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Abstract: Hole doping into a correlated antiferromagnet leads to topological stripe correlations,
involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topolog-
ical spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric
frustration with their environment. In the case of cuprates, where the charge stripes have the character
of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson
coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation
symmetry of the superconducting wave function is accommodated by pairs with finite momentum.
This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4

with x = 1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a
basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.

Keywords: superconductivity; cuprates; stripe order; pair-density-wave order

1. Introduction

Charge order has now been observed in virtually all hole-doped cuprate supercon-
ductor families [1–3]. In 214 cuprates, such as La2−xSrxCuO4 (LSCO) and La2−xBaxCuO4
(LBCO), the charge-stripe order is generally accompanied by spin-stripe order [4–8], as
originally observed in Nd-doped La2−xSrxCuO4 [9,10]; each of these orders breaks the
translation symmetry of the square-lattice CuO2 planes. In a 1996 paper, Kivelson and
Emery [11] pointed out the topological character of the combined spin and charge stripe
orders. This corresponds to the fact that the period of the spin-stripe order is twice that of
the charge-stripe order, as the antiferromagnetic phase flips by π across each charge stripe,
as illustrated in Figure 1.

The topological character of stripes in cuprates is distinct from that of the topological
insulators that have dominated attention more recently [12,13]. In the latter case, the
focus is on Bloch states in which spin-orbit effects play a special role. In cuprates, in
contrast, the effects of strong onsite Coulomb repulsion among Cu 3d electrons tend to
make Bloch states of questionable relevance. In a parent compound, such as La2CuO4, one
has a single unpaired Cu 3dx2−y2 electron on each Cu atom that acts as a local moment,
with neighboring moments coupled antiferromagnetically by superexchange J, a local
interaction. While the electronic band gap has a charge-transfer character due to O 2p
states that lie between the lower and upper Hubbard bands associated with the Cu 3dx2−y2

orbital, it is the locally antiferromagnetic (AF) environment that limits the motion of doped
holes.

It has taken quite some time to appreciate the significance of the topological order
associated with spin stripes. Experimentally, the same antiphase relationship of spin
stripes seen in superconducting cuprates also occurs in the case of insulating behavior in
La2−xSrxNiO4 [14] and in La2−xSrxCuO4 with 0.02 . x . 0.05 [15] (where the stripes run
diagonally with respect to the Ni–O or Cu–O bonds). A theoretical analysis of interaction
requirements for topological doping came to no firm conclusions [16]. Antiphase spin
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stripes have been obtained from many different approaches: from Hartree–Fock calcula-
tions on the Hubbard model [17], from effective models that include long-range Coulomb
interactions [18], and from advanced variational and quantum Monte Carlo evaluations of
the t-J [19] or Hubbard model [20,21].

Figure 1. Upper panel indicates the antiferromagnetic order of the undoped CuO2 planes, with spin
direction (arrows) indicated on Cu atoms (circles), separated by O atoms (ellipses). Lower panel
shows the spin configuration in the stripe-ordered phase at a doped-hole concentration of p = 1/8,
with doped hole density indicated by blue shading; antiphase spin stripe indicated in green.

I argued recently [22] that the key feature of topological doping is that the spin degrees
of freedom within the charge stripes feel a geometric frustration of their interactions
with the neighboring spin stripes. This allows the charge stripes to develop quasi-one-
dimensional spin correlations. In the case of cuprates with bond-parallel stripes, the
charge stripes may be viewed as hole-doped, two-leg, spin S = 1/2 ladders, which are
established to have strong superconducting correlations [23,24]. This is a variation on the
original proposal of superconducting charge stripes by Emery, Kivelson, and Zachar [25],
who pointed out that a spin gap in a one-dimensional (1D) electron gas acts as a pairing
amplitude; the difference is that they assumed that the spin gap would be transferred from
the neighboring spin stripes, in which case one would never achieve superconductivity
when the spin-stripe order is present. The advantage of the doped two-leg spin ladder is
that it comes with its own spin gap.

To obtain superconducting order in the CuO2 planes, it is necessary to establish phase
coherence, via Josephson coupling, between neighboring charge stripes [25]. Because of
the conflict between local AF order and hole motion, this needs to be antiphase super-
conducting order, resulting in a pair-density-wave (PDW) state [26,27]. PDW order was
initially proposed [28,29] to explain the experimental observation of two-dimensional
superconductivity in CuO2 layers [30], with frustration of the usual Josephson coupling
between planes [31].

While the initial case for PDW order was circumstantial, direct phase-sensitive evi-
dence of PDW order in LBCO x = 1/8 has now been reported [32]. This result is consistent
with measurements of the Hall effect in high magnetic fields along the c-axis that suggest
that the holes in the charge stripes remain paired, even in the absence of superconducting
order [33]. Hence, there is now a solid case that charge stripes in cuprates are essential to
pairing.

Of course, the superconducting ground state of most cuprates is the spatially uniform
d wave, not PDW. This is still compatible with pairing correlations developing within
charge stripes, but it requires disordered spin stripes with an energy gap [22,34]; uniform
phase coherence can only be achieved at energies below the spin gap. The antiphase spin
stripes play a critical role for the superconducting order: they either need to be ordered
to allow the PDW phase order to be established, or gapped to enable a spatially uniform
superconducting order. As a consequence, uniform superconductivity will not coexist with
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a PDW ground state. On the other hand, defects that require the superconducting order
parameter to locally go to zero can favor the local PDW order without a spin order, as seen
in studies by scanning tunneling spectroscopy [35,36].

In the following, I fill in details that provide support for the story laid out above.

2. Stripe Order and Decoupling of Spin Excitations

The holes doped into the CuO2 planes tend to go into O 2p states [37]. As pointed out
by Emery and Reiter [38], if one could localize a single hole, it would cause the neighboring
Cu moments to be parallel, which frustrates the AF order of the undoped system. In fact, it
takes very few holes to kill the AF order. In LSCO, the commensurate AF order is gone
by p = 0.02, and even before that, one has phase separation at low temperature [39]. This
transition occurs at a hole density that is 20 times smaller than the limit for percolation due
to substitution of nonmagnetic ions, as verified in LSCO with nonmagnetic Zn and Mg
substitution for Cu [40].

Initially, the holes form diagonal stripes [15] and the system is insulating. This is
similar to La2−xSrxNiO4 (LSNO) and La2NiO4+δ [41–43]. The case of LSNO with x = 1/3
is of particular interest. Neutron scattering measurements of magnetic scattering are
presented in Figure 2a; these can be understood in terms of the stripe order illustrated in
Figure 3. Note that in contrast to the spin S = 1/2 of Cu2+, the Ni2+ sites have S = 1.
The Ni moments on the spin stripes order [44] and exhibit well-defined spin waves [45,46].
Within the charge stripes, there is one hole per Ni site; a low-spin hybridization is expected
to leave a net S = 1/2 per Ni site along a charge stripe. The interaction of each such
moment with the neighboring spin stripes is geometrically frustrated. It is still possible
for the reduced Ni moments to couple antiferromagnetically along a charge stripe. For
such a decoupled 1D spin chain, one would expect to see no order but spin excitations that
disperse only along the stripe direction. Just such 1D spin excitations were first identified
by Boothroyd et al. [47]; the role of the decoupling of interactions due to such site-centered
charge stripes between antiphase spin stripes was recognized and confirmed in [48].

Figure 2. (a) Difference in neutron scattering intensity measured at 5 K and 70 K for h̄ω = 3± 1 meV
in La2−xSrxNiO4 with x = 1/3. Dark blue points at positions of the type (1± 1

3 , 0, 0) and (1,± 1
3 , 0)

correspond to spin waves associated with the spin stripe order, where the AF wave vector, QAF,
is (1, 0, 0). Yellow lines correspond to cuts through 2D planes of scattering from 1D spin correlations
in charge stripes. Note that twinning causes the measurement to include scattering from stripe
domains rotated by 90◦. Reprinted with permission from [48], © (2019) by the American Physical
Society. (b) Neutron scattering intensity at h̄ω = 6 meV and T = 10 K for La2−xBaxCuO4 with
x = 1/8. Here, QAF = (0.5, 0.5); inset shows relative orientations of axes in (a,b). (c) Fitted dispersion
and Q widths of magnetic scattering in LBCO x = 1/8 at 10 K along Q = (H, 0.5). Black line shows
the hourglass dispersion often applied to such data. (b,c) Reprinted with permission from [49],
©(2007) by the American Physical Society.
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Figure 3. Diagonal stripe order as observed in La2−xSrxNiO4 with x = 1/3. Arrows indicate relative
spin orientations on Ni sites (circles), with color change indicating antiphase domains. Blue shading
indicates distribution of doped holes on O sites (ellipses).

In 214 cuprates, the stripe orientation rotates from diagonal to bond-parallel, and
superconductivity appears for x & 0.05 [5,10,15]. The stripe order is stabilized by coupling
to lattice anisotropy, with the strongest stripe order correlated with a strong suppression
of three-dimensional superconducting order at x ≈ 1/8 [4,9]. The static spin order and
the low-energy magnetic excitations correspond to the antiphase spin-stripe domains of
Figure 1; an example is shown in Figure 2b. The absence of any other low-energy magnetic
excitations indicates that the spin degrees of freedom on the charge stripes are gapped. The
size of the gap at QAF, apparent in Figure 2c, is ∼50 meV, above which commensurate AF
excitations appear [50]; the effective correlation length for the high-energy excitations is
only about one lattice spacing [49]. (A two-component picture of the magnetic excitations
was also proposed in [51].)

We can reconcile the variations in the magnetic spectra through the model indicated
schematically in Figure 4. If the charge stripes are centered on a row of bridging O atoms,
then the charge stripes are effectively 2-leg spin ladders that are decoupled from the
neighboring spin stripes due to frustration of the AF coupling [22]. An undoped spin
ladder is a spin liquid [52], with a spin gap that can be as large as J/2 [23]. The hole
concentration in the 2-leg ladder picture of the charge stripes is 25%. With an effective J
of ∼100 meV [50], the holes form pairs so as to avoid exciting the spins across the large
spin gap. As illustrated in Figure 4, the spins can be viewed as forming a resonating-
valence-bond (RVB) state of nearest-neighbor singlets. Theoretical analysis indicates that
the singlet-triplet excitation energy is essentially the pairing scale for the doped holes, and
the pairs have d-wave-like character [24,53].

Figure 4. Cartoon of cuprate spin stripe order at p = 1/8, with resulting pairing correlations within
the charge stripes, as proposed in [22]. Here, only Cu sites are shown. Arrows indicate ordered spins;
blue circles are doped holes; ellipses are spin singlets on pairs of Cu sites.

Note that the RVB state of the 2-leg ladder is a gapped spin liquid, in contrast to the
gapless quantum spin liquid of Anderson’s proposed RVB for the 2D square lattice [54]. It is
closer to the short-range RVB of Kivelson, Rokshar, and Sethna [55], in which a coupling
to nearest-neighbor bond-length fluctuations (Peierls mechanism) stabilizes the singlet
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correlations. In the stripe case, the charge segregation that enables the doped ladders is
stabilized by soft phonons and a lattice distortion [9,56–59].

The distinction between the spin stripes and the doped ladders breaks down for
excitations above the pairing scale. Such high-energy excitations can occur anywhere in
the plane, and at such energies, the holes are no longer confined to pairs within charge
stripes. The strong scattering between spins and holes leads to the short correlation length
at high energies.

It is recognized that superconducting and charge-density-wave correlations compete
with one another in 1D [60]. Recent calculations on 2-leg ladder models suggest that
superconducting correlations survive in a 1-band Hubbard model [61] but not in a 3-band
Hubbard model [62]. In the experimental case of interest, we do not have individual
ladders; while the spin components are decoupled by the magnetic topology, the holes in
neighboring ladders interact by long-range Coulomb repulsion and possibly other effects
not considered in the calculations. Furthermore, superconducting order requires Josephson
coupling between the charge stripes [25]. So the important question is, what happens
regarding superconductivity in experiments?

3. PDW Order

In the case of optimal stripe order, LBCO with x = 1/8, 2D superconducting corre-
lations were observed to set in together with the spin-stripe order at ∼40 K [30,63]; 2D
superconducting order was established through a Berezinskii–Kosterlitz–Thouless transi-
tion at 16 K, with 3D superconductivity developing only at ∼5 K. Related behavior was
observed in Nd-doped LSCO with x = 0.15 [64], where the transition to the crystal structure
that pins stripe order can be tuned with increasing Nd concentration [65]; measurements
of c-axis optical conductivity demonstrated the loss of 3D superconductivity as the Nd
concentration was tuned through the structural transition [31].

To explain the 2D superconductivity, a novel superconducting state was proposed:
pair-density-wave order [28,29]. In the PDW state, the pair wave function oscillates from
positive on one charge stripe to negative on the next, passing through zero in the spin
stripes. Because the stripe order is pinned to a lattice anisotropy that rotates by 90◦ on
passing from one layer to the next along the c axis [66], the interlayer Josephson coupling
associated with PDW order should be frustrated.

The PDW order is characterized by a finite wave vector that matches that of the spin
stripe order. This finite-momentum of pairs is shared with the concept of superconductivity
in a strong uniform magnetic field proposed by Fulde and Farrel [67] and Larkin and
Ochinnikov [68]; the difference is the absence of a net magnetic field. (Experimental
evidence for a field-induced FFLO state in a layered organic superconductor was reported
fairly recently [69,70].) It is also apt to note that there have been other proposals for
pairing based on charge-density waves (CDWs) in cuprates. In particular, Castellani,
Di Castro, Grilli, and coworkers [71–73] proposed that dynamical CDWs underlie the
superconductivity of cuprates. The fluctuating CDWs would provide a pairing interaction
between extended quasiparticles as in the general case of bosonic fluctuations near a
quantum critical point [74]. From this perspective, static CDW order tends to compete with
superconductivity.

The evidence of 2D superconductivity in LBCO, together with the PDW proposal,
supported the alternative concept of intertwined order [75]. Here the idea is that the inter-
actions that drive pairing and spin order actually work together, but benefit from spatial
segregation. This approach builds on theoretical evidence that static spatial inhomogeneity
can enhance pairing [76–78]. The concept of pairing within charge stripes has also had
to evolve. The initial proposal for pairing in charge stripes relied on interacting with a
spin gap in the neighboring spin stripes [25], which is not consistent with the presence
of spin stripe order. The idea of charge stripes as doped 2-leg spin ladders resolves this
problem [22].
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While the proposed PDW state can explain the 2D superconductivity in LBCO, the
story would be more compelling with direct evidence for PDW order in LBCO. Phase-
sensitive evidence has now been reported [32]. Yang [79] predicted that one could (at least
partially) restore the interlayer Josephson coupling by application of an in-plane magnetic
field, and that the maximum effect would occur with the field at 45◦ to the in-plane Cu–O
bonds. This angular dependence of the superconducting critical current density along the c
axis is now confirmed by experiment [32]. Hence, PDW order coexisting with spin stripe
order is experimentally verified. The conclusion that the charge stripes are the source of
pairing seems unavoidable.

Further evidence of the last conclusion comes from transport measurements in a
large magnetic field applied perpendicular to the planes. Such measurements on LBCO
x = 1/8 revealed, beyond a reentrant 2D superconducting phase at a field of 20 T, an ultra-
quantum metal phase with a very large sheet resistance (twice the quantum of resistance
for pairs) that appears to saturate at low temperature [33]. The Hall resistance in this
phase, as in the 3D and 2D superconducting phases, is zero within the error bars. (Similar
results were obtained for La1.7Eu0.2Sr0.10CuO4 and La1.48Nd0.4Sr0.12CuO4 [80]). A possible
interpretation of the Hall resistance at high field is that the doped holes remain paired, even
with the loss of PDW phase coherence between neighboring charge stripes. Theoretically,
if one takes the disorder into account, this could be a Bose metal phase [81].

Incoherent stripe correlations are also present in the normal state of LSCO [7,8].
Intriguingly, a study of shot noise in tunnel junctions involving LSCO films found evidence
for pairs in the the normal state of underdoped samples [82]. That result is at least
compatible with the concept of pair correlations in the charge stripes, even at T > Tc.

4. PDW vs. Uniform d-Wave Superconductivity

Dynamic topological doping, in the form of incommensurate spin excitations, is a
common feature of underdoped cuprates [83]. Spectroscopically, the differences between
cuprates with PDW order [84–86] and those with uniform d-wave superconductivity [87,88]
are small, while charge stripes, static or dynamic, are common [1–3]. Hence, it seems quite
reasonable to propose that charge stripes are the common pairing centers.

The difference between the PDW and uniform superconducting states is associated
with the presence or absence of static spin-stripe order. In the PDW state, the static spin-
stripe order is essential for the pair correlations to develop (anti-)phase coherence between
neighboring charge stripes; purely fluctuating spin stripes oppose superconducting phase
order. We should take a moment to acknowledge that it is surprising that we can have
such spin order at all. There is already a large tendency toward spin fluctuations in the
undoped CuO2 planes [89], while 1D spin chains have no static order. There must be some
degree of spin anisotropy present in order for the spin stripes to order. Besides being an
open question, this represents a challenge for simulations using the Hubbard or t-J models,
as they lack any term that would tend to induce spin order. As a consequence, attempts to
identify PDW order in numerical simulations have generally been unsuccessful [90].

While the spin stripes are good for isolating the doped spin ladders that yield pair-
ing, they stand in the way of spatially uniform superconducting order. If they can be
gapped, then it should be possible to develop a uniform superconducting phase among
electronic states at energies below the spin gap. Indeed, an analysis of the available ex-
perimental results on cuprate families indicates that the energy gap for incommensurate
spin excitations is an upper limit for the superconducting gap associated with long-range
coherence [34]. Note that the local pairing scale within the charge stripes will be larger
than the coherent gap of the uniform order. This is consistent with observations by angle-
resolved photoemission [91–93] and Raman scattering [94,95] of antinodal gaps that are
much larger than the scale of the coherent gap [22]. On the theory side, recent density-
matrix-renormalization-group calculations of the Hubbard model (on a lattice of width 4 or
6 Cu sites, with boundaries joined to form a cylinder) found that a modulation of the hop-
ping between neighboring sites in one direction (around the circumference of the cylinder),
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as one might expect for charge stripes without spin order, enhances the superconducting
correlations [78].

The close relationship between the PDW and uniform superconducting orders is
illustrated by a study of the phase transitions in LBCO x = 0.115 as a function of uniaxial
strain [96]. In the absence of strain, bulk susceptibility measurements suggest an onset of
2D superconducting correlations, along with spin-stripe order, near 40 K; however, the
spin-stripe order is weaker than at x = 1/8 so that 3D superconducting order develops
below∼12 K [5]. Application of significant in-plane stress causes the bulk superconducting
Tc to rise to 32 K, while muon-spin-rotation spectra indicate a reduction in the magnetically
ordered volume fraction by more than 50%, consistent with a decrease in the volume of
spin-stripe order and associated PDW order [96]. While the dominant character of the
superconducting state changes under strain, the onset temperature of superconducting
coherence changes relatively little.

Another connection is seen through the impact of proton irradiation on LBCO x = 1/8 [97].
Protons create narrow tracks of structural defects, often used as pinning centers for mag-
netic vortices. In LBCO, moderate proton irradiation resulted in an increase in the bulk
Tc, from 4 K to 6 K, while also reducing the correlation length of the charge stripes. It is
difficult to see how the structural disorder induced by the bombardment would directly
enhance pairing. Instead, the induced disorder must modify the coherent coupling among
the correlated pairs already present.

Lee [98] proposed that PDW order is the dominant order in cuprates and that it
explains the pseudogap behavior. While the proposal is interesting, there are a number
of issues with it. For one thing, the PDW order in LBCO x = 1/8 sets in at a temperature
far below the T∗ crossover temperature associated with pseudogap phenomena. While
there are dynamic charge and spin stripes at higher temperatures [4,99], and there could be
pairing correlations within those dynamic charge stripes, there is no evidence of coherence
of pairs between neighboring charge stripes, which would be essential for a reasonable
definition of PDW correlations, let alone PDW order. For another thing, the PDW order
as defined in [26] is not generic to most cuprate families. For example, in YBa2Cu3O6+x,
the charge-density-wave order develops together with a gap in the incommensurate spin
excitations [100]. As discussed above, the spin gap is compatible with the uniform d-wave
superconductivity that orders at lower temperatures.

Another distinction between different cuprates concerns the magnitude of the wave
vector Qco for the charge order and its variation with doping. In 214 cuprates, Qco grows
linearly with hole density p up to p ≈ 1/8, where it saturates at ≈1/8 reciprocal lattice
unit (rlu) [5,101]. Common contrasting behavior is typified by YBa2Cu3O6+x, where Qco
starts at ∼0.34 rlu for p ≈ 0.08, and then decreases by about ∼10% with doping [100,102].
These distinct doping dependencies raise questions about the relationship between the
orders in different compounds.

A new study of the doping and temperature dependence of the charge-stripe order in
La1.8−xEu0.2SrxCuO4 brings new insight to this issue [103]. At low temperature, where both
charge- and spin-stripe orders are observed, Qco follows the behavior identified in other
214 systems. With rising temperature, however, Qco tends to grow in the disordered regime,
especially at smaller hole density. A physically-inspired Landau–Ginzburg model, when
fitted to the temperature-dependent Qco measurements, provides an extrapolation that,
at T ∼ 400 K, shows behavior of Qco vs. p very similar to that found in YBCO [100,102].
Hence, it is plausible that the charge orders found in various cuprate families have a
common origin.

5. PDW Around Defects

Scanning tunneling microscopy (STM) experiments have provided evidence for a
local coexistence of PDW and uniform superconducting orders around defects in the
superconducting order, such as magnetic vortex cores [35,104]. The detected signature
corresponds to an induced charge modulation that results from the superimposed, locally
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coexisting orders [26]. The main system studied by STM is Bi2Sr2CaCu2O8+δ, which tends
to have a large spin gap [105]. Local, short-range PDW correlations were also detected
through spatial modulation of the superconducting gap [36].

The absence of spin-stripe order removes the conflict between PDW and uniform
superconducting orders discussed above. At the same time, the PDW order detected by
STM appears to be induced by local defects, which is distinct from the PDW ground state
detected in LBCO, where spin-stripe order appears to be an intrinsic component. A defect
such as a magnetic vortex or a Zn atom substituted for Cu causes the superconducting
order to go to zero [106]; that may make PDW order energetically favored in the local
environment [107].

This line of reasoning provides an interesting connection to the LBCO system. A crystal
with x = 0.095 shows a bulk Tc = 32 K in zero magnetic field, along with weakened stripe
order relative to x = 1/8 [5]. Application of a c-axis magnetic field causes an enhancement
of stripe order and a decoupling of the superconducting planes [108,109], presumably due
to the dominance of PDW order. The regions of uniform superconductivity should act
as pinning centers for the magnetic vortices since one can obtain an energy gain from
inducing PDW order there.

If Zn defects act like magnetic vortices in terms of locally favoring PDW order, then
enough Zn should, like the magnetic field, cause a decoupling of superconducting planes.
Indeed, this effect was confirmed in a crystal of LBCO x = 0.095 with 1% Zn [110].
Similar behavior was observed in La2−xSrxCuO4 with x = 0.13 and 1% Fe [111]. One
difference between Zn defects and magnetic vortices is that Zn is known to induce pinning
of spin-stripe order [112]; however, it may lead to a reduction in the spin-stripe-ordering
temperature when introduced to a system that already has strong spin-stripe order [113].

6. Relations to Other Superconductors

Topological doping is important in cuprates because it establishes regions of reduced
dimensionality where pairing can develop in the presence of repulsive interactions. There
is a natural connection with systems in which the lattice is formed from a coupling of lower-
dimensional components. One example is alkali-doped C60 [114], where the dopants pro-
vide the charge carriers, while the the C60 molecules provide the interactions. Chakravarty
and Kivelson [115] proposed a model in which electrons could minimize repulsive interac-
tions by hopping onto C60 molecules in pairs. In fact, they made a direct comparison to
pairing in a doped 2-leg spin ladder. Another obvious parallel is with organic supercon-
ductors [116], where superconductivity tends to occur in proximity to spin-density-wave
order [117,118].

The situation is different if we compare with other layered superconductors. In
electron-doped cuprates, such as Nd2−xCexCuO4, the carriers and the Cu moments do
not spatially segregate. As a result, commensurate antiferromagnetic order survives to
a higher carrier concentration, and superconductivity appears only when static order
disappears [119]. There is a good deal of commensurate inelastic magnetic spectral weight
at low energy. If this were a good thing for superconductivity, then one might expect
to obtain a very high Tc; instead, the highest Tc is lower than that in essentially all hole-
doped families of cuprate superconductors. Neutron scattering studies on electron-doped
superconductors show that the low-energy antiferromagnetic excitations become gapped
on an energy scale comparable to the superconducting gap [120–122].
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