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Abstract: In this study, the concept of symmetry is introduced by finding the optimal state of a power
system. An electric vehicle type load is present, where the supply stores’ electrical energy causes
an imbalance in the system. The optimal conditions are related by adjusting the voltage of the bus
location. The key variables are the load voltage deviation (LVD), the variation of the load and the
power, and the sizing of the distributed photovoltaic (DPV), which are added to the system for power
stability. Here, a method to optimize the fast-charging stations (FCSs) and DPV is presented using
an optimization technique comparison. The system tests the distribution line according to the bus
grouping in the IEEE 33 bus system. This research presents a hypothesis to solve the problem of
the voltage level in the system using metaheuristic algorithms: the cuckoo search algorithm (CSA),
genetic algorithm (GA), and simulated annealing algorithm (SAA) are used to determine the optimal
position for DPV deployment in the grid with the FCSs. The LVD, computation time, and total
power loss for each iteration are compared. The voltage dependence power flow is applied using
the backward/forward sweep method (BFS). The LVD is applied to define the objective function of
the optimization techniques. The simulation results show that the SAA showed the lowest mean
computation time, followed by the GA and the CSA. A possible location of the DPV is bus no. 6 for
FCSs with high penetration levels, and the best FCS locations can be found with the GA, with the
best percentage of best hit counter on buses no. 2, 3, 13, 14, 28, 15, and 27. Therefore, FCSs can be
managed and handled in optimal conditions, and this work supports future FCS expansion.

Keywords: cuckoo search algorithm; distributed photovoltaic system; electric vehicles; genetic
algorithm; optimization techniques; simulated annealing algorithm

1. Introduction

Electric vehicles (EVs) have become of critical interest for use in travel and to transfer
passengers. Carmakers or car manufacturers have developed EVs and production lines to
meet the demand in many countries, with government support provided through policies
on EVs. The EV yield has a good relationship with environmental impacts in terms of low
air pollution [1] and low carbon emissions [2]. Significantly, the promotion of EVs aims
to protect the environment in the long term. A classic car uses a combustion process with
fuel and emits CO2 gas to the environment [3]. However, car users are now interested
in new car technology, with many types of EV technology. Due to advanced power,
electronic components, and material technology, more and more people are supporting EV
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growth. Grid management is a key factor in enhancing system stability and supporting the
load change.

Traditional cars are increasingly being replaced by EVs [4,5]. The matter of charging
poses an uncertainty that worries many people regarding the use of electric vehicles. As
EVs are not electrical appliances that operate in the same place, when not moving, they can
supply power for normal use. However, electric vehicles are, in general, moving. Therefore,
electric cars should be able to be recharged anywhere after each use so that they can be
used anywhere and anytime, with charger plugs included. Many researchers are interested
in studying numerous experimental conditions: traction driving and control are popular
for study, as presented in [6]. Battery technology is of vital importance to the sizing and
driving distance of EVs, and the related research areas include lithium batteries, magnetic
batteries, and solid-state batteries [7,8]. Therefore, battery development is challenging, and
many research areas focus their effort on creating high power density and reducing the
time for charging the battery. Additionally, the motor technology of EVs is a significant
component of EVs with traction driving and is rated by the energy consumption of the
batteries of the EVs [9]. Battery technology and motor technology are different research
areas but are similarly studied if researchers are interested in condition-based material
technology. In particular, there is growing interest in the impact of EVs in terms of dead
batteries in planning and managing energy.

In addition, researchers have studied the effect of an electrical power system in terms
of losses, voltage stability, power system oscillation, reduced energy demand response,
and optimal charging stations [10–12]. As EVs have an impact on electric energy, optimum
conditions and energy planning need to be simulated and considered to maintain the grid
by adapting optimization techniques [13]. Therefore, energy management sources need
to be studied along with the optimal FCSs for providing the energy of each source in the
charging process of EVs. At present, photovoltaic (PV) power plants are of interest for
providing energy [14]. PVs can be integrated into a radial distribution system (RDS) to
reduce the total power loss of the electrical power system, as presented in [1,15]. The
charger or equipment for charging the FCS is connected to an RDS using a step-down
power transformer. It is applied to reduce the voltage level of the system from high to low.
Meanwhile, the regular charge is connected with a power cable to a charger at home with
slow-mode charging, as shown in Figure 1 [16].
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The EV load is a key player in consuming energy from the grid. EV load modeling is
defined in many load types, such as power constant (P), current constant (I), polynomial
load or ZIP load, and voltage source converter modeling [17]. Large-scale FCSs are affected
by the electrical power system in many ways, so the grid needs to be improved [18]. It can
be adapted to solve the electrical power system’s problem, as revealed in many research
areas. Genetic algorithms (GAs) are a popular OT that can be applied to determine optimal
distributed generator (DG) placement [19,20]. Therefore, this paper aims to define the
optimal conditions of FCSs and PVs by comparing the GA, CSA, and SAA methodology
with the best number of models for calculation and time for computation. In the calculation
part, the researcher uses the principle of symmetry to emphasize the diversity of methods
for obtaining answers, but in the end, the end result is perfect symmetry.

The rest of this paper is organized as follows: Section 2 describes the optimization
technique and power flow analysis of FCSs and the PV placement formula. Section 3
refers to the methodology of the OT adopted to find the optimal location for installing the
distributed photovoltaic system (DPV) and the FCSs. Section 4 shows the simulation and
results of the optimal FCSs and PV placement adapted from the OT by comparing the SA,
GA, and CSA. Finally, Section 5 presents the conclusions.

2. Optimization Technique (OT) and Power Flow Analysis of FCSs and PV
Placement Formula

An optimization technique and a power flow analysis were used to solve the optimal
condition. Therefore, this section is divided into two main parts addressing the optimiza-
tion technique and the power flow analysis. The optimization technique was adapted
to solve the optimal condition problem by defining the objective function. Load voltage
deviation (LVD) is considered to represent the objective function for solving by using the
OT [21]. Forward/backward sweep was used to solve the voltage dependence power
flow for the FCS. There are many optimization methodologies and techniques used to
solve problems, which can be divided into two types: single-objective optimization and
multi-objective optimization [22]. Thus, the OT framework can be expanded, as shown
in Figure 2. The objective of this work consists of metaheuristic and heuristic techniques.
The metaheuristic swarm-based algorithm (SBA) from the objective was used to solve the
proposed research. The artificial bee colony (ABC) and cuckoo search (CS) algorithms were
adopted to compare the OTs with FCS and PV placement. ABC and CS can be described
as follows.
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2.1. Cuckoo Search Algorithm (CSA)

In 2009, Xin She Ying and Susah Deb developed the cuckoo search method. It was
developed from the spawning behavior (NE) of the cuckoo. It spawns in the nest of other
birds of the same species, which may lay several eggs in one place simultaneously after
laying the eggs. The cuckoo makes its egg (λ) as similar as possible to the nest, trying to
avoid the nest owner finding any foreign eggs, sometimes called an alien egg. If the owner
finds the egg, there are two options: destroy foreign eggs by throwing away the cuckoo
eggs, or the nest birds leave the nest (Pa) to build a new nest [23]. In nature, creatures
can seek nourishment in an arbitrary or quasi-random way. By and large, an animal’s
nourishment-seeking method is a successful arbitrary walk since the other move is based
on the current area’s state and the likelihood of moving to the following area. The chosen
heading depends verifiably on a likelihood, which can be numerically demonstrated. Later
considerations have appeared, where numerous creatures’ and insects’ flight behavior has
illustrated the normal characteristics of Le’vy flights. In the next random location selection,
(Xi(t = 1)) until the answer population can be represented by Equations (1) and (2).

xi
(t+1) = xi

(t) + α⊕ L e′vy(λ) (1)

L e ′ vy(λ) =

Γ(1 + λ) · sin
(

πλ
2

)
Γ( 1+λ

2 ) · λ · 2( λ−1
2 )

 (2)

where
λ represents a constant in the range of 1 to 2.
α represents the step size of the scale of the problem, defined by the value of 1.
Γ represents the gamma function, which comes as an extension of the complex facto-

rial function.

2.2. Genetic Algorithm (GA)

The GA is an optimization tool following the heuristic method based on the evolution
algorithm. The GA was presented by Goldberg (1989) and developed by applying it to the
problems of search, optimization, and machine learning as improvements in basic tech-
niques and knowledge-based techniques [20,24]. The GA aims to follow natural evolution
to select a specific number of chromosomes and adapt genetic algorithm operation. The
chromosomes characterized represent the solution to the problem, and performance is
evaluated using the fitness function presented in Figure 3. Therefore, GA operation is
used to find a new population based on a random selection from the chromosomes of
the previous population. The GA operation is divided into the section process, crossover
process, and mutation process. The GA process is expressed in Figure 4.

2.3. Simulated Annealing Algorithm (SAA)

The SAA represents the use of a metallurgical structure from annealing. A metal is
allowed to cool slowly enough in order to be able to find the minimum energy state for the
system. The minimum energy state can be adapted by cooling the metal to find the global
optima by relating non-linear functions. Here, the slow cooling process was implemented
using the Boltzmann probability distribution of energy states with a prominent part in
thermodynamics [25]. The Boltzmann probability distribution was applied to reflect the
cooling process, where the energy level changes to a cooling state as per Equation (3).

P(E) = exp
(
−E
kT

)
(3)

where P(E) is the probability of the energy state (E), k is Boltzmann’s constant, and T is
the temperature.
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The SAA can be presented as the steps in searching for the answers, as shown in Figure 5.
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2.4. Fast-Charging Station Load (FCS) Modeling

FCS modeling is presented by using a group of EVs’ load, and the FCS represents
the voltage-dependent characteristics of the EVs [26]. Therefore, the FCS is divided into
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three parts: an AC-to-DC converter, a buck converter, and a battery for energy storage. FCS
modeling can be expressed by active power and reactive power as Equations (4) and (5).

PFCS = P0

(
b + a

(
V
V0

)α)
(4)

QFCS = P× tan(θ) (5)

where b is a power constant equal to 0.93, α is the voltage-dependent part and is equal to
0.07, α is an exponential index of EVs and is equal to −3.107, θ is the power factor of the
FCSs and is equal to 0.97, and Po is the real power consumption of the FCSs at nominal
voltage (V0).

2.5. Load Voltage Deviation (LVD)

Generally, the power consumption process from each piece of equipment has a direct
impact on the RDS. LVD is a pivotal issue to evaluate in the RDS. Here, the bus voltage
magnitude was measured to indicate the level of burden of the loads in the electrical power
system [27]. The minimized value of the LVD is presented to minimize the load voltage
bus’ values, described by Equation (6).

LVD =
n

∑
k

(
Vre f

k −Vk

Vre f
k

)2

(6)

Therefore, the reference voltage magnitude Vre f
k is defined as 1 p.u. and maintained to

manage the grid loads. The LVD improved the electrical power system nearly to zero value.

2.6. Total Active Power Loss

The power flow of the electrical power system is delivered using transmission lines.
Hence, the grid power flow effect is affected by system losses on the transmission lines
related to the voltage magnitude and impedance. However, the system losses of the
electrical power system can deviate due to many factors, such as the electrical power
system’s topologies, load installed, and power generation. Therefore, the total power
loss (TPloss) of the grid is directly affected by the configuration of the transmission and
the power consumption of loads. This is a significant problem of the grid that needs to
be analyzed and managed in optimal conditions. The active power loss of the grid was
computed using Equation (7), as follows [25]:

TPLoss =
NL

∑
i=1

ri
P2

i + Q2
i

V2
i

(7)

where P and Q represent the active power and reactive power of the transmission line i,
respectively; r is the resistance of transmission; |NL| is the total number of feeders or
transmission lines; and V is the voltage magnitude of the transmission i.

2.7. Backward/Forward Sweep (BFS) Power Flow Analysis

BFS was used to find the RDS power flow, which defines the branch numbering
process. The branch number is applied to arrange the transmission line’s order, connected
with the node by specifying the layer. The number of the transmission line is applied
and used to compute the power flow. Current flow can be calculated using the backward
process, and the voltage bus is calculated in the forward sweep process. Therefore, the
voltage mismatch used to iterate and approach stop criteria can be presented [28].

3. Methodology

The OT was adapted to find the optimal location for installing the distributed photo-
voltaic system (DPV) and the FCSs. The purpose of this paper is to compare the OT with



Symmetry 2021, 13, 2378 8 of 15

the SAA, the GA, and the CSA. The evolutionary algorithm is represented by the GA, the
swarm-based algorithm by the CSA, and the trajectory-based algorithm by the SAA. A
laptop computer was used to solve the algorithms in metaheuristic problems. Thus, it was
necessary to determine the capability of the processing machine, as shown in Table 1.

Table 1. Processing equipment details.

Device Specification

Processer Intel® CoreTM i7 8750 CPU @ 2.20 GHz
Installed RAM 16.0 GB

Hard disk 1 TB
GPU GEFORCE GTX1050 Ti

A mathematical model was proposed to assess and test the electrical system’s relia-
bility when a constant type of electric vehicle enters the system. The researchers selected
the IEEE 33 radial distribution to test for a suitable value in installing an electric motor
charging station and an alternative energy system to solve the voltage problem when the
electric vehicle loads were installed in the system. This paper adapts the EV modeling by
using the voltage dependence load and the voltage dependence power flow of the BFS.
The optimization technique was applied to the objective function using the LVD described
in Equation (8). The boundary of the voltage magnitude is defined by Equation (9). The
possible PV positions can be explained by Equation (10).

Min f =
N

∑
i=1

LVDi i ∈ N (8)

Vmin ≤ Vi ≤ Vmax , i ∈ N (9)

2 ≤ PVi ≤ N, i ∈ N (10)

where i is represented by the indices of bus no. i, and N is the total number of buses. The
voltage magnitude of bus i is within the limit of Vmin and Vmax. However, the voltage
magnitude of buses needs to be maintained at the limit of the boundary.

The IEEE 33 bus radial distribution network was selected to solve the OT for simulation
studies. The metaheuristic methodology presents the FCS penetration and PV placement.
This system is a 12.66 kV network with 33 buses and 4 laterals to divide the load flow into
7 groups, and it was used to test modeling performance, as shown in Figure 5.

Figure 6 shows the IEEE 33 bus test system and FCS groups, consisting of 33 connected
loads with a total of 3.72 MW and 2.3 MVar. Additionally, the active power loss and reactive
power loss were 211.1180 and 143.205 kV, respectively, measured at a 1.00 p.u. voltage
reference. In this article, the impact of FCSs is analyzed in terms of the efficiency of the
optimization model created for the 33-bus system tested. The obtained experimental results
provide direction to determine the location of a PV installation for bus no. 2 to bus no. 33.
Meanwhile, the FCSs can be indicated by using the possible position of the groups and the
metaheuristic parameter for simulation, as shown in Table 1 and Figure 7.

Figure 7 shows the randomized values of FCSs and the PV for finding the opti-
mal condition of the electrical power system. The randomized value is defined using
Xi ∈

{
1, 2, 3..., NGroup

}
, and the PV is presented using X8,PV ∈ {2, 3..., NBus}. The possi-

ble values were used for the metaheuristic optimization process and the benchmarking
of efficiency.
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4. Simulation and Results

The optimal FCS and PV placements were adapted from the OT by comparing the
SAA, GA, and CSA. The time and best generation for computing each iteration were
considered. The LVD from the proposal revealed a different value from Table 2, but the
two were similar. Therefore, the simulation was defined with a maximum iteration of
100 rounds and a population and search space equal to 100. It shows that it could be
adjusted and iterations could be increased.
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Table 2. Parameters for configuration of optimization techniques.

Parameters GA CSA SAA

Population size 100 100 -
Generation/iteration 100 100 100
Number of variables 16

v1, v2 - 2, 2
Initial temperature (T0) - - 0.025

Crossover 0.8 - -
Mutation 0.05 - -

PV sizing [min, max] (MW) [1, 2]
Min. and max. of PV location 2–33
Group of EV possible position Bus no.

Group 1 2, 4, 6, 9, 12
Group 2 3, 5, 8, 11
Group 3 7, 10, 13
Group 4 14, 16, 18, 20
Group 5 22, 24, 26, 28
Group 6 15, 17, 19, 21, 23, 25
Group 7 27, 29, 30, 31, 32, 33

EV sizing for groups [min, max] (kW) [50, 500]

Table 3 shows the comparison of time, LVD, PV site, PV sizing, and total loss between
the SAA, GA, and CSA. The average value of computation time, presented in order from
lowest to highest, was 8.85, 48.31, and 58.80 s for the SAA, GA, and CSA, respectively. The
average LVD value, in order from low to high, was 0.024, 0.037, and 0.043 for the CSA, GA,
and SAA, respectively. The average value of total power loss, in order from low to high,
was 192.90, 263.52, and 334.22 kW for the CSA, GA, and SAA, respectively. The average PV
sizing value, in order from high to low, was 1.192, 1.073, and 0.275 MW for the SAA, GA,
and CSA, respectively. The lowest LVD value from the CSA is related to the low impact of
the FCSs on the grid. Therefore, the penetration level of the FCSs to the grid needs to be
managed in the optimal condition.

Table 3. Comparison of time, LVD, PV site, PV sizing, and total loss between the SAA, GA, and CSA.

Simulated Annealing Algorithm (SAA)

Generation 1 2 3 4 5 6 7 8 9 10 Max Min Avg.

Time (s) 10.76 9.34 8.82 8.24 8.65 8.49 8.51 7.98 8.64 9.09 10.76 7.98 8.85

Min (LVD) 0.042 0.037 0.045 0.053 0.040 0.037 0.036 0.037 0.064 0.035 0.064 0.035 0.043

PV site 4 6 4 9 6 6 6 6 7 6 - - -

PV size (MW) 1.637 1.061 1.354 1.134 1.277 1.032 1.006 1.140 1.162 1.119 1.637 1.006 1.192

Total loss 258.62 265.55 262.29 274.17 259.07 278.51 253.73 272.73 259.22 251.29 278.51 251.29 263.52

Genetic Algorithm (GA)

Generation 1 2 3 4 5 6 7 8 9 10 Max Min Avg.

Time (s) 55.88 49.42 49.28 33.91 52.29 49.21 52.26 46.46 48.46 45.98 55.88 33.91 48.31

Min (LVD) 0.041 0.036 0.035 0.038 0.038 0.035 0.039 0.034 0.034 0.040 0.041 0.034 0.037

PV site 9 6 6 9 9 6 9 6 6 9 - - -

PV size (MW) 1.097 1.152 1.060 1.025 1.020 1.083 1.070 1.094 1.045 1.081 1.152 1.020 1.073

Total loss 434.29 275.72 254.81 377.35 372.03 277.73 408.41 254.32 261.98 425.53 434.29 254.32 334.22

Cuckoo Search Algorithm (CSA)

Generation 1 2 3 4 5 6 7 8 9 10 Max Min Avg.

Time (s) 62.04 58.12 56.56 55.54 59.03 58.93 59.63 59.17 59.30 59.64 62.04 55.54 58.80

Min (LVD) 0.024 0.022 0.029 0.022 0.023 0.023 0.029 0.022 0.024 0.020 0.029 0.020 0.024

PV site 15 17 15 15 12 15 12 15 15 17 - - -

PV size (MW) 0.293 0.197 0.311 0.272 0.302 0.282 0.338 0.276 0.289 0.188 0.338 0.188 0.275

Total loss 195.68 193.35 191.52 191.94 191.94 191.83 193.90 194.02 191.75 193.06 195.68 191.52 192.90
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Table 4 compares the FCS position, best hit counter, and percent of best hit counter
between the SAA, GA, and CSA, where 10 iterations generated the optimal position of the
FCSs on the grid. The FCSs’ locations differed for each metaheuristic method. Both size
and position are measured by indicating the best hit counter value and percent related to
possible position accuracy with the objective function. The percentages of optimal FCS
positions presented by the GA, SAA, and CSA were 85.71, 45.71, and 44.29%, respectively.
Meanwhile, the optimal possible position of the PV was shown by bus no. 6, buses
no. 6 and 9, and bus no. 6 in the SAA, GA, and CSA, respectively. Consequently, the
optimal FCS and PV possible sizing and position are related by randomizing the value of
the metaheuristic method. It can be revealed by the differing values of each generation,
and the OT can be used to find the optimal condition from the objective function defined.

Table 4. Comparison of FCS position, best hit counter, and percent of best hit counter between the SAA, GA, and the
CSA algorithm.

Simulated Annealing Algorithm (SAA)

Posi.1 Posi.2 Posi.3 Posi.4 Posi.5 Posi.6 Posi.7 Avg. PV
FCS best position (bus no.) 2 3 7 22 24 15 27, 30 - 6

Best hit counter 4 5 5 4 6 5 3 - 6
% 40 50 50 40 60 50 30 45.71 60

Genetic Algorithm (GA)

Posi.1 Posi.2 Posi.3 Posi.4 Posi.5 Posi.6 Posi.7 Avg. PV
FCS best position (bus no.) 2 3 13 14 28 15 27 - 6,9

Best hit counter 5 10 9 8 8 10 10 - 5
% 50 100 90 80 80 100 100 85.71 50

Cuckoo Search Algorithm(CSA)

Posi.1 Posi.2 Posi.3 Posi.4 Posi.5 Posi.6 Posi.7 Avg. PV
FCS best position (bus no.) 2 3 10 14, 16 26, 28 15 27, 33 - 15

Best hit counter 3 4 5 4 4 8 3 - 6
% 30 40 50 40 40 80 30 44.29 60

Table 5 summarizes the maximum, minimum, and average values of the FCS sizing
with the SAA, GA, and CSA. The FCS sizing results were obtained following 10 iterations
of each metaheuristic methodology. The SAA, CSA, and GA presented average values
of 482.44, 903.40, and 1192.44 kW, respectively. Therefore, the total FCS system affected
the total power loss, and LVD can be moderated by installing the optimum PV. The low
penetration level from the minimization of the FCSs is revealed by the closing values of
50 kW of each position, similar to that presented in [23], but the LVD and the PV position
are different from the randomized FCSs and PV position.

Table 5. Comparison of FCS sizing between the SAA, GA, and CSA.

Sizing of FCSs 1–7

FCS1
(kW)

FCS2
(kW)

FCS3
(kW)

FCS4
(kW)

FCS5
(kW)

FCS6
(kW)

FCS7
(kW)

Total_FCS
(kW)

SA Max 133.79 111.91 106.37 149.52 97.62 85.66 105.85 571.22

Min 52.05 50.00 51.60 50.00 50.00 52.14 54.87 386.36

Avg. 72.16 67.15 65.68 69.35 68.38 62.66 77.06 482.44

GA Max 497.47 235.69 492.26 383.07 337.57 419.21 139.52 2198.69

Min 54.54 50.00 57.96 50.00 50.00 52.04 50.00 609.34

Avg. 268.57 129.84 228.08 176.98 146.96 181.08 60.94 1192.44

CSA Max 500.00 500.00 500.00 500.00 137.88 251.18 50.00 1319.22

Min 50.00 50.00 50.00 50.01 50.00 50.00 50.00 447.16

Avg. 232.38 135.56 121.67 212.71 64.13 86.95 50.00 903.40
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Figure 8 shows the comparison of the total FCS sizing against the total power loss
and LVD of the SAA. The SAA can present the optimal FCSs and PV integrated into the
grid. The SAA was simulated by increasing the sizing and position of the possible values
of the FCSs and PV by reducing the minimum energy state. The high FCS penetration
level was revealed by varying the LVD compared with the low penetration level of the
FCSs. The SAA can find the optimal condition of the FCSs and PV installed using the
metaheuristic process.
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Figure 9 shows the comparison of the total FCS sizing against the total power loss
and LVD of the GA. The GA presented the impact of the FCSs integrated into the grid
by increasing the total power loss when there was a high penetration level of the FCSs.
Meanwhile, the LVD was revealed by computing the LVD value and the level of FCS
integration. The GA can show the high penetration of the FCSs and PV installed that
affected the LVD and the total power loss of the grid.
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Figure 10 shows the comparison of the total FCS sizing against the total power loss
and LVD of the CSA. The CSA presented the impact of the FCSs integrated into the grid by
increasing the total power loss with a high penetration level of the FCSs. Meanwhile, the
LVD was revealed by the low varying value related to PV sizing and installation position.

Figure 11 shows the voltage profile with a connected FCS at each location. The PV
installation into the grid affected the voltage magnitude profile of the electrical power sys-
tem. The FCSs were integrated into the grid at optimal sizing and locations related to
the objective function’s minimized value. The LVD was defined by the objective function.
Therefore, the optimal positions of the FCSs and PV are presented by the voltage magni-
tude contour. It presents the base case (V_base); the optimal condition when installing
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FCSs with the SAA (V_SA + EV), GA (V_GA + EV), and CSA (V_CSA + EV); and the op-
timal condition when installing FCSs and the PV with the SAA (V_SA + EV + PV No. 6),
GA (V_GA + EV + PV No. 6), and CSA (V_CSA + EV + PV No. 17). The voltage magnitude
contours were selected by the minimum value of LVD in Table 3, with values of 0.035, 0.035,
and 0.020 for the SAA, GA, and CSA, respectively. The reduced voltage magnitude pro-
files, when connected by FCSs, are shown in the voltage magnitude contour of V_SA + EV,
V_GA + EV, and V_CSA + EV. Meanwhile, the results show that the PV can improve the
voltage magnitude profiles and can be used to reduce the impact of FCS penetration into
the grid. However, the high penetration level of the FCSs is directly affected by the grid,
which can be managed in optimal conditions. Significantly, the variation in the FCS sizing
and installation position was revealed by the difference caused by the random metaheuristic
process generation.
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However, the optimal position of FCSs could be selected by the GA with the high
percentage of the best hit counter of 85.71%, shown on buses no. 2, 3, 13, 14, 28, 15, and 27.
The total power loss of 227.73 kW of the GA is presented by minimizing the objective
function. Thus, the position and size of the PV are bus no. 6 and 1.083 kW, respectively.
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5. Conclusions

The symmetry of the grid was achieved by applying the optimal management con-
dition related to the optimal values of the FCSs and DPV installed. This work adapted
metaheuristic methods to solve the problems of the FCSs and DPV. The metaheuristic
methods used were the SAA, GA, and CSA, representing evolutionary, swarm-based, and
trajectory-based algorithms, respectively. The LVD was selected as the objective function
for finding the problem of the optimal FCSs and DPV. The comparison results of the
optimization technique (OT) showed that the lowest average value of the LVD of 0.024
was presented by the CSA. The lowest average value of the total power loss of 192.90 kW
was also presented by the CSA. Meanwhile, the highest average value of the PV sizing of
1.192 MW was given by the SAA. The simulation results showed that the average value of
the computation time, from low to high, was 8.85, 48.31, and 58.80 s for the SAA, GA, and
CSA, respectively. The installed FCSs and DPV revealed the impact of the LVD and the total
power loss of the grid. A possible position of the DPV is at bus no. 6 for a high penetration
level of the FCSs. Meanwhile, a low penetration level of the FCSs could be possible at bus
no. 15. Thus, the penetration level of the FCSs integrated into the grid is important for
managing the optimal condition to reduce grid impact. The SAA, GA, and CSA are limited
in their adaptation to solve the problem from the benchmarking results. Additionally,
accuracy and time computation need to be improved. Therefore, the metaheuristic method
can be considered for this purpose to solve problems in the future and can be selected to
solve the problem of the OT. As the answers are varied and comprise different solutions,
pre-solving and trial and error may be needed to find the problem, which needs to be taken
into account in the future.
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