 (h + 2ws1) ,

∂2F
∂w∂s2

=
∂2F

∂s1∂s2
=

∂2F
∂s2

2
= 0 ,

∂2F
∂s2

1
=

1
2

w2

(
1−

1− s2
1

2T
w2

)
.

The minimum of the free energy implies the stability conditions that for the present
case become

∂2F
∂w2 > 0 ,

∂2F
∂s2

1
> 0 ,

∂2F
∂w2

∂2F
∂s2

1
−
(

∂2F
∂w∂s1

)2

> 0 . (74)

We need to solve the system of equations for the order parameter s1, given
in (64) and satisfying condition (55), for the order parameter s2, given in (66) and sat-
isfying condition (56), and for the probability of ferromagnetic phase w, defined in (73) and
satisfying conditions (28). If there occur several solutions, it is necessary to choose the solu-
tion that corresponds to the minimal free energy and satisfies the stability conditions (74).
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Furthermore, it is necessary to choose the state with the minimal free energy between
the free energy F of the mixture, free energy Ff er of the pure ferromagnetic phase

Ff er =
1
2

(
u +

1
2

s2
f er

)
− T ln

[
2 cosh

(h + s f er

2T

)]
, (75)

with the order parameter

s f er = tanh
(h + s f er

2T

)
, (76)

and the free energy of the pure paramagnetic phase

Fpar =
1
2

u− T ln
[

2 cosh
(

h
2T

)]
, (77)

with the order parameter

spar = tanh
(

h
2T

)
. (78)

8. Results and Discussion

We have derived the model of a mixed system describing the coexistence of different
phases when at least one of the phases represents nanoscale regions of a competing phase
inside a host phase. The spatial distribution of the phases is random. This picture is often
termed nanoscale phase separation. As a concrete example, we have studied the mixture
of ferromagnetic and paramagnetic phases, modeling a ferromagnet with paramagnetic
fluctuations. The choice of this example is dictated by the fact that spin models serve as
typical illustrations of phase transitions of different nature.

After averaging over phase configurations, we obtain a renormalized Hamiltonian,
taking into account the coexistence of mesoscopic phases. In the resulting effective picture,
thermodynamic potentials are represented as the sums of replicas characterizing different
phases. This, however, is not a simple sum of the terms corresponding to pure phases, as
in the case of the Gibbs macroscopic mixture, where, for instance, free energy is a linear
combination, in our case

FG = w1Ff er + w2Fpar . (79)

The separation of phases is connected with the existence of surface free energy. The
latter is not a microscopic notion and is not defined at the level of operators and microscopic
states. The surface free energy is a thermodynamic notion defined by the difference
between the actual free energy of the system and the free energy of the Gibbs macroscopic
mixture [81–83]. That is, the surface free energy is defined by the difference

Fsur = F− FG . (80)

In our case, this is
Fsur = F1 + F2 − w1Ff er − w2Fpar . (81)

Contrary to a pure phase needing a one-order parameter (that can be a vector or a
tensor), the mixed state requires, for its correct description, a larger number of parameters.
Thus, compared to the pure ferromagnetic phase, described by a single order parameter s f er,
the mixed ferromagnetic–paramagnetic state needs three parameters: the order parameter
(reduced magnetization) of the ferromagnetic component, s1, the order parameter (reduced
magnetization) of the paramagnetic component, s2, and the probability of one of the phases,
say w, with the probability of the other phase given by 1− w.

In Figures 1–8, we present the results of the numerical investigation for different
parameters u and h. Only stable solutions are shown. The absence of F in a figure implies
that F is unstable. Depending on the values of the parameters, there can exist two types
of behavior.
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(i) At low temperatures, the system is a pure ferromagnet described by the free energy
Ff er and the order parameter s f er ≡ s1, with w ≡ 1. When increasing temperature,
Ff er gradually approaches Fpar corresponding to a paramagnet. The order parameter
s f er ≡ s1 has the form typical of the ferromagnetic magnetization. This behavior, for
instance, happens for u < 0.25 and all h > 0.

(ii) For u > 0.25, at low temperatures, below the nucleation temperature Tn, the system
is a pure ferromagnet, with the free energy Ff er, the order parameter s f er ≡ s1, and
w ≡ 1. At the nucleation temperature Tn, there appears a solution for the mixed
state with the free energy F and the order parameters s1 and s2. The free energy F is
lower than Ff er, but does not intersect it so that the nucleation is to be classified as a
zeroth-order transition.
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Figure 1. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.3 and different magnetic fields: (a) h = 0.1; (b) h = 0.5.
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Figure 2. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 0.3 and different
fields: (1) h = 0.01; (2) h = 0.1; (3) h = 0.2; (4) h = 0.3; (5) h = 0.5; (6) h = 1. The corresponding nucleation temperatures are:
(1) Tn = 0.15; (2) Tn = 0.24; (3) Tn = 0.34; (4) Tn = 0.44; (5) Tn = 0.66; (6) Tn = 1.42.
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Figure 3. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash-dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.6 and different magnetic fields: (a) h = 0.1; (b) h = 0.5.
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Figure 4. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 0.6 and different
fields: (1) h = 0.01; (2) h = 0.1; (3) h = 0.2; (4) h = 0.3; (5) h = 0.5; (6) h = 1. The corresponding nucleation temperatures are:
(1) Tn = 0.14; (2) Tn = 0.20; (3) Tn = 0.26; (4) Tn = 0.33; (5) Tn = 0.46; (6) Tn = 0.89.
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Figure 5. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 0.8 and different magnetic fields: (a) h = 0.3; (b) h = 1. For h = 0.3, the mixed state is not
stable. For h = 1, the zeroth-order nucleation transition occurs at the nucleation temperature Tn = 0.72.
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Figure 6. Order parameters s1, s2, and w as functions of dimensionless temperature T, for u = 0.8 and different fields:
(a) h = 0.1 (solid line), h = 0.2 (dashed line); h = 0.3 (dash–dotted line); h = 0.5 (dotted line); (b) h = 0.01; h = 1; h = 2. The
corresponding nucleation temperatures are Tn = 0.14, Tn = 0.72, and Tn = 1.77; (c) h = 0.01; h = 1; h = 2; (d) h = 0.01;
h = 1; h = 2.

In this way, the nucleation transition is the transition of a system from a pure phase
into a mixed phase. In the considered case, this is the transition between the pure fer-
romagnetic phase and a mixed state, where ferromagnetic regions start coexisting with
paramagnetic fluctuations.

As follows from the figures, the zeroth-order nucleation transition is accompanied by
the abrupt appearance inside the ferromagnetic phase of a finite concentration of nanoscale
paramagnetic regions. Hence, when the concentration of the paramagnetic admixture
does not continuously grow from zero but increases by a jump, this suggests the possible
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occurrence of a zeroth-order nucleation transition. The appearance of paramagnetic regions
can be noticed by means of Mössbauer experiments.
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Figure 7. Free energies of the mixed state, F (solid line), ferromagnetic state, Ff er (dash–dotted line), and of the paramagnetic
state, Fpar (dashed line), for u = 1.5 and different magnetic fields: (a) h = 1; (b) h = 5. For h = 1, the mixed state is not
stable. For h = 5, the zeroth-order nucleation transition occurs at the nucleation temperature Tn = 4.55.
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Figure 8. Order parameters s1 (a), s2 (b), and w as functions of dimensionless temperature T (c), for u = 1.5 and different
fields: (1) h = 0.01; (2) h = 0.5; (3) h = 1; (4) h = 2; (5) h = 5; (6) h = 6. The nucleation temperatures are Tn = 4.55 for h = 5
and Tn = 6.4 for h = 6.

We show, numerically, that the nucleation transition can be of zeroth order. From one
side, this could be a consequence of approximations involved in the process of calculations.
From the other side, strictly speaking, nucleation is not a typical phase transition, because
of which, it is not compulsorily required to be classified as either first or second order.
Although, as is discussed in the Introduction, there are works showing that even classical
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phase transitions could be of zeroth order. Even more so is allowed for such a non-classical
transition as a nucleation transition.
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