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Abstract: The probability of the basic HHO algorithm in choosing different search methods is
symmetric: about 0.5 in the interval from 0 to 1. The optimal solution from the previous iteration of
the algorithm affects the current solution, the search for prey in a linear way led to a single search
result, and the overall number of updates of the optimal position was low. These factors limit Harris
Hawks optimization algorithm. For example, an ease of falling into a local optimum and the efficiency
of convergence is low. Inspired by the prey hunting behavior of Harris’s hawk, a multi-strategy
search Harris Hawks optimization algorithm is proposed, and the least squares support vector
machine (LSSVM) optimized by the proposed algorithm was used to model the reactive power
output of the synchronous condenser. Firstly, we select the best Gauss chaotic mapping method from
seven commonly used chaotic mapping population initialization methods to improve the accuracy.
Secondly, the optimal neighborhood perturbation mechanism is introduced to avoid premature
maturity of the algorithm. Simultaneously, the adaptive weight and variable spiral search strategy
are designed to simulate the prey hunting behavior of Harris hawk to improve the convergence
speed of the improved algorithm and enhance the global search ability of the improved algorithm.
A numerical experiment is tested with the classical 23 test functions and the CEC2017 test function
set. The results show that the proposed algorithm outperforms the Harris Hawks optimization
algorithm and other intelligent optimization algorithms in terms of convergence speed, solution
accuracy and robustness, and the model of synchronous condenser reactive power output established
by the improved algorithm optimized LSSVM has good accuracy and generalization ability.

Keywords: Harris Hawks optimization algorithm; chaotic mapping; multi-strategy strategy; least
squares support vector machine; synchronous condenser

1. Introduction

Along with the significant increase in the processing power of computer hardware and
software, a large number of excellent meta-heuristics were created in the intelligent com-
puting field [1–5]. Meta-heuristics are a large class of algorithms developed in contrast to
optimization and heuristics. Optimization algorithms are dedicated to finding the optimal
solution to a problem, but they are often difficult to implement due to the unresolvability
of the problem [6,7]. Heuristic algorithms are dedicated to customizing algorithms through
intuitive experience and problem information, but are often difficult to generalize due to
their specialized nature. Compared to these two algorithms, meta-heuristic algorithms
are more general and do not require deep adaptation to the problem, and although they
do not guarantee optimal solutions, they can generally obtain optimal solutions under
acceptable spatial and temporal conditions, although the degree of deviation from the
optimal solution is difficult to estimate [8–12].
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The main optimization strategies of meta-heuristic algorithms are summarized as
follows: (1) diversification of exploration in a wide range to ensure the global optimal
solution; and (2) intensification and exploitation in a local range to obtain an optimal
solution as close to the optimal solution as possible [13]. The main difference between
various meta-heuristic algorithms is how to strike a balance between the two. Almost
all meta-heuristic algorithms have the following characteristics: (1) they are inspired by
some phenomena in nature, such as simulated physics, biology, and biological behavior;
(2) they use stochastic strategies; (3) they do not use the gradient resolution information
of the objective function; and (4) they have several parameters that need to be adapted to
the problem, and (5) they have good parallel and autonomous exploration. Meta-heuristic
algorithms have been widely used in all aspects of social production and life. Many related
research papers are published every year in the fields of production scheduling [14,15],
engineering computing [16,17], management decision-making [18,19], machine learning
(ML) [20,21], system control [22], and many other disciplines.

P-meta-heuristics are categorized into four main groups [23,24]: (1) simulated physical
process algorithm, (2) evolutionary algorithm, (3) simulated swarm intelligence algorithm,
and (4) human behavior [25–27]. Algorithms for simulating physical processes include
simulated annealing (SA) [28], gravitational search algorithm [29] which simulates earth
gravity, artificial chemical reaction optimization algorithm [30], heat transfer search, which
simulates the heat transfer search process in thermodynamics [31], Gases Brownian motion
optimization, which simulates the phenomenon of Brownian motion in physics [32], Henry
gas solubility optimization, which simulates Henry gas solubility process [33]; and evolu-
tionary algorithm. In 1975, American professor Holland proposed the genetic algorithm
(GA) based on the Darwinian evolutionary theory and the mechanism of superiority and
inferiority in nature. GA [34], evolution strategies [35] and differential evolution [36],
genetic programming [37], and Biogeography-Based Optimizer [38]; simulated popula-
tion intelligence algorithms: the Artificial Bee Colony (ABC) algorithm [39] based on the
honey bee harvesting mechanisms, Firefly Algorithm based on the flickering behavior of
fireflies [40], Beetle Antennae Search algorithm based on the foraging principle of aspen
bark beetles [41], Grey Wolf Optimization (GWO) algorithm inspired by the hierarchy
and predatory behavior of gray wolf packs [42], and Virus Colony Search algorithm [43],
which is based on the proliferation and infection strategies of viruses to survive and repro-
duce in the cellular environment through host cells. Simulation of human behavior: Tabu
Search [44], Socio Evolution and Learning Optimization [45], Teaching Learning Based
Optimization [46], and Imperialist Competitive Algorithm [47].

Harris Hawks Optimization (HHO) [24] is a swarm intelligence optimization algo-
rithm proposed by Heidari et al. in 2019 to simulate the prey hunting process of Harris’s
hawks in nature. The algorithm was inspired by the three phases of Harris’s hawks’ preda-
tory behavior: search, search-exploitation conversion, and exploitation. The algorithm
has a simple principle, fewer parameters, and better global search capability. Therefore,
HHO has been applied in image segmentation [48], neural network training [49], motor
control [50] and other fields. However, similar to other swarm intelligence optimization
algorithms, HHO has the disadvantages of slow convergence speed, low optimization
accuracy, and easily falls into local optimum when solving complex optimization problems.
For example, the literature [51] used the information exchange mechanism to enhance
the population diversity, thus improving the convergence speed of the HHO algorithm
with information exchange (IEHHO) algorithm. The limitation of the IEHHO algorithm
is how to set the parameters of the proposed algorithm. Zhang et al. [52] introduced an
exponentially decreasing strategy to update the energy factor to increase the exploration
and exploitation capability obtained by the relatively higher values of escaping energy;
Elgamal et al. [53] made two improvements: (1) they applied chaotic mapping in the
initialization phase of HHO; and (2) they used the SA algorithm as the current best solution
to improve HHO exploitation; Shiming Song et al. [54] applied Gaussian mutation and a
dimension decision strategy of the cuckoo search method into this algorithm to increase
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the HHO’s performance. The mechanism of cuckoo search was useful in improving the
convergence speed of the search agents as well as sufficient excavation of the solutions in
the search area, while the Gaussian mutation strategy performed well in increasing the
accuracy and jumping of the local optimum.

However, according to the no free lunch theory [55], one meta-heuristics algorithm
cannot always perform as the best on all operations. The original HHO method could not
fully balance the exploration and exploitation phases, which resulted in insufficient global
search capability and slow convergence of the HHO method. To alleviate these adverse
effects, we propose an improved algorithm model called chaotic multi-strategy search
HHO (CSHHO), which introduces chaotic mapping and global search strategy, to solve
single-objective optimization problems efficiently.

Here, the initialization phase of HHO is replaced by chaotic mapping, which allows
the population initialization phase to be evenly distributed in the upper and lower bounds
to enhance the population diversity, simultaneously enabling the population to approach
the prey location faster, which accelerates the convergence speed of the algorithm. The
adaptive weights are added to the position update formula in the exploration phase of HHO
to dynamically adjust the influence of the global optimal solution. In the update phase
of the HHO, the optimal neighborhood perturbation strategy is introduced to prevent
the algorithm from falling into the local optimal solution and to solve the premature
aging phenomenon.

To verify the superior performance of the CSHHO algorithm, this experiment first
tests the effect of common chaotic mappings of the HHO algorithm’s performance. The
selected chaotic mappings are Sinusoidal, Tent, Kent, Cubic, Logistic, Gauss, and Circle,
and the experimental results will show that Gauss chaotic mapping improves the accuracy
of the HHO algorithm to the greatest extent. Second, the HHO algorithm based on Gauss
chaotic mapping with multi-strategy search is tested. Then, it is compared with other
classic and state-of-the-art algorithms on 23 classic test functions and 30 IEEE CEC2017
competition functions to verify the significant superiority of the proposed paradigm over
other algorithms by Friedman test and Bonferroni–Holm corrected Wilcoxon signed-rank
test. Finally, CSHHO is applied to model the reactive power output problem of a syn-
chronous condenser based on LSSVM. The complete results will show that the effectiveness
of the proposed optimizer is better than other models in the experiment.

The remainder of this paper is organized as follows: Section 2 introduces the basic
theory and structure of the original HHO algorithm. Section 3 introduces the chaotic
operator and Global search strategy to integrate it into the original optimizer. Section 4
conducts a full range of experiments on the proposed method and demonstrates the
experimental results. It further discusses the proposed method based on experimental
results. Section 5 applies the proposed method to the LSSVM-based synchronous condenser
reactive power output problem. Finally, Section 6 summarizes the study and proposes
research ideas for the future.

2. Harris Hawks Optimization Algorithm

The HHO algorithm is a swarm intelligence optimization algorithm that is widely
used in solving optimization problems. The main idea of the algorithm is derived from
the cooperative behavior and chasing strategy of Harris’s hawk when catching prey in
nature [24]. In the process of prey capture, the HHO algorithm is divided into two segments
according to the physical energy E of the prey at the time of escape: exploration and
exploitation phases, as shown in Figure 1. During the exploration phase, Harris’s hawks
randomly select a perching location to observe and monitor their prey.

X′i(t + 1) =
{

Xrand(t)− r1|Xrand(t)− 2r2Xi(t)|, q > 0.5
Xrabbit(t)− Xm(t)− r3[lb + r4(ub− lb)], q < 0.5

(1)
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where Xrabbit (t) and Xrand (t) denote the position of the prey and the individual po-
sition at time t, respectively, and q is a random number between (0, 1), the average
individual position:

Xm(t) =
1
N

N

∑
i=1

Xi(t) (2)
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As the physical capacity of the prey decreases, the exploration phase changes to the
exploitation phase, the prey’s physical energy factor E is as follows:

E = 2E0

(
1− t

T

)
(3)

In the exploitation phase, the Harris’s hawk launches a surprise attack on the target
prey found in the exploration phase, and the prey tries to escape when it encounters danger.
Let the randomly generated prey escape probability be r, when r < 0.5 the prey successfully
escapes; when r > 0.5 the prey does not successfully escape. According to the magnitude
of r and |E|, four different location update strategies were proposed in the exploitation
phase (see Table 1).

According to the position update condition in the HHO algorithm, the position of the
Harris hawk is updated continuously, the fitness value was calculated according to the
position of the Harris hawk, and if the fitness threshold was reached, the algorithm was
finished. Otherwise, the algorithm continued to execute, and if the maximum number of
iterations was reached, the algorithm was finished, and the optimal solution was obtained
(See Figure 2).
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Table 1. Exploitation phase of HHO algorithm.

Strategy The value of r and |E|

Soft besiege

r ≥ 0.5 and |E| ≥ 0.5
X′i (t + 1) = ∆Xi(t)− E(t)

∣∣JXrabbit (t)− Xi(t)
∣∣ (4)

∆Xi(t) = Xrabbit (t)− Xi(t) (5)
J = 2(1− r5) (6)

Hard besiege r ≥ 0.5 and |E| < 0.5
X′i (t + 1) = Xrabbit (t)− E(t)|∆Xi(t)| (7)

Soft besiege with progressive rapid dives

r < 0.5 and |E| ≥ 0.5

X′i (t + 1) =
{

Y f (Y) < f (Xi(t))
Z f (Z) < f (Xi(t))

(8)

Y = Xrabbit (t)− E(t)|JXrabbit (t)− Xi(t)| (9)
Z = Y + S× LF(D) (10)

LF(·) = 0.01× u

|v|
1
β

×
(

Γ(1+β)×sin(0.5βπ)
Γ(0.5(1+β))×β×2(β−1)/2

) 1
β (11)

Hard besiege with progressive rapid dives

r < 0.5 and |E| < 0.5

X′i (t + 1) =
{

Y f (Y) < f (Xi(t))
Z f (Z) < f (Xi(t))

(12)

Y = Xrabbit (t)− E(t)|JXrabbit (t)− Xm(t)| (13)
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3. HHO Algorithm Based on Multi-Search Strategy
3.1. Reasons for Improving the Basic HHO Algorithm

Harris’s hawks generally gather high in trees to hunt for prey. In the process of
hunting for prey, they often hover in a spiral to capture prey; when approaching prey,



Symmetry 2021, 13, 2364 6 of 41

they rush towards their prey at a faster speed until the distance from the prey is small.
They slow down and adjust their body posture to increase the probability of their catching
prey [56–58]. This mechanism is important in the HHO algorithm. The exploration phase
of the basic HHO algorithm uses Equations (1)–(3), where the optimal solution from the
previous iteration of the algorithm affected the current solution and caused the algorithm
to fall into a local optimum. The search for prey in a linear way led to a single search result.
From all iterations of the algorithm, the optimal position of the current algorithm was only
updated when the algorithm searched for a better solution than the current one, and the
overall number of updates of the optimal position was low, which led to a decrease in the
efficiency of the algorithm’s search. In reality, when a Harris’s hawk chases its prey, it
hovers and descends in a spiral manner to catch its prey adaptively, showing better agility
when hunting.

Here, the optimal neighborhood disturbance strategy was introduced to enhance
the convergence speed of the algorithm and avoid premature maturity of the algorithm.
The adaptive weighting and variable spiral position update strategies were introduced to
enhance the global search capability of the algorithm by simulating the predation process
of Harris’s hawks in nature. To make the initial solution generated in the population
initialization phase of the HHO algorithm cover the solution space as much as possible, we
selected the best chaotic mapping method for HHO among seven commonly used chaotic
mapping population initialization methods. It was used as the population initialization
method to improve the algorithm. Hence, the above four methods are used to improve the
global search capability of the HHO algorithm and to increase the speed of Harris Hawk’s
search for the optimal solution.

3.2. Chaotic Mapping

Chaotic is a deterministic stochastic method found in non-periodic, non-convergence
and bounded nonlinear dynamic systems. Mathematically, chaotic is the randomness of a
simple deterministic dynamic system, and a chaotic system is considered as the source of
randomness. The essence of chaotic is obviously random and unpredictable, and it also
has regularity [59].

As an important part of the population initialization algorithm, its result directly
affects the convergence speed and quality of the algorithm [60,61]. For example, uniform
distribution has more complete coverage of solution space than random distribution,
and it is easier to obtain good initial solutions. A classical HHO algorithm uses random
population initialization operation, which cannot cover the whole solution space. A
chaotic sequence has ergodicity, randomness, and regularity in a certain range. Compared
with random search, chaotic sequence searches the search space thoroughly with higher
probability, which enables the algorithm to go beyond the local optimum and maintain the
diversity of the population. Based on the above analysis, to obtain a good initial solution
position and speed up the convergence of the population, seven common chaotic mappings
Sinusoidal, Tent, Kent, Cubic, Logistic, Gauss, and Circle were selected [62–69] and used to
initialize the population of HHO algorithm. The results were analyzed and the optimal one
for the HHO algorithm selected as the population initialization method for the improved
algorithm. The following were the mathematical formulas of the 10 chaotic mappings:

(1) Sinusoidal chaotic mapping:

xk+1 = P · sin(2πxk) (14)

where P was the control parameter, here P = 2.3, x0 = 0.7, Equation (14) was written as

xk+1 = sin(πxk) (15)
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(2) Tent chaotic mapping

xk+1 =

{
2xk xk < 0.5
2(1− xk) xk ≥ 0.5

(16)

(3) Kent chaotic mapping{
xk+1 = xk/µ 0 < xk < µ

xk+1 = (1− xk)/(1− µ) µ 6 xk < 1
(17)

The control parameter µ ∈ (0, 1), when µ = 0.5, the system was Short Period State,
µ = 0.5 was not taken here. When using the chaotic mapping, the initial value x0 had to
not be the same as the system parameters µ, otherwise the system evolved into a periodic
system. Here, we took µ = 0.4.

(4) Cubic chaotic mapping
The standard Cubic chaotic mapping function was expressed as

xk+1 = bx3
k − cxk (18)

where b and c were the influence factors of chaotic mapping. The range of Cubic chaotic
mapping was different for different values to b and c. When c = 3, the sequence generated
by Cubic mapping was chaotic. Also when b = 1, xn ∈ (−2, 2); when b = 4, xn ∈ (−1, 1).
Here, we took b = 4 and c = 3.

(5) Logistic chaotic mapping

xk+1 = Pxk(1− xk) (19)

when P = 4, the generation number of Logistic chaotic mapping was between (0, 1).
(6) Gauss chaotic mapping

xk+1 =

{
0
1

xk mod (1)

xk = 0
otherwise

1
xk mod (1) =

1
xk
−
∣∣∣ 1

xk

∣∣∣ (20)

(7) Circle chaotic mapping

xk+1 = mod
(

xk + 0.2−
(

0.5
2π

)
sin(2πxk), 1

)
(21)

The three steps to initialize the population of the HHO using the seven chaotic map-
pings were:

Step 1: Randomly generate M Harris hawks in D-dimensional space, i.e., Y= (y 1, y2, y3, · · ·
· · · , yn) yi ∈ (−1, 1)i = 1, 2, · · · , n.
Step 2: Iterate each dimension of each Harris hawk M times, resulting in M Harris hawks.
Step 3: After all Harris hawk iterations were completed, chaotic mapping (21) was applied
to the solution space.

xid = lbd + (1 + yid)×
ubd − lbd

2
(22)

where ub was the upper bound of the exploration space, lb the lower bound of the ex-
ploration space; the d-dimensional coordinates of the i-th Harris hawk were represented
by yid, which was generated using Equations (14)–(21); the coordinates of the i-th Harris
hawk in the d-dimensional of the exploration space were xid, which was generated using
Equation (22).
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Here, we first proposed the HHO algorithm based on seven different chaotic initial-
ization strategies, respectively, chaotic initialization Harris hawks optimization (CIHHO)
algorithm. Obviously, the implementation of CIHHO is basically the same as that of
HHO, except that the initialization in Step 2 generates m individual Harris hawks using
Equations (14)–(21), and then maps the positions of these m Harris hawks to the search
space of the population using Equation (22).

3.3. Adaptive Weight

Inspired by the predation process of the Harris’s hawk hunting strategy, we added an
adaptive weight to the position update of Harris’s hawk that changed with the number of
iterations. In the early stage of the exploration phase of HHO, the influence of the optimal
Harris’s hawk position on the current individual position adjustment was weakened to
improve the global search ability of the algorithm in the early stage. As the number
of iterations increased, the influence of the optimal Harris’s hawk position gradually
increased, so that other Harris hawks could quickly converge to the optimal Harris hawk
position and improve the convergence speed of the whole algorithm. According to the
variation of the number of updates in the HHO algorithm, the adaptive weight composed
of the number of iterations t were chosen as follows:

w(t) = 0.2 cos
(

π

2
·
(

1− t
tmax

))
(23)

Such adaptive weight w(t) had a property of nonlinear variation between [0, 1], due to
the variation property of the cos function between [0, π

2 ], so that the weights were small at
the beginning stage of the exploration phase, but changed slightly faster; at the end of the
exploration phase their values were larger, but the speed of change would slow down, so
that the convergence of the algorithm was fully guaranteed. The improved HHO algorithm
position update formula is:

X(t + 1) =

{
w(t)Xrand (t)− r1|Xrand (t)− 2r2X(t)| q ≥ 0.5
w(t)(Xrabbit (t)− Xm(t))− r3(lb + r4(ub− lb)) q < 0.5

(24)

The position update after the introduction of adaptive weights dynamically adjusted
the weight size according to the increase of the number of iterations, so that the randomly
selected Harris’s hawk position Xrand (t) and the optimal average Harris’s hawk position
Xrabbit (t) − Xm(t) in the population guide the individual Harris’s hawks differently at
different times. As the number of iterations increased, the Harris’s hawk population would
move closer to the optimal position, and the larger weights would speed up the movement
of Harris’s hawk positions, which accelerated the convergence of the algorithm.

3.4. Variable Spiral Position Update

In the search phase of the HHO algorithm, Harris’s hawk randomly searched for
prey in two equal-opportunity strategies based on target location and its own location.
However, in nature, Harris’s hawks generally hover in a spiral shape to search for prey. To
simulate the real process of prey search in nature, we introduced a variable spiral position
update strategy in the search phase of the HHO algorithm, so that the Harris’s hawk would
adjust the distance of each position update according to the spiral shape between the target
position and its own position (see Figure 3).
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In the exploration phase of the HHO algorithm, Equation (1), a constant b was in-
troduced to control the shape of the spiral; if this parameter was set to a constant, each
time the Harris’s hawk position updated a different spiral arc for speed adjustment would
follow. However, if b was set to a constant value, the spiral movement of the Harris’s
hawk would be too singular when searching for prey, and it would follow a fixed spiral
line to approach the target every time, which would easily fall into the misconception
of local optimal solution and weaken the global exploration ability of the algorithm. To
address this, we introduced the idea of variable spiral search to enable the Harris’s hawk
to develop more diverse search path strategies for location update and design the pa-
rameter b as a variable that changes with the number of iterations to dynamically adjust
the shape of the spiral when the Harris’s hawk explores, to increase the ability of the
Harris’s hawk to explore unknown areas; thus, improving the global search capability of
the algorithm. After combining the adaptive weights, the new spiral position update was
created (see Equation (25)).

The b parameter was designed based on the mathematical model of the spiral, and
the spiral shape was dynamically adjusted by introducing the number of iterations on
the basis of the original spiral model. The b parameter was designed in such a way that
the spiral shape changed from large to small as the number of iterations increased. Early
in the exploration phase of the HHO algorithm, the Harris’s hawk searches the target
with a larger spiral shape, the Harris hawk explores the global optimal solution as much
as possible to improve the global optimal search capability of the algorithm; later in the
exploration phase of the HHO algorithm, the Harris’s hawk searched the target with a
small spiral shape to improve the algorithm’s search accuracy.

X(t + 1) =


w(t)Xrand (t)− b|Xrand (t)− 2r2X(t)| q ≥ 0.5

w(t)(Xrabbit (t)− Xm(t))− b(lb + r4(ub− lb)) q < 0.5
b = e5(π(1− t

tmax ))
(25)
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3.5. Optimal Neighborhood Disturbance

When updating the position, the Harris’s hawk generally takes the current optimal
position as the target of this iteration. In the whole iteration, the optimal position is updated
only when there is a better position; thus, the total number of updates was not many, which
led to the inefficiency of the algorithm search. In this regard, the optimal neighborhood
disturbance strategy was introduced to search the neighborhood of the optimal position
randomly to find a better global value, which could not only improve the convergence
speed of the algorithm, but also avoided premature maturity of the algorithm. The optimal
position generated a random disturbance to increase its search of the nearby space, and the
neighborhood disturbance formula was:

X̃(t) =
{

X∗(t) + 0.5 · h · X∗(t), g < 0.5
X∗(t), g > 0.5

(26)

where h and g were random numbers uniformly generated between [0, 1]; X(t) was the
new position generated. For the generated neighborhood positions, a greedy strategy was
used to determine whether to keep them, and the formula was:

X∗(t) =
{

X̃(t), f (X̃(t)) < f (X∗(t))
X∗(t), f (X∗(t)) 6 f (X̃(t))

(27)

where f (x) was the position adaptation value of x. If the generated position was better
than the original position, it would be replaced with the original position to make it the
global optimum. Otherwise, the optimal position remained unchanged.

3.6. Computational Complexity

The computational complexity of the population initialization process of the classical
HHO algorithm is O(N), and the computational complexity of the updated mechanism
was O(T × N) + O(T × N × D), so the computational complexity of the classical HHO
algorithm was O(N × (T + TD + 1)), where T was the maximum number of iterations and
D the dimension of the specific problem. The computational complexity of the population
initialization process of the CSHHO algorithm was O(ND), and the computational com-
plexity of the update mechanism was the same as that of the classical HHO algorithm, so
the computational complexity of the CSHHO algorithm was O(N × (T + TD + D)), where T
was the maximum number of iterations, and D the dimensionality of the specific problem.

3.7. Algorithm Procedure

Algorithm 1 shows the procedure of the CSHHO optimization algorithm: See Algo-
rithm 1.
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Algorithm 1: CSHHO algorithm

Input: The population size N, maximum number of iterations T.
Output: The location of rabbit and its fitness value.
Using Seven chaotic maps to initialize the population:
Through chaotic variables yk

i ∈ [0, 1], k = 1, 2, . . . , M. M indicates the initial population
dimension and Equations (14)–(21)generate initial chaotic vector;
Inverse mapping to get the initial population of the corresponding solution space through
Equation (22);
While stopping condition is not meet do
Calculate the fitness values of hawks;

Set Xrabbit as best location of rabbit;
For each Xi do

Update the E using Equation (3);
if |E| � 1 then

Update the vector Xi using Equations (25) and (2); Random generate parameters: r1, r2;
b = e5×(π(1− t

tmax
));

If q ≥ 0.5 then
Xi(t + 1) = ω(t)× Xrand(t)− b× |Xrand(t)− 2× r2 × Xi(t)|;
end
if q < 0.5 then
Xi(t + 1) = ω(t)× (Xrabbit(t)− Xm(t))− b× |lb + r4 × (ub− lb)|;
end
end

if |E| < 1 then
if r ≥ 0.5 and |E| ≥ 0.5 then

Update the vector Xi using Equations (4)–(6);
end

else if r ≥ 0.5 and |E| < 0.5 then
Update the vector Xi using Equation (7);

end
else if r < 0.5 and E |≥ 0.5

Update the vector Xi using Equations (8)–(11);
end

else if r < 0.5and |E| < 0.5
Update the vector Xi using Equations (12) and (13);

end
end

end
Optimal neighborhood disturbance using Equations (27) and (28);
∼
X(t) =

{
X∗(t) + 0.5× h× X∗(t), g < 0.5

X∗(t), g > 0.5
;

X∗(t) =


∼
X(t), f (

∼
X(t)) < f (X∗(t))

X∗(t), f (X∗(t)) > f (
∼
X(t))

;

end
Return Xrabbit;

4. Experiments and Discussion

In this section, to test and verify the performance of our optimizer proposed, namely
CSHHO, a different category of experiments were designed. According to the randomness
of the HHO algorithm, this section used a necessary and acceptable set of test functions
to ensure that the superior results of the CSHHO algorithm did not happen by accident.
Therefore, this section used two different benchmark test suites: classical 23 well-known
benchmark functions [70,71] and standard IEEE CEC 2017 [72]. All experiments were
as follows:

Experiment 1: First, seven chaotic mappings were used as the initialization method
of HHO population and tested separately. Second, the seven data sets are analyzed, and
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the optimal chaotic mapping was selected as the population initialization method of the
improved algorithm.

Experiment 2: First, on the basis of Experiment 1, a combination test of adaptive
weighting mechanism, variable spiral position update and optimal neighborhood dis-
turbance mechanism was executed. Second, we analyzed and compared the CSHHO
algorithm with other recently proposed meta-heuristic algorithms such as HHO [24],
WOA [38], SCA [73], and Chicken Swarm Optimization (CSO) [74]. Third, we analyzed
and compared the CSHHO algorithm with developed advanced variants such as HHO
with dimension decision logic and Gaussian mutation (GCHHO) [54] and Hybrid PSO
Algorithm with Adaptive Step Search (DEPSOASS) [75] and Gravitational search algorithm
with linearly decreasing gravitational constant (Improved GSA) [76] and Dynamic Gener-
alized Opposition-based Learning Fruit Fly Algorithm (DGOBLFOA) [77]. Fourth, based
on the third step, the IEEE CEC 2017 was used to perform an algorithm-based accuracy
scalability test with test dimensions D = 50, D = 100.

To ensure the fairness of the experiments, the experiments were evaluated using the
same parameters, and all population sizes N were set to 30, and dimension D was set to 30;
each algorithm on each test instance was performed over 50 independent runs. In each run,
the function error value log(F(x)− F(x∗)), where F(x) was mean value found at all of the
run, and F(x∗) was the optimal value recorded in 23 benchmark functions. The average
error (Mean) and standard deviation (Std) of the function error values were considered
as two performance metrics for evaluating the performance of the algorithm in all runs.
The experimental environment: CPU Intel(R) Xeon(R) CPU E5-2680 v3 (2.50 GHz), RAM
16.00 GB, MATLAB R2019b.

4.1. Benchmark Functions Verification

All experiments were performed using the classical 23 test functions [70,71] to test the
performance of each algorithm in terms of convergence speed and search accuracy. These
Benchmark functions were divided into three categories, including unimodal (UM) and
multi-modal (MM). F1–F7 were the UM functions, which had unique global optimality and
were used to test the exploitation performance of optimization algorithms. F8–F23 were the
MM functions, which were used to test the exploration performance of the optimization
algorithm and LO avoidance potentials. As the complexity of the test functions increased,
the tested algorithms were more likely to fall into local optima, and all the test functions
were used to evaluate the performance of the tested algorithms in various aspects. The con-
vergence curves and test values of the corresponding test functions are given. Appendix A
shows the classical 23 test functions.

IEEE CEC 2017 functions were also used in Experiment 2 to evaluate the scalability of
CSHHO, other meta-heuristic algorithms, and developed HHO advanced variants. IEEE
CEC 2017 Benchmark functions were classified into four categories, consisting of three
UM functions (F1–F3), seven MM functions (F4–F10), 10 hybrid functions (F11–F20), and
10 composite functions (F21–F30). To evaluate the scalability of each algorithm more
comprehensively, the dimensions of Benchmark functions were set to D = 50, D = 100, and
Table 2 records the corresponding accuracy values. It also shows the function formulas for
IEEE CEC 2017.

In addition, to compare the performance of various algorithms, the rank was used
to rank the mean values of all the algorithms in the simulation experiment in the order
of lowest to highest. The lower the rank, the better the algorithm was compared to other
algorithms; conversely, the higher the rank, the worse the algorithm was compared to
other algorithms. Wilcoxon signed-rank test [78] was used to detect whether there was
a significant performance difference among all algorithms, the p-value was corrected by
Bonferroni–Holm correction [79]; moreover, the Friedman test [80] was used to rank the
superiority of all the algorithms.
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Table 2. The information of IEEE CEC2017.

ID Description Type Dimension Range Optimum

F1 Shifted and Rotated Bent Cigar Function Unimodal 30, 50, 100 [−100, 100] 100
F2 Shifted and Rotated Zakharov function Unimodal 30, 50, 100 [−100, 100] 300
F3 Shifted and Rotated Rosenbrock’s function Multimodal 30, 50, 100 [−100, 100] 400
F4 Shifted and Rotated Rastrigin’s function Multimodal 30, 50, 100 [−100, 100] 500
F5 Shifted and Rotated Expanded Scaffer’s F6 function Multimodal 30, 50, 100 [−100, 100] 600
F6 Shifted and Rotated Lunacek Bi-Rastrigin function Multimodal 30, 50, 100 [−100, 100] 700

F7 Shifted and Rotated Non-Continuous
Rastrigin’s function Multimodal 30, 50, 100 [−100, 100] 800

F8 Shifted and Rotated Lévy function Multimodal 30, 50, 100 [−100, 100] 900
F9 Shifted and Rotated Schwefel’s function Multimodal 30, 50, 100 [−100, 100] 1000
F10 Hybrid Function 1 (N = 3) Hybrid 30, 50, 100 [−100, 100] 1100
F11 Hybrid Function 2 (N = 3) Hybrid 30, 50, 100 [−100, 100] 1200
F12 Hybrid Function 3 (N = 3) Hybrid 30, 50, 100 [−100, 100] 1300
F13 Hybrid Function 4 (N = 4) Hybrid 30, 50, 100 [−100, 100] 1400
F14 Hybrid Function 5 (N = 4) Hybrid 30, 50, 100 [−100, 100] 1500
F15 Hybrid Function 6 (N = 4) Hybrid 30, 50, 100 [−100, 100] 1600
F16 Hybrid Function 6 (N = 5) Hybrid 30, 50, 100 [−100, 100] 1700
F17 Hybrid Function 6 (N = 5) Hybrid 30, 50, 100 [−100, 100] 1800
F18 Hybrid Function 6 (N = 5) Hybrid 30, 50, 100 [−100, 100] 1900
F19 Hybrid Function 6 (N = 6) Hybrid 30, 50, 100 [−100, 100] 2000
F20 Composition Function 1 (N = 3) Composition 30, 50, 100 [−100, 100] 2100
F21 Composition Function 2 (N = 3) Composition 30, 50, 100 [−100, 100] 2200
F22 Composition Function 3 (N = 4) Composition 30, 50, 100 [−100, 100] 2300
F23 Composition Function 4 (N = 4) Composition 30, 50, 100 [−100, 100] 2400
F24 Composition Function 5 (N = 5) Composition 30, 50, 100 [−100, 100] 2500
F25 Composition Function 6 (N = 5) Composition 30, 50, 100 [−100, 100] 2600
F26 Composition Function 7 (N = 6) Composition 30, 50, 100 [−100, 100] 2700
F27 Composition Function 7 (N = 6) Composition 30, 50, 100 [−100, 100] 2800
F28 Composition Function 9 (N = 3) Composition 30, 50, 100 [−100, 100] 2900
F29 Composition Function 10 (N = 3) Composition 30, 50, 100 [−100, 100] 3000

We used the values of the Friedman test to rank all the algorithms involved in the
comparison, if the values of the Friedman test were the same, then the rankings were
averaged. Here, the Friedman test was performed on the classical 23 test functions, and the
test values were recorded in the average ranking values (ARV) column.

4.2. Efficiency Analysis of the Improvement Strategy

First, in the population initialization phase, we selected the Gauss mapping, which had
the highest impact on the accuracy of the HHO algorithm, as the population initialization
method of CSHHO from seven commonly used chaotic mappings. Second, a global
optimization strategy was used to optimize the HHO algorithm, which consisted of three
components, including adaptive weight strategy, variable spiral update strategy and
optimal neighborhood disturbance strategy. To verify the performance improvement of the
HHO algorithm by the two improvements, six algorithms were used for comparison:

1. HHO without any modification, i.e., basic HHO;
2. WOA without any modification, i.e., basic WOA;
3. SCA without any modification, i.e., basic SCA;
4. CSO without any modification, i.e., basic CSO;
5. HHO with dimension decision logic and Gaussian mutation (GCHHO);
6. Hybrid PSO Algorithm with Adaptive Step Search (DEPSOASS);
7. Gravitational search algorithm with linearly decreasing gravitational constant (Im-

proved GSA);
8. Dynamic Generalized Opposition-based Learning Fruit Fly Algorithm (DGOBLFOA).
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4.2.1. Influence of Seven Common Chaotic Mappings on HHO Algorithm

In order to select the best effective chaotic mapping method among seven well-known
chaotic mapping methods, which enables us to obtain the best initial solution position and
speed up the convergence of the Harris Hawk algorithm population, sinusoidal chaotic
mapping, Tent chaotic mapping, Kent chaotic mapping, Cubic chaotic mapping, Logistic
chaotic mapping, Gauss chaotic mapping, Circle chaotic mapping were initialized to the
population of the HHO algorithm, respectively, forming Sinusoidal-HHO, Tent-HHO,
Kent-HHO, Cubic-HHO, Logistic-HHO, Gauss-HHO, Circle-HHO, and we compared the
accuracy of these seven algorithms.

Table 3 presents the results of the seven algorithms for 23 classical test functions. The results
included Best, Worst, Mean, Rank, and Std for each algorithm run 50 times independently.

Table 4 shows the Bonferroni–Holm corrected probability values p obtained from
the Wilcoxon signed-rank test for the seven chaotic mapping HHO algorithms. Symbols
“+\=\−” represent the number of algorithms that were better, similar, or worse than Gauss-
HHO. The ARV at Table 5 is the value of the Friedman test for the seven chaotic mapping
HHO algorithms.

Table 3 shows the data with better experimental results in bold. By analyzing the ex-
perimental results, we concluded that under the UM functions (F1–F7), Sinusoidal chaotic
mapping achieved optimal results in F3, F5, F7 test functions, Circle chaotic mapping
achieved optimal results in F1, F4 test functions, and Sinusoidal chaotic mapping had
the most influence on the HHO algorithm, followed by Gauss chaotic mapping and Cir-
cle chaotic mapping. Under the MM functions (F8–F23), Gauss chaotic mapping had
the most influence on the HHO algorithm. Circle chaotic mapping, Sinusoidal chaotic
mapping, Tent chaotic mapping, and Kent chaotic mapping obtained the best results in
F21, F15, F20, F13, and F23 test functions, respectively; the results of the seven chaotic
mappings were compared in 23 test functions, The Gauss chaotic mapping obtained the
most optimal solutions.

Table 4 shows the Bonferroni–Holm correction p-values of Wilcoxon signed rank test
with 5% confidence level, “+\=\−”indicates whether Gauss-HHO was worse consistent
or better with Circle-HHO, Sinusoidal-HHO, Tent-HHO, Kent-HHO, Cubic-HHO and
Logistic-HHO. Analyzing the Bonferroni–Holm corrected p-value of Wilcoxon signed
rank test and the value of “+\=\−” in each row of the table, better results were obtained
using Gauss-HHO based among the 23 tested functions; the experimental results of HHO
algorithms based on seven chaotic mappings, respectively, were evaluated comprehensively
using Friedman’s test at Table 5, compared with the other six chaotic mappings population
initialization methods. Gauss-HHO obtained the best results in terms of average ranking,
indicating that for the HHO optimization algorithm, Gauss chaotic mapping not only
had the randomness, ergodicity and initial value sensitivity of the chaotic mapping itself,
but also the population initialization of the HHO optimization algorithm using Gauss
chaotic mapping. The Gauss chaos map was used to initialize the population of the HHO
optimization algorithm, and to obtain a better optimization accuracy.
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Table 3. Results of a comparison with seven chaotic mappings on HHO.

Benchmark Circle Sinusoidal Tent Kent Cubic Logistic Gauss

F1 Mean 4.37 × 10−110 2.73 × 10−96 7.91 × 10−101 3.68 × 10−99 8.75 × 10−100 7.28 × 10−99 1.4 × 10−109

Std 3.05 × 10−109 1.09 × 10−95 3.91 × 10−100 1.82 × 10−98 4.06 × 10−99 5.13 × 10−98 9.69 × 10−109

Rank 1 7 3 5 4 6 2

Best\Worst 2.15 × 10−108\
6.44 × 10−135

4.36 × 10−95\
3.01 × 10−115

2.21 × 10−99\
1.1 × 10−119

9.39 × 10−98\
3.69 × 10−116

2.11 × 10−98\
1.4 × 10−116

3.63 × 10−97\
1.96 × 10−116

6.85 × 10−108\
1.18 × 10−137

F2 Mean 6.4 × 10−59 3.88 × 10−53 3.45 × 10−53 7.39 × 10−53 8.12 × 10−53 8.59 × 10−53 8.05× 10−61

Std 3.12 × 10−58 1.74 × 10−52 1.5 × 10−52 4.9 × 10−52 5.03 × 10−52 4.9 × 10−52 2.37× 10−60

Rank 2 4 3 5 6 7 1

Best\Worst 1.97 × 10−57\
5.03 × 10−77

1.20 × 10−51\
6.33 × 10−60

8.88 × 10−52\
1.72 × 10−61

3.47 × 10−51\
1.86 × 10−64

3.56 × 10−51\
2.76 × 10−68

3.4391 × 10−51\
3.91 × 10−62

1.0834× 10−59\
3.80× 10−68

F3 Mean 2.90 × 10−86 2.51 × 10−86 5.22 × 10−82 5.28 × 10−78 3.08 × 10−83 9.34 × 10−86 7.29 × 10−78

Std 2.01 × 10−85 9.38 × 10−86 3.13 × 10−81 3.73 × 10−77 2.15 × 10−82 3.43 × 10−85 5.15 × 10−77

Rank 2 1 5 6 4 3 7

Best\Worst 1.42 × 10−84\
8.08 × 10−104

3.51 × 10−85\
9.55 × 10−104

2.18 × 10−80\
1.01 × 10−108

2.63 × 10−76\
5.02 × 10−101

1.52 × 10−81\
2.2 × 10−107

1.90 × 10−84\
5.74 × 10−105

3.64 × 10−76\
1.58 × 10−107

F4 Mean 8.48 × 10−56 1.23 × 10−50 7.91 × 10−51 8.72 × 10−51 3.65 × 10−50 9.39 × 10−50 9.3 × 10−53

Std 4.24 × 10−55 4.28 × 10−50 5.22 × 10−50 3.6 × 10−50 2.4 × 10−49 6.51 × 10−49 6.49 × 10−52

Rank 1 5 3 4 6 7 2

Best\Worst 2.64 × 10−54\
9.93 × 10−69

1.91 × 10−49\
1.3 × 10−55

3.69 × 10−49\
2.77 × 10−59

1.97 × 10−49\
4.06 × 10−58

1.70 × 10−48\
2.16 × 10−60

4.60 × 10−48\
4.39 × 10−58

4.59 × 10−51\
1.13 × 10−65

F5 Mean 8.55 × 10−2 4.17 × 10−2 5.42 × 10−2 4.65 × 10−2 7.29 × 10−2 4.85 × 10−2 8.33 × 10−2

Std 5.63 × 10−1 4.90 × 10−3 9.52 × 10−3 7.56 × 10−3 9.62 × 10−3 8.98 × 10−3 5.64 × 10−1

Rank 7 1 4 2 5 3 6

Best\Worst 3.9896\
4.3262 × 10−5

0.021867\
3.3302 × 10−6

0.048302\
8.4348 × 10−7

0.0425\
8.3416 × 10−7

0.043385\
3.4475 × 10−5

0.051141\
6.6967 × 10−6

3.9896\
6.6344 × 10−6

F6 Mean 3.34 × 10−5 7.87 × 10−5 5.47 × 10−5 4.72 × 10−5 6.85 × 10−5 4.45 × 10−5 2.48× 10−5

Std 6.12 × 10−5 1.10 × 10−4 9.45 × 10−5 5.54 × 10−5 8.89 × 10−56 6.00 × 10−5 3.13× 10−5

Rank 2 7 5 4 6 3 1

Best\Worst 3.42 × 10−4\
1.6931 × 10−8

4.27 × 10−4\
7.8651 × 10−8

3.71 × 10−4\
2.4303 × 10−9

3.16 × 10−4\
3.9886 × 10−8

4.33 × 10−4\
1.2627 × 10−8

2.77 × 10−4\
2.6747 × 10−8

1.48× 10−4\
1.1473× 10−10

F7 Mean 1.02 × 10−4 7.60 × 10−5 8.41 × 10−5 9.33 × 10−5 7.99 × 10−5 7.62 × 10−5 9.17 × 10−5

Std 9.77 × 10−5 4.66 × 10−5 1.02 × 10−4 9.06 × 10−5 8.17 × 10−5 7.35 × 10−5 8.83 × 10−5

Rank 7 1 4 6 3 2 5

Best\Worst 4.09 × 10−4\
1.85 × 10−6

1.92 × 10−4\
1.62 × 10−6

5.44 × 10−4\
1.26 × 10−6

3.88 × 10−4\
4.19 × 10−6

5.07 × 10−4\
1.77 × 10−6

4.39 × 10−4\
8.40 × 10−7

4.36 × 10−4\
1.72 × 10−6

F8 Mean −1.26 × 104 −1.26 × 104 −1.26 × 104 −1.26 × 104 −1.25 × 104 −1.26 × 104 −1.26× 104

Std 52.1 0.232 0.453 0.508 0.378 0.226 30.7
Rank 1 1 1 1 7 1 1

Best\Worst −1.23 × 104\
−1.25 × 104

−1.25 × 104\
−1.25 × 104

−1.25 × 104\
−1.25 × 104

−1.25 × 104\
−1.25 × 104

−9.90 × 103\
−1.25 × 104

−1.25 × 104\
−1.25 × 104

−1.23× 104\
−1.25× 104
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Table 3. Cont.

Benchmark Circle Sinusoidal Tent Kent Cubic Logistic Gauss

F9 Mean 0 0 0 0 0\0 0 0
Std 0 0 0 0 0 0 0

Rank 1 1 1 1 1 1 1
Best\Worst 0\0 0\0 0\0 0\0 0\0 0\0 0\0

F10 Mean 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88× 10−16

Std 1.99 × 10−31 1.99 × 10−31 1.99 × 10−31 1.99 × 10−31 1.99 × 10−31 1.99 × 10−31 1.99× 10−31

Rank 1 1 1 1 1 1 1

Best\Worst 8.88 × 10−16\
8.88 × 10−16

8.88 × 10−16\
8.88 × 10−16

8.88 × 10−16\
8.88 × 10−16

8.88 × 10−16\
8.88 × 10−16

8.88 × 10−16\
8.88 × 10−16

8.88 × 10−16\
8.88 × 10−16

8.88× 10−16\
8.88× 10−16

F11 Mean 0 0 0 0 0 0 0
Std 0 0 0 0 0 0 0

Rank 1 1 1 1 1 1 1
Best\Worst 0\0 0\0 0\0 0\0 0\0 0\0 0\0

F12 Mean 1.31 × 10−6 2.79 × 10−6 4.21 × 10−6 2.75 × 10−6 4.02 × 10−6 4.18 × 10−6 1.18× 10−6

Std 1.49 × 10−6 3.23 × 10−6 8.73 × 10−6 3.36 × 10−6 5.88 × 10−6 5.65 × 10−6 1.52× 10−6

Rank 2 4 7 3 5 6 1

Best\Worst 7.06 × 10−6\
5.43 × 10−9

1.46 × 10−5\
2.19 × 10−8

5.17 × 10−5\
1.09 × 10−8

1.75 × 10−5\
2.96 × 10−9

3.25 × 10−5\
2.30 × 10−9

2.80 × 10−5\
5.59 × 10−9

6.68× 10−6\
5.16× 10−10

F13 Mean 2.66 × 10−4 3.31 × 10−4 3.91 × 10−5 2.56 × 10−5 4.15 × 10−5 2.68 × 10−5 4.62 × 10−4

Std 1.55 × 10−3 2.07 × 10−3 5.02 × 10−5 4.26 × 10−5 5.82 × 10−54 3.68 × 10−5 2.17 × 10−3

Rank 5 6 3 1 4 2 7

Best\Worst 0.010987\
1.4769 × 10−7

0.014637\
1.0906 × 10−7

0.00023743\
4.4639 × 10−8

0.00026746\
5.4412 × 10−7

0.00024897\
2.9199 × 10−11

0.00016986\
8.1121 × 10−8

0.010987\
5.0129 × 10−8

F14 Mean 1.20 9.97 × 10−1 9.98 × 10−1 1.22 1.02 1.12 1.57
Std 9.76 × 10−1 5.61 × 10−16 5.61 × 10−16 9.82 × 10−1 1.41 × 10−1 7.10 × 10−1 1.49

Rank 5 1 2 6 3 4 7

Best\Worst 5.93\9.98 × 10−1 9.98 × 10−1\9.98 ×
10−1

9.98 × 10−1\9.98 ×
10−1 5.93\9.98 × 10−1 1.99\9.98 × 10−1 5.93\9.98 × 10−1 5.93\9.98 × 10−1

F15 Mean 3.24 × 10−4 3.19 × 10−4 3.22 × 10−4 3.27 × 10−4 3.72 × 10−4 3.28 × 10−4 3.25 × 10−4

Std 1.45 × 10−5 1.03 × 10−5 1.70 × 10−5 1.93 × 10−5 2.24 × 10−4 1.79 × 10−5 1.23 × 10−5

Rank 3 1 2 5 7 6 4

Best\Worst 3.82 × 10−4\
3.08 × 10−4

3.48 × 10−4\
3.08 × 10−4

3.72 × 10−4\
3.08 × 10−4

3.92 × 10−4\
3.08 × 10−4

1.63 × 10−3\
3.08 × 10−4

3.86 × 10−4\
3.08 × 10−4

3.95 × 10−4\
3.08 × 10−4

F16 Mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03
Std 1.35 × 10−15 1.35 × 10−15 1.35 × 10−15 1.35 × 10−15 1.35 × 10−15 1.35 × 10−15 1.35× 10−15

Rank 1 1 1 1 1 1 1
Best\Worst −1.03\−1.03 −1.03\−1.031 −1.03\−1.03 −1.03\−1.03 −1.03\−1.03 −1.03\−1.03 −1.03\−1.03
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Table 3. Cont.

Benchmark Circle Sinusoidal Tent Kent Cubic Logistic Gauss

F17 Mean 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.9× 10−9

Std 7.97 × 10−8 4.58 × 10−8 2.57 × 10−7 1.65 × 10−7 3.38 × 10−7 7.58 × 10−8 4.17× 10−8

Rank 2 2 2 2 2 2 1

Best\Worst 3.97 × 10−1\
3.97 × 10−1

3.97 × 10−1\
3.97 × 10−1

3.97 × 10−1\
3.97 × 10−1

3.97 × 10−1\
3.97 × 10−1

3.97 × 10−1\
0.3.97 × 10−1

3.97 × 10−1\
0.3.97 × 10−1

3.97× 10−1\
0.3.97× 10−1

F18 Mean 3 3 3 3 3 3 3
Std 1.41 × 10−8 1.31 × 10−7 1.98 × 10−8 5.48 × 10−8 1.41 × 10−8 7.00 × 10−8 4.63× 10−8

Rank 1 1 1 1 1 1 1
Best\Worst 3\3 3\3 3\3 3\3 3\3 3\3 3\3

F19 Mean −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.86
Std 2.09 × 10−3 2.52 × 10−3 2.35 × 10−3 2.43 × 10−3 1.61 × 10−3 3.02 × 10−3 1.32× 10−3

Rank 1 1 1 1 1 1 1
Best\Worst −3.85\−3.86 −3.85\−3.86 −3.85\−3.86 −3.85\−3.86 −3.86\−3.86 −3.85\−3.86 −3.86\−3.86

F20 Mean −3.12 −3.12 −3.14 −3.12 −3.13 −3.11 −3.12
Std 1.10 × 10−1 1.12 × 10−1 1.10 × 10−1 1.10 × 10−1 1.10 × 10−1 1.12 × 10−1 9.95 × 10−2

Rank 3 3 1 3 2 7 3
Best\Worst −2.88\−3.31 −2.80\−3.30 −2.89\−3.30 −2.86\−3.30 −2.90\−3.30 −2.82\−3.30 −2.81\−3.27

F21 Mean −8.77 −7.05 −7.04 −8.75 −5.36 −7.03 −8.45
Std 2.23 2.47 2.46 2.21 1.21 2.45 2.36

Rank 1 4 5 2 7 6 3
Best\Worst −5.05\−1.01 × 101 −5.05\−1.01 × 101 −5.05\−1.01 × 101 −5.05\−1.01 × 101 −5.04\−1.01 × 101 −5.05\−1.01 × 101 −5.05\−1.01 × 101

F22 Mean −8.44 −8.62 −7.06 −8.95 −5.49 −7.04 −9.06
Std 2.54 2.45 2.55 2.32 1.38 2.53 1.26

Rank 4 3 5 2 7 6 1
Best\Worst −5.08\−1.04 × 101 −5.07\−1.04 × 101 −5.08\−1.04 × 101 −5.09\−1.04 × 101 −5.08\−1.04 × 101 −5.08\−1.04 × 101 −5.09\−1.04× 101

F23 Mean −9.27 −8.61 −6.84 −9.54 −5.38 −7.34 −8.92
Std 2.23 2.53 2.52 1.95 1.33 2.63 2.4

Rank 2 4 6 1 7 5 3
Best\Worst −5.12\−1.05 × 101 −5.123\−1.05 × 101 −5.12\−1.05 × 101 −5.12\−1.05 × 101 −2.41\−1.05 × 101 −5.13\−1.05 × 101 −5.12\−1.05 × 101
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Table 4. The Bonferroni–Holm corrected P-values of Wilcoxon’s signed-rank test.

Benchmark Gauss Circle Sinusoidal Tent Kent Cubic Logistic

Corrected
p-Value +\=\− Corrected

p-Value +\=\− Corrected
p-Value +\=\− Corrected

p-Value +\=\− Corrected
p-Value +\=\− Corrected

p-Value +\=\−

F1 N/A 2.12 × 101 28\0\22 1.043 × 10
−7 50\0\0 5.40 × 10−7 48\0\2 1.04 × 10−7 50\0\0 1.08 × 10−7 49\0\1 6.77 × 10−7 48\0\2

F2 N/A 3.05 × 101 26\0\24 1.043 × 10−7 50\0\0 1.20 × 10−7 49\0\1 1.08 × 10−7 49\0\1 1.20 × 10−7 48\0\2 1.03 × 10−7 50\0\0
F3 N/A 3.23 × 101 25\0\25 3.20 × 101 24\0\26 2.27 × 101 29\0\21 2.01 × 100 32\0\18 6.39 × 100 31\0\19 8.66 × 100 28\0\22
F4 N/A 1.64 × 101 23\0\27 1.02 × 10−5 47\0\3 2.74 × 10−5 46\0\4 3.24 × 10−7 48\0\2 3.71 × 10−5 46\0\4 3.61 × 10−7 48\0\2
F5 N/A 2.02 × 101 30\0\20 2.79 × 101 27\0\23 2.79 × 101 27\0\23 2.85 × 101 26\0\24 6.12 × 100 31\0\19 2.59 × 101 28\0\22
F6 N/A 2.66 × 101 23\0\27 4.67 × 10−2 36\0\14 8.66 × 100 33\0\17 1.74 × 100 32\0\18 2.25 × 10−2 37\0\13 6.18 × 100 32\0\18
F7 N/A 3.34 × 101 26\0\24 3.13 × 101 28\0\22 3.22 × 101 23\0\27 2.72 × 101 23\0\27 3.26 × 101 23\0\27 3.12 × 101 24\0\26
F8 N/A 1.64 × 101 20\0\30 3.26 × 101 24\1\25 2.03 × 101 21\0\29 3.27 × 101 24\0\26 3.25 × 101 28\1\21 2.71 × 101 20\1\29
F9 N/A 2.49 × 101 0\50\0 2.10 × 101 0\50\0 1.70 × 101 0\50\0 1.30 × 101 0\50\0 9.00 × 100 0\50\0 5.00 × 100 0\50\0

F10 N/A 2.40 × 101 0\50\0 2.00 × 101 0\50\0 1.60 × 101 0\50\0 1.20 × 101 0\50\0 8.00 × 100 0\50\0 4.00 × 100 0\50\0
F11 N/A 2.30 × 101 0\50\0 1.90 × 101 0\50\0 1.50 × 101 0\50\0 1.10 × 101 0\50\0 7.00 × 100 0\50\0 3.00 × 100 0\50\0
F12 N/A 3.02 × 101 31\0\19 3.32 × 10−1 33\0\17 5.13 × 10−1 36\0\14 9.84 × 10−1 31\0\19 1.26 × 10−2 37\0\13 6.20 × 10−2 36\0\14
F13 N/A 2.84 × 101 22\0\28 2.91 × 101 26\0\24 8.84 × 100 29\0\21 3.15 × 101 23\0\27 2.71 × 101 27\0\23 3.29 × 101 22\0\28
F14 N/A 1.26 × 101 2\39\9 4.30 × 10−1 0\41\9 4.30 × 10−1 0\41\9 1.32 × 101 3\39\8 1.23 × 100 1\40\9 4.88 × 100 1\40\9
F15 N/A 2.49 × 101 20\0\30 5.13 × 10−1 14\0\36 1.31 × 101 18\0\32 2.79 × 101 21\0\29 1.99 × 101 29\0\21 2.27 × 101 27\0\23
F16 N/A 2.20 × 101 0\50\0 1.80 × 101 0\50\0 1.40 × 101 0\50\0 1.00 × 101 0\50\0 6.00 × 100 0\50\0 2.00 × 100 0\50\0
F17 N/A 3.23 × 101 10\28\12 2.68 × 101 11\28\11 2.20 × 101 12\27\11 9.10 × 100 20\21\9 9.18 × 100 22\17\11 3.25 × 101 8\31\11
F18 N/A 3.22 × 101 0\48\2 3.28 × 101 5\42\3 3.06 × 101 2\45\3 3.32 × 101 5\42\3 3.20 × 101 0\48\2 2.76 × 101 2\45\3
F19 N/A 3.28 × 101 25\0\25 1.32 × 101 30\0\20 3.23 × 101 27\0\23 3.26 × 101 25\0\25 2.92 × 101 25\0\25 3.24 × 101 22\0\28
F20 N/A 3.34 × 101 25\0\25 3.00 × 101 23\0\27 2.12 × 101 20\0\30 3.00 × 101 23\0\27 3.24 × 101 24\0\26 3.27 × 101 24\0\26
F21 N/A 2.03 × 101 21\0\29 2.15 × 100 32\0\18 2.87 × 10−1 37\0\13 2.85 × 101 28\0\22 6.425 × 10−5 40\0\10 8.45 × 10−2 38\0\12
F22 N/A 2.20 × 101 29\0\21 1.89 × 101 30\0\20 4.39 × 10−2 37\0\13 2.79 × 101 28\0\22 3.068 × 10−7 47\0\3 1.22 × 10−2 39\0\11
F23 N/A 2.75 × 101 23\0\27 3.05 × 101 28\0\22 2.31 × 10−1 31\0\19 3.26 × 101 24\0\26 9.225 × 10−6 40\0\10 1.24 × 100 30\0\20
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Table 5. Average ranks obtained by each method in the Friedman test.

Chaotic Mapping Average Rankings

Gauss 3.50
Circle 3.74

Sinusoidal 3.89
Tent 3.85
Kent 4.85
Cubic 4.57

Logistic 3.61

4.2.2. Comparison with Conventional Techniques

The Gauss mapping was used for population initialization. Then the adaptive weight
mechanism, variable spiral position update mechanism, and adaptive neighborhood dis-
turbance mechanism were introduced to form the CSHHO algorithm. In order to verify
the effectiveness of the CSHHO algorithm against the emerging swarm intelligence opti-
mization algorithms in recent years. In this subsection, the CSHHO algorithm is compared
with recently published meta-heuristics, including HHO [24], WOA [24], SCA [65] and
CSO [66] to calculate the average precision mean and stability Std of each algorithm.
The performance of CSHHO was tested against other optimization algorithms using a
nonparametric test: the Bonferroni–Holm corrected Wilcoxon signed rank test. Finally,
the non-parametric test method (i.e., the Friedman test) was used to calculate the ARV
values of all the participating algorithms and rank them together. As in Experiment 1,
this experiment was also based on the test set of 23 classical test functions (see Table 1).
The details of the experiment were consistent with the description at the beginning of this
section, and Table 6 shows the detailed experimental results. Additionally, Table 7 gives the
corrected Wilcoxon signed-rank test based on the 5% confidence level, the “+\=\−” value:
the number of CSHHO results that were worse, similar, better or than the comparison
algorithm for each test function run 50 times, the result based on the Friedman test was
at table.

The optimal results of the tested algorithms under the current Benchmark function
are marked in bold. Analyzing the data in Table 6, CSHHO had a strong optimization
capability compared to the traditional optimization algorithms. Under the MM functions
(F8–F23), CSHHO obtained good results with the best optimization results under the
Benchmarks of F9–F13, F15–F19, F21–F23, and CSHHO explored the most optimal region
of the above Benchmark and outperformed the other compared optimization algorithms
in terms of search performance. The CSHHO explored the above Benchmark optimal
regions and outperformed the other participating optimization algorithms in terms of
exploration performance. It tied for first place in Benchmark F9, F11, and F11. This showed
that CSHHO had strong exploration ability and LO avoidance potentials.

Table 7 was analyzed to determine if there was a significant difference between the
other algorithms and CSHHO. The “+\=\−” column indicates the number of results that
are less than, similar to, or greater than CSHHO for each of the HHO, WOA, SCA, and CSO
algorithms run 50 times in each test function. CSHHO has 21 test functions with better
results than HHO, CSHHO has 22 test functions with better results than WOA, CSHHO
has 23 test functions with better results than SCA, CSHHO has 22 test functions with better
results than CSO; the results of the corrected 5% confidence level Wilcoxon signed rank
test were analyzed. If the p-value was greater than 0.05, the algorithm was considered to
be the same as CSHHO; otherwise, it was considered to be significantly different. In most
cases the p-values of Wilcoxon signed-rank test < 0.5, indicating that the CSHHO algorithm
was significantly different from the other compared algorithms, all results were corrected
by Bonferroni–Holm correction; At Table 8, analysis of the Friedman test value showed
that the value of CSHHO was 2.57 lower than the traditional optimization algorithm. The
CSHHO algorithm’s performance was better than other meta-heuristic algorithms.
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Table 6. Results of a comparison with classic meta-heuristic algorithms.

Benchmark CSHHO HHO WOA SCA CSO

F1 Mean 1.96× 10−113 1.24 × 10−88 6.15 × 10−74 2.92 × 10−13 2.82 × 10−19

Std 1.38× 10−112 8.75 × 10−88 2.79 × 10−73 1.33 × 10−12 7.98 × 10−19

Rank 1 2 3 5 4
Best\Worst 1.44× 10−138\9.78× 10−112 5.93 × 10−111\6.19 × 10−87 1.16 × 10−87\1.85 × 10−72 2.12 × 10−20\8.05 × 10−12 4.81 × 10−26\4.63 × 10−18

F2 Mean 1.66× 10−59 1 × 10−49 8.97 × 10−51 1.04 × 10−10 1.05 × 10−18

Std 1.06× 10−58 4.8 × 10−49 4.65 × 10−50 2.43 × 10−10 2.76 × 10−18

Rank 1 3 2 5 4
Best\Worst 7.47× 10−58\8.54× 10−70 1.86 × 10−74\1.28 × 10−73 4.54 × 104\1.25 × 104 2.19 × 10−4\1.31 × 10−3 6.13 × 103\3.20 × 103

F3 Mean 4.96× 10−88 1.86 × 10−74 4.54 × 104 0.000219 6.13 × 103

Std 2.81× 10−87 1.28 × 10−73 1.25 × 104 1.31 × 10−3 3.2 × 103

Rank 1 2 5 3 4
Best\Worst 5.85× 10−108\1.96× 10−86 4.26 × 10−99\9.05 × 10−73 1.81 × 104\7.29 × 104 1.75 × 10−12\9.26 × 10−3 3.04 × 102\1.65 × 104

F4 Mean 1.05× 10−55 7.88 × 10−49 53.4 7.27 × 10−5 21.6
Std 6.13× 10−55 4.62 × 10−48 2.82 × 101 1.38 × 10−4 1.28 × 101

Rank 1 2 5 3 4
Best\Worst 1.83× 10−68\4.25× 10−54 2.8 × 10−58\3.25 × 10−47 9.79 × 10−1\8.84 × 101 2.56 × 10−7\6.9 × 10−4 0.0748\4.11 × 101

F5 Mean 8.57× 10−3 1.02 × 10−2 2.79 × 101 1.11 × 101 4.77 × 101

Std 2.23× 10−2 1.43 × 10−2 4.98 × 10−1 2.78 × 101 9.63 × 101

Rank 1 2 4 3 5
Best\Worst 1.29× 10−8\0.132 1.25 × 10−5\0.0723 26.9\28.8 6.48\204 27.1\583

F6 Mean 6.73× 10−7 1.59 × 10−4 0.374 0.377 3.73
Std 1.85× 10−6 2.76 × 10−4 2.44 × 10−1 1.42 × 10−1 4.16 × 10−1

Rank 1 2 3 4 5
Best\Worst 4.40× 10−14\8.8× 10−6 4.85 × 10−9\0.00181 0.0422\1.25 0.117\0.627 3.05\4.99

F7 Mean 5.98× 10−5 2.02 × 10−4 3.67 × 10−3 1.84 × 10−3 9.11 × 10−2

Std 7.15× 10−5 3.26 × 10−4 3.79 × 10−3 2.02 × 10−3 1.82 × 10−1

Rank 1 2 4 3 5
Best\Worst 2.03× 10−7\4.65× 10−4 3.13 × 10−7\2.10 × 10−3 9.46 × 10−6\1.75 × 10−2 6.53 × 10−5\1.02 × 10−2 2.66 × 10−3\1.07

F8 Mean −1.24 × 104 −1.26 × 104 −1.04 × 104 −2.24 × 103 −7.12 × 103

Std 2.71 × 102 9.50 × 101 1.67 × 103 1.52 × 102 6.62 × 102

Rank 2 1 3 5 4
Best\Worst −1.26 × 104\−1.15 × 104 −1.26 × 104\−1.19 × 104 −1.26 × 104\−7.76 × 103 −2.61 × 103\−1.81 × 103 −8.89 × 103\−5.91 × 103

F9 Mean 0 0 3.41 × 10−15 0.572 0.725
Std 0 0 1.78 × 10−14 2.03 3.34

Rank 1 1 3 4 5
Best\Worst 0\0 0\0 0\1.14 × 10−13 0\1.12 × 101 0\2.11 × 101

F10 Mean 8.88× 10−16 8.88 × 10−16 4.3 × 10−15 5.46 × 10−8 9.39 × 10−11

Std 1.99× 10−31 1.99 × 10−31 2.68 × 10−15 1.41 × 10−7 2.5 × 10−10

Rank 1 1 3 5 4
Best\Worst 8.88× 10−16\8.88× 10−16 8.88 × 10−16\8.88 × 10−16 8.88 × 10−16\7.99 × 10−15 6.45 × 10−11\7.1 × 10−7 2.82 × 10−13\1.66 × 10−9

F11 Mean 0 0 1.97 × 10−2 9.43 × 10−2 1.22 × 10−2
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Table 6. Cont.

Benchmark CSHHO HHO WOA SCA CSO

Std 0 0 7.55 × 10−2 1.56 × 10−1 4.49 × 10−2

Rank 1 1 4 5 3
Best\Worst 0\0 0\0 0\4.34 × 10−1 0\7.65 × 10−1 0\2.47 × 10−1

F12 Mean 5.26× 10−7 9.97 × 10−6 2.69 × 10−2 7.80 × 10−2 229
Std 1.2× 10−6 1.36 × 10−5 0.04 2.80 × 10−2 1.1 × 103

Rank 1 2 3 4 5
Best\Worst 1.68× 10−11\5× 10−6 3.07 × 10−8\7.06 × 10−5 4.58 × 10−3\2.64 × 10−1 3.41 × 10−2\1.63 × 10−1 1.57 × 10−1\7.34 × 103

F13 Mean 1.64× 10−5 1.26 × 10−4 5.05 × 10−1 2.64 × 10−1 5.48
Std 2.86× 10−5 2.49 × 10−4 2.57 × 10−1 8.66 × 10−2 2.07 × 101

Rank 1 2 4 3 5
Best\Worst 6.14 × 10−10\1.23 × 10−4 3.21 × 10−7\1.31 × 10−3 9.14 × 10−2\1.19 8.80 × 10−2\5.17 × 10−1 1.38\1.47 × 102

F14 Mean 1.39 1.37 3.06 1.63 1.34
Std 1.23 0.796 3.15 0.935 1.45

Rank 3 2 5 4 1
Best\Worst 9.98 × 10−1\5.93 9.98 × 10−1\5.93 0.9.98 × 10−1\10.8 0.9.98 × 10−1\2.98 0.9.98 × 10−1\10.8

F15 Mean 3.40× 10−4 3.60 × 10−4 7.04 × 10−4 9.44 × 10−4 7.90 × 10−4

Std 3.39× 10−5 1.45 × 10−4 4.57 × 10−4 3.72 × 10−4 2.78 × 10−4

Rank 1 2 3 5 4
Best\Worst 3.14× 10−4\5.55× 10−4 3.08 × 10−4\1.34 × 10−3 3.10 × 10−4\2.25 × 10−3 3.63 × 10−4\1.59 × 10−3 3.19 × 10−4\1.62 × 10−3

F16 Mean −1.03 −1.03 −1.03 −1.03 −1.03
Std 1.35× 10−15 1.98 × 10−8 2.4 × 10−8 2.16 × 10−5 2.6 × 10−6

Rank 1 2 3 5 4
Best\Worst −1.03\−1.03 −1.03\−1.03 −1.03\−1.03 −1.03\−1.03 −1.03\−1.03

F17 Mean 3.98× 10−1 0.3.98 × 10−1 0.398 × 10−1 0.399 × 10−1 0.398 × 10−1

Std 1.88× 10−8 2.62 × 10−5 2.15 × 10−5 7.21 × 10−4 1.86 × 10−5

Rank 1 1 1 1 1
Best\Worst 3.98× 10−1\3.98× 10−1 3.98 × 10−1\3.98 × 10−1 3.98 × 10−1\3.98 × 10−1 3.98 × 10−1\0.401 3.98 × 10−1\3.98 × 10−1

F18 Mean 3.00 3.00 3.00 3.00 3.00
Std 1.15× 10−7 1.01 × 10−6 1.62 × 10−4 5.88 × 10−5 2.09 × 10−4

Rank 1 1 1 1 1
Best\Worst 3.00\3.00 3.00\3.00 3.00\3.00 3.00\3.00 3.00\3.00

F19 Mean −3.86 −3.86 −3.85 −3.85 −3.86
Std 1.83× 10−3 3.29 × 10−3 1.71 × 10−2 2.18 × 10−3 1.01 × 10−2

Rank 1 1 1 1 1
Best\Worst −3.86\−3.86 −3.86\−3.85 −3.86\−3.75 −3.86\−3.85 −3.86\−3.8

F20 Mean −3.13 −3.07 −3.26 −3.01 −3.24
Std 1.05 × 10−1 1.41 × 10−1 8.66 × 10−2 1.27 × 10−1 7.31 × 10−2

Rank 3 4 1 5 2
Best\Worst −3.31\−2.74 −3.30\−2.73 −3.32\−3.04 −3.19\−2.59 −3.32\−3.02

F21 Mean −9.65 −5.35 −8.24 −3.02 −7.64
Std 1.38 1.18 2.54 1.83 3.02
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Table 6. Cont.

Benchmark CSHHO HHO WOA SCA CSO

Rank 1 4 2 5 3
Best\Worst −10.2\−5.02 −10.1\−5.04 −10.2\−2.63 −5.82\−0.497 −10.2\−2.55

F22 Mean −9.45 −5.46 −7.83 −3.59 −8.19
Std 1.94 1.29 \.97 1.79 2.98

Rank 1 4 3 5 2
Best\Worst −10.4\−5.03 −10.1\−5.03 −10.4\−2.76 −8.23\−0.906 −10.4\−2.74

F23 Mean −9.97 −5.04 −7.59 −4.1 −8.05
Std 1.46 1.02 3.29 1.59 3.28

Rank 1 4 3 5 2
Best\Worst −10.5\−5.09 −9.96\−1.65 −10.5\−1.67 −9.42\−0.945 −10.5\−2.37

Table 7. The Bonferroni-Holm corrected p-values of Wilcoxon’s signed-rank test with classic meta-heuristic algorithms.

Benchmark CSHHO HHO WOA SCA CSO
Corrected
p-Value +\=\− Corrected

p-Value +\=\− Corrected
p-Value +\=\− Corrected

p-Value +\=\−

F1 N/A 6.80 × 10−8 0\0\50 6.50 × 10−8 0\0\50 5.89 × 10−8 0\0\50 4.84 × 10−8 0\0\50
F2 N/A 6.73 × 10−8 0\0\50 6.42 × 10−8 0\0\50 5.82 × 10−8 0\0\50 4.76 × 10−8 0\0\50
F3 N/A 1.38 × 10−6 5\0\45 6.35 × 10−8 0\0\50 5.74 × 10−8 0\0\50 4.69 × 10−8 0\0\50
F4 N/A 6.65 × 10−8 0\0\50 6.27 × 10−8 0\0\50 5.67 × 10−8 0\0\50 4.61 × 10−8 0\0\50
F5 N/A 5.24 × 10−1 18\0\32 6.20 × 10−8 0\0\50 5.59 × 10−8 0\0\50 4.53 × 10−8 0\0\50
F6 N/A 6.57 × 10−8 0\0\50 6.12 × 10−8 0\0\50 5.52 × 10−8 0\0\50 4.46 × 10−8 0\0\50
F7 N/A 4.11 × 10−4 11\0\39 4.27 × 10−8 1\0\49 4.18 × 10−8 1\0\49 4.38 × 10−8 0\0\50
F8 N/A 1.22 × 10−3 35\0\15 1.77 × 10−6 8\0\42 5.44 × 10−8 0\0\50 4.31 × 10−8 0\0\50
F9 N/A 3.00 × 100 0\50\0 4.00 × 100 0\48\2 6.92 × 10−7 0\8\42 8.13 × 10−1 0\45\5
F10 N/A 3.00 × 100 0\50\0 3.17 × 10−6 0\15\35 5.37 × 10−8 0\0\50 4.23 × 10−8 0\0\50
F11 N/A 2.00 × 100 0\50\0 8.13 × 10−1 0\45\5 1.10 × 10−7 0\3\47 3.17 × 10−3 0\36\14
F12 N/A 6.92 × 10−7 5\0\45 6.05 × 10−8 0\0\50 5.29 × 10−8 0\0\50 4.16 × 10−8 0\0\50
F13 N/A 1.44 × 10−3 11\0\39 5.97 × 10−8 0\0\50 5.21 × 10−8 0\0\50 4.08 × 10−8 0\0\50
F14 N/A 3.93 × 100 6\30\14 1.15 × 10−2 6\16\28 4.60 × 10−3 6\2\42 3.93 × 100 5\38\7
F15 N/A 3.57 × 100 26\0\24 1.81 × 10−7 5\0\45 5.14 × 10−8 0\0\50 4.18 × 10−8 1\0\49
F16 N/A 4.00 × 100 0\48\2 2.25 × 100 0\47\3 6.94 × 10−8 0\0\50 1.15 × 10−2 0\38\12
F17 N/A 3.58 × 10−5 1\17\32 2.72 × 10−6 1\11\38 5.06 × 10−8 0\0\50 3.09 × 10−2 3\32\15
F18 N/A 2.96 × 10−1 2\36\12 6.87 × 10−8 0\0\50 6.94 × 10−8 0\0\50 5.00 × 10−1 2\41\7
F19 N/A 3.02 × 10−2 13\0\37 1.16 × 10−4 10\0\40 5.33 × 10−8 1\0\49 6.77 × 10−1 21\0\29
F20 N/A 2.96 × 10−1 19\0\31 1.04 × 10−5 41\0\9 2.34 × 10−4 13\0\37 5.59 × 10−5 38\0\12
F21 N/A 2.23 × 10−7 3\0\47 1.10 × 100 22\0\28 4.99 × 10−8 0\0\50 2.49 × 10−4 10\0\40
F22 N/A 2.59 × 10−7 7\0\43 1.54 × 100 25\0\25 5.33 × 10−8 1\0\49 9.79 × 10−2 16\0\34
F23 N/A 5.43 × 10−8 2\0\48 1.02 × 10−1 18\0\32 4.91 × 10−8 0\0\50 4.73 × 10−4 14\0\36
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Table 8. Average rankings obtained by classic meta-heuristic in the Friedman test, and the best result
is shown in boldface.

Chaotic Mapping Average Rankings

CSHHO 2.57
HHO 3.67
WOA 4.74
SCA 5.96
CSO 5.00

Figure 4 shows the convergence curves of CSHHO and the traditional optimization
algorithms HHO, WOA, SCA and CSO under 23 Benchmark functions, including the
performance under UM functions (F1–F7), MM functions (F8–F23), MM functions (F8–F23).
The function error value was defined as, where F(x) was the mean value found at all of
iterations, and F(x*) was the optimal value recorded in 23 benchmark functions. Among
them, under UM functions (F1–F7), the CSHHO algorithm converged with higher accuracy
and converged faster than other algorithms, indicating that the development performance
of CSHHO algorithm was improved compared with other algorithms; under MM functions
(F8–F23), the CSHHO algorithm converged with higher accuracy and converged faster
than other algorithms, indicating that the development performance of CSHHO algorithm
was improved compared with other algorithms. From F8–F23 CSHHO algorithm did not
fall into the local optimum region and could not escape; in F9, F11, F16 CSHHO converged
faster in F12, F13, F17, F19, F21–F23. Although the convergence curve of the CSHHO
algorithm was smoother and converged slower in the initial iterations as the algorithm
searched further. In F10, F15 the CSHHO algorithm not only explores the dominant region
with faster convergence speed, but also leads the rest of the algorithms in terms of search
accuracy. Therefore, CSHHO algorithm benefits from Gauss chaotic mapping that enhances
the population initialization of the algorithm, as well as adaptive weighting mechanism,
variable spiral position updating mechanism and adaptive neighborhood disturbance
mechanism that enhance the exploration and exploitation ability of the algorithm, CSHHO
is less likely to fall into the current search region and increase the ability to jump out of the
local optimal region.
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 Figure 4. Convergence curves of CSHHO and the classic meta-heuristic algorithms.
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4.2.3. Comparison with HHO Variants

In order to verify the effectiveness of the CSHHO algorithm against HHO variants in
recent years, this subsection compares the CSHHO algorithm with the recently published
advanced HHO variants: GCHHO and DEPSOASS and Improved GSA and DGOBLFOA,
observing the mean accuracy mean and stability Std of each algorithm. Table 9 presents
the results of the experiments. Next, using nonparametric tests: the Wilcoxon signed-rank
test and the Friedman test were used to synthetically assess the performance differences
between CSHHO and GCHHO and DEPSOASS and Improved GSA and DGOBLFOA. The
configuration of the experiments is the same as in Section 4.2.2, “+\=\−”: the number
of CSHHO results obtained from 50 runs in each test function that are worse, similar, or
better than the comparison algorithm. Table 10 presents the results of the Bonferroni–Holm
correction of Wilcoxon signed-rank test experiments, Table 11 presents the results of the
Friedman test experiments.

Analyzing the data in Table 9, CSHHO has some advantages over the advanced HHO
variants: under the UM functions (F1–F7), CSHHO outperforms the other algorithms
in F1–F4, F6, F7, which indicates that CSHHO has further enhanced global best-finding
capability compared to the advanced HHO variants. Under the MM functions (F8–F23)
the CSHHO’s performance outperforms the remaining algorithms in F9, F10, F11, F16,
F17, F18, F19, F21, which indicates that CSHHO can explore the peak-to-peak information
deeply and effectively to avoid the algorithm from entering the local optimum. In summary,
CSHHO has a good ability to develop and explore and avoid local optima.

Table 10 shows the results of the corrected Wilcoxon signed rank test at 5% confidence
level and Friedman’s test for CSHHO and GCHHO and DEPSOASS and Improved GSA
and DGOBLFOA. The p-values indicate whether the numerical results of the algorithms
involved in the comparison are significant compared to CSHHO; if the p-value is greater
than 0.05, the numerical results of the algorithm are considered the same as CSHHO;
otherwise, it is considered to be significantly different. Analyzing the Bonferroni–Holm
corrected p-value column values in Table 10, under the 23 classical test functions, only
GCHHO is less different from CSHHO in the F9–F11 and F16–18 test functions, and in the
rest of the test functions. Moreover, at Table 11 upon analyzing the results of the Friedman
test, the value of CSHHO is 1.70, which is lower than others. The result indicates that
CSHHO has an advantage over the above algorithms in optimization.

Figure 5 shows the convergence curves of CSHHO and the variants of the optimization
algorithm GCHHO and DEPSOASS and Improved GSA and DGOBLFOA under 23 Bench-
mark Functions, including the performance under UM functions (F1–F7), MM functions
(F8–F23). The function error value is defined as, where F(x) is the mean value found at all
of iterations, and F(x∗) is the optimal value is recorded in 23 The CSHHO algorithm under
UM functions (F1–F7) has improved convergence accuracy in F1–F4, F6, F7 compared to
other algorithms, and convergence speed is better than other algorithms in F1, F2, F3, F4, F5,
F6, F7; under MM functions (F8–F23), CSHHO algorithm does not fall into the local optimal
region and cannot escape, in F9, F10, F11, F16, F17, F18, F19, F21. CSHHO can explore
the dominant region well and is ahead of other algorithms in terms of search accuracy. In
F9, F10, F11, F12, F13, F21, F22, F23, CSHHO has smooth convergence curves and faster
convergence speed. In F16–F20, although the convergence speed of the CSHHO algorithm
is slow, the convergence curve does not produce large fluctuations, which indicates that
the CSHHO algorithm has good search ability, and it does not fall into local optimum and
cannot jump out. Functions. In summary, the CSHHO algorithm’s performance is further
improved compared to GCHHO algorithm and other advanced algorithms. Compared to
these advanced variants, CSHHO algorithm are effective.
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Table 9. Results of a comparison with the advanced meta-heuristic algorithms.

Benchmark CSHHO GCHHO DEPSOASS Improved GSA DGOBLFOA

F1 Mean 1.96× 10−113 3.91 × 10−97 1.45 × 10−3 2.84 × 101 2.88 × 10−8

Std 1.38× 10−112 2.55 × 10−96 1.45 × 10−3 2.84 × 101 2.88 × 10−8

Rank 1 2 4 5 3
Best\Worst 9.78× 10−112\1.44× 10−138 1.80 × 10−95\1.25 × 10−119 3.22 × 10−3\3.86 × 10−4 4.68 × 101\1.51 × 101 1.42 × 10−6\0.00 × 100

F2 Mean 1.66× 10−59 1.62 × 10−50 1.88 × 10−1 2.81 × 101 2.54 × 10−1

Std 1.06× 10−58 9.45 × 10−50 1.88 × 10−1 2.81 × 101 2.54 × 10−1

Rank 1 2 3 5 4
Best\Worst 7.47× 10−58\8.54× 10−70 6.63 × 10−49\3.57 × 10−60 2.84 × 10−1\1.19 × 10−1 3.46 × 101\1.44 × 101 1.03 × 100\8.72 × 10−4

F3 Mean 4.96× 10−88 1.46 × 10−65 5.37 × 10−1 3.32 × 102 1.18 × 10−2

Std 2.81× 10−87 1.01 × 10−64 5.37 × 10−1 3.32 × 102 1.18 × 10−2

Rank 1 2 4 5 3
Best\Worst 1.96× 10−86\5.85× 10−108 7.16 × 10−64\1.16 × 10−91 1.44 × 100\9.11 × 10−2 5.38 × 102\1.39 × 102 4.66 × 10−1\1.45 × 10−24

F4 Mean 1.05× 10−55 1.82 × 10−48 3.49 × 10−2 2.31 × 100 1.74 × 10−4

Std 6.13× 10−55 9.06 × 10−48 3.49 × 10−2 2.31 × 100 1.74 × 10−4

Rank 1 2 4 5 3
Best\Worst 4.25× 10−54\1.83× 10−68 5.94 × 10−47\2.66 × 10−58 5.40 × 10−2\1.75 × 10−2 2.83 × 100\1.44 × 100 8.57 × 10−3\1.29 × 10−20

F5 Mean 8.57 × 10−3 7.14 × 10−4 2.76 × 101 1.19 × 104 2.87 × 101

Std 2.23 × 10−2 7.02 × 10−4 2.76 × 101 1.19 × 104 2.87 × 101

Rank 2 1 3 5 4
Best\Worst 1.32 × 10−1\1.29 × 10−8 3.28 × 10−3\2.96 × 10−5 2.95 × 101\2.59 × 101 2.60 × 104\1.29 × 103 3.20 × 101\2.79 × 101

F6 Mean 6.73× 10−7 1.20 × 10−6 1.30 × 10−3 2.83 × 101 5.35 × 100

Std 1.85× 10−6 1.61 × 10−6 1.30 × 10−3 2.83 × 101 5.35 × 100

Rank 1 2 3 5 4
Best\Worst 8.80× 10−6\4.40× 10−14 1.02 × 10−5\1.47 × 10−7 3.27 × 10−3\3.91 × 10−4 4.15 × 101\1.43 × 101 6.03 × 100\4.32 × 100

F7 Mean 5.98× 10−5 1.94 × 10−4 1.26 × 10−1 1.04 × 102 6.10 × 10−1

Std 7.15× 10−5 1.92 × 10−4 1.26 × 10−1 1.04 × 102 6.10 × 10−1

Rank 1 2 3 5 4
Best\Worst 4.65× 10−4\2.03× 10−7 7.84 × 10−4\5.01 × 10−6 2.21 × 10−1\7.33 × 10−2 1.52 × 102\3.44 × 100 1.44 × 100\1.01 × 10−1

F8 Mean −1.24 × 104 −1.25 × 104 −2.78 × 103 −2.70 × 103 −3.70 × 102

Std 2.71 × 102 1.67 × 102 −2.78 × 103 −2.70 × 103 1.69 × 102

Rank 2 1 3 4 5
Best\Worst −1.15 × 104\−1.26 × 104 −1.18 × 104\−1.26 × 104 −1.79 × 103\−3.79 × 103 −1.74 × 103\−3.42 × 103 −1.79 × 103\−3.46 × 103

F9 Mean 0.00 0.00 3.72 × 101 2.54 × 102 8.95 × 100

Std 0.00 0.00 3.72 × 101 2.54 × 102 8.95 × 100

Rank 1 1 4 5 3
Best\Worst 0.00\0.00 0.00\0.00 6.02 × 101\2.00 × 101 2.91 × 102\1.96 × 102 2.81 × 101\2.18 × 10−3

F10 Mean 8.88× 10−16 8.88 × 10−16 3.06 × 10−2 5.11 × 100 4.23 × 10−2

Std 1.99× 10−31 1.99 × 10−31 3.06 × 10−2 5.11 × 100 4.23 × 10−2

Rank 1 1 3 5 4
Best\Worst 8.88× 10−16\8.88× 10−16 8.88 × 10−16\8.88 × 10−16 4.31 × 10−2\1.67 × 10−2 6.09 × 100\3.64 × 100 6.08 × 10−1\8.88 × 10−16

F11 Mean 0.00× 100 0.00 × 100 5.90 × 10−4 7.85 × 10−1 1.09 × 10−9
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Table 9. Cont.

Benchmark CSHHO GCHHO DEPSOASS Improved GSA DGOBLFOA

Std 0.00× 100 0.00 × 100 5.90 × 10−4 7.85 × 10−1 1.09 × 10−9

Rank 1 1 4 5 3
Best\Worst 0.00\0.00 0.00\0.00 1.97 × 10−2\2.27 × 10−5 9.59 × 10−1\4.58 × 10−1 5.46 × 10−8\0.00 × 100

F12 Mean 5.26 × 10−7 8.05 × 10−8 9.89 × 10−6 1.29 × 100 6.98 × 10−1

Std 1.20 × 10−6 9.54 × 10−8 9.89 × 10−6 1.29 × 100 6.98 × 10−1

Rank 2 1 3 5 4
Best\Worst 5.00 × 10−6\1.68 × 10−11 5.02 × 10−7\5.77 × 10−9 2.58 × 10−5\4.76 × 10−6 2.32 × 100\6.10 × 10−1 1.01 × 100\3.67 × 10−1

F13 Mean 1.64 × 10−5 1.26 × 10−6 1.69 × 10−3 6.34 × 100 2.44 × 100

Std 2.86 × 10−5 1.48 × 10−6 1.69 × 10−3 6.34 × 100 2.44 × 100

Rank 2 1 3 5 4
Best\Worst 1.23 × 10−4\6.14 × 10−10 6.48 × 10−6\4.00 × 10−8 1.12 × 10−2\6.80 × 10−5 9.67 × 100\2.90 × 100 2.88 × 100\1.60 × 100

F14 Mean 1.39 × 100 9.98 × 10−1 1.52 × 100 7.07 × 100 4.34 × 100

Std 1.23 × 100 5.61 × 10−16 1.52 × 100 7.07 × 100 4.34 × 100

Rank 2 1 3 5 4
Best\Worst 5.93 × 100\9.98 × 10−1 9.98 × 10−1\9.98 × 10−1 3.02 × 100\9.98 × 10−1 1.55 × 101\1.01 × 100 1.18 × 101\9.98 × 10−1

F15 Mean 3.40 × 10−4 3.17 × 10−4 9.62 × 10−4 1.39 × 10−3 2.61 × 10−2

Std 3.39 × 10−5 4.50 × 10−5 9.62 × 10−4 1.39 × 10−3 2.61 × 10−2

Rank 2 1 3 4 5
Best\Worst 5.55× 10−4\3.14× 10−4 5.41 × 10−4\3.07 × 10−4 4.55 × 10−3\5.50 × 10−4 3.18 × 10−3\1.03 × 10−3 6.88 × 10−2\1.81 × 10−3

F16 Mean −1.03× 100 −1.03 × 100 −1.03 × 100 −1.02 × 100 −1.03 × 100

Std 1.35× 10−15 1.35 × 10−15 −1.03 × 100 −1.02 × 100 −1.03 × 100

Rank 1 1 1 5 1
Best\Worst −1.03× 100\−1.03× 100 −1.03 × 100\−1.03 × 100 −1.03 × 100\−1.03 × 100 −9.22 × 10−1\−1.03 × 100 −1.03 × 100\−1.03 × 100

F17 Mean 3.98× 10−1 3.98 × 10−1 3.98 × 10−1 4.08 × 10−1 5.30 × 10−1

Std 1.88× 10−8 1.12 × 10−16 3.98 × 10−1 4.08 × 10−1 5.30 × 10−1

Rank 1 1 1 4 5
Best\Worst 3.98× 10−13\98× 10−1 3.98 × 10−1\3.98 × 10−1 3.98 × 10−1\3.98 × 10−1 4.35 × 10−1\3.98 × 10−1 1.70 × 100\4.00 × 10−1

F18 Mean 3.00× 100 3.00 × 100 3.00 × 100 4.91 × 100 3.50 × 100

Std 1.15× 10−7 0.00 × 100 3.00 × 100 4.91 × 100 3.50 × 100

Rank 1 1 1 5 4
Best\Worst 3.00× 100\3.00× 100 3.00 × 100\3.00 × 100 3.00 × 100\3.00 × 100 1.25 × 101\3.01 × 100 6.51 × 100\3.01 × 100

F19 Mean −3.86× 100 −3.86 × 100 −3.86 × 100 −3.45 × 100 −3.50 × 100

Std 1.83× 10−3 2.24 × 10−15 −3.86 × 100 −3.45 × 100 −3.50 × 100

Rank 1 1 1 5 4
Best\Worst −3.86× 100\−3.86× 100 −3.86 × 100\−3.86 × 100 −3.86 × 100\−3.86 × 100 −2.90 × 100\−3.86 × 100 −2.69 × 100\−3.85 × 100

F20 Mean −3.13 × 100 −3.25 × 100 −3.31 × 100 −1.69 × 100 −2.09 × 100

Std 1.05 × 10−1 5.88 × 10−2 −3.31 × 100 −1.69 × 100 −2.09 × 100

Rank 3 2 1 5 4
Best\Worst −2.74 × 100\−3.31 × 100 −3.20 × 100\−3.32 × 100 −3.18 × 100\−3.32 × 100 −6.72 × 10−1\−2.55 × 100 −1.11 × 100\−3.10 × 100

F21 Mean −9.65× 100 −6.07 × 100 −6.85 × 100 −4.05 × 100 −4.49 × 100

Std 1.38× 100 2.06 × 100 −6.85 × 100 −4.05 × 100 −4.49 × 100
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Table 9. Cont.

Benchmark CSHHO GCHHO DEPSOASS Improved GSA DGOBLFOA

Rank 1 3 2 5 4
Best\Worst −5.02× 100\−1.02× 101 −5.06 × 100\−1.02 × 101 −2.68 × 100\−1.02 × 101 −1.99 × 100\−7.93 × 100 −2.67 × 100\−7.66 × 100

F22 Mean −9.45 × 100 −5.94 × 100 −1.01 × 101 −3.55 × 100 −4.08 × 100

Std 1.94 × 100 1.97 × 100 −1.01 × 101 −3.55 × 100 −4.08 × 100

Rank 2 3 1 5 4
Best\Worst −5.03 × 100\−1.04 × 101 −5.09 × 100\−1.04 × 101 −6.48 × 100\−1.04 × 101 −1.93 × 100\−7.27 × 100 −1.67 × 100\−8.98 × 100

F23 Mean −9.97 × 100 −5.67 × 100 −1.03 × 101 −4.34 × 100 −4.48 × 100

Std 1.46 × 100 1.64 × 100 −1.03 × 101 −4.34 × 100 −4.48 × 100

Rank 2 3 1 5 4
Best\Worst −5.09 × 100\−1.05 × 101 −5.13 × 100\−1.05 × 101 −5.42 × 100\−1.05 × 101 −2.61 × 100\−7.03 × 100 −2.43 × 100\−9.12 × 100

Table 10. The Bonferroni-Holm corrected p-values of Wilcoxon’s signed-rank test with the advanced meta-heuristic algorithms.

Benchmark GCHHO DEPSOASS GSA FOA

Corrected
p-Value +\=\− Corrected

p-Value +\=\− Corrected
p-Value +\=\− Corrected

p-Value +\=\−

F1 N/A 3.07 × 10−8 1\0\49 6.57 × 10−8 0\0\50 5.06 × 10−8 0\0\50 2.99 × 10−8 2\0\48
F2 N/A 6.80 × 10−8 0\0\50 6.50 × 10−8 0\0\50 4.99 × 10−8 0\0\50 4.01 × 10−8 0\0\50
F3 N/A 6.73 × 10−8 0\0\50 6.42 × 10−8 0\0\50 4.91 × 10−8 0\0\50 3.93 × 10−8 0\0\50
F4 N/A 6.65 × 10−8 0\0\50 6.35 × 10−8 0\0\50 4.84 × 10−8 0\0\50 3.85 × 10−8 0\0\50
F5 N/A 3.46 × 10−1 25\0\25 6.27 × 10−8 0\0\50 4.76 × 10−8 0\0\50 3.78 × 10−8 0\0\50
F6 N/A 4.84 × 10−3 9\0\41 6.20 × 10−8 0\0\50 4.69 × 10−8 0\0\50 3.70 × 10−8 0\0\50
F7 N/A 4.72 × 10−4 12\0\38 6.12 × 10−8 0\0\50 4.61 × 10−8 0\0\50 3.63 × 10−8 0\0\50
F8 N/A 3.70 × 10−1 35\0\15 6.05 × 10−8 0\0\50 4.53 × 10−8 0\0\50 3.55 × 10−8 50\0\0
F9 N/A 4.00 × 100 0\50\0 5.97 × 10−8 0\0\50 4.46 × 10−8 0\0\50 3.48 × 10−8 0\0\50
F10 N/A 4.00 × 100 0\50\0 5.89 × 10−8 0\0\50 4.38 × 10−8 0\0\50 4.71 × 10−8 0\2\48
F11 N/A 3.00 × 100 0\50\0 5.82 × 10−8 0\0\50 4.31 × 10−8 0\0\50 8.59 × 10−2 0\42\8
F12 N/A 8.60 × 10−1 26\0\24 5.74 × 10−8 0\0\50 4.23 × 10−8 0\0\50 3.40 × 10−8 0\0\50
F13 N/A 7.25 × 10−4 36\0\14 5.67 × 10−8 0\0\50 4.16 × 10−8 0\0\50 3.33 × 10−8 0\0\50
F14 N/A 3.13 × 10−1 6\44\0 1.02 × 10−7 2\0\48 1.20 × 10−3 5\1\44 1.39 × 10−7 1\0\49
F15 N/A 3.99 × 10−6 48\0\2 5.59 × 10−8 0\0\50 4.08 × 10−8 0\0\50 3.25 × 10−8 0\0\50
F16 N/A 2.00 × 100 0\50\0 5.52 × 10−8 0\0\50 6.75 × 10−8 0\0\50 3.17 × 10−4 0\26\24
F17 N/A 8.75 × 10−1 4\46\0 5.44 × 10−8 0\0\50 4.71 × 10−8 0\2\48 3.17 × 10−8 0\0\50
F18 N/A 8.75 × 10−1 4\46\0 5.37 × 10−8 0\0\50 6.88 × 10−8 0\0\50 3.10 × 10−8 0\0\50
F19 N/A 6.88 × 10−8 50\0\0 5.29 × 10−8 0\0\50 3.04 × 10−7 43\0\7 3.02 × 10−8 0\0\50
F20 N/A 1.10 × 10−6 45\0\5 5.21 × 10−8 0\0\50 2.99 × 10−8 49\0\1 3.08 × 10−8 1\0\49
F21 N/A 1.83 × 10−5 13\0\37 3.08 × 10−8 2\0\48 1.89 × 10−3 19\0\31 3.26 × 10−8 2\0\48
F22 N/A 4.72 × 10−4 13\0\37 5.14 × 10−8 0\0\50 1.55 × 10−3 44\0\6 2.95 × 10−8 0\0\50
F23 N/A 2.67 × 10−7 9\0\41 3.07 × 10−8 1\0\49 2.46 × 10−5 47\0\3 2.97 × 10−8 1\0\49
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Table 11. Average rankings obtained by advanced meta-heuristic in the Friedman test, and the best
result is shown in boldface.

Chaotic Mapping Average Rankings

CSHHO 1.70
GCHHO 1.83

DEPSOASS 2.76
GSA 4.87
FOA 3.85
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 Figure 5. Convergence curves of CSHHO and the advanced meta-heuristic algorithms.

4.2.4. Scalability Test on CSHHO

Dimensional data are an important basis for analyzing the influence of the number of
factors to be optimized on the algorithm, and the purpose of the scalability test is to further
verify the overall performance and stability of the optimization model. The experimental
subjects in this section are CSHHO, HHO. 29 CEC2017 functions [72] based on 50 and
100 dimensions, respectively, are used for scalability experiments. In this experiment,
the experimental parameters and the experimental environment are consistent with the
previous experiments except that the dimensionality settings are different from the previous
experiments, and Table 12 shows the experimental results using Mean and Std.

The best numerical results in CSHHO and HHO are set in bold, and the numerical
results of both equivalents are in bold. Under the UM function (F1–F2), the numerical
results of CSHHO are overall better than those of HHO, and CSHHO continues to maintain
some advantage as the number of dimensions increases; under the MM function test
(F3–F9), CSHHO performs better than HHO in 50 and 100 dimensions. The CSHHO’s
performance in the 50 and 100 dimensions was generally better than that of HHO in
the 50 dimensions in F6 and F7 and in the 100 dimensions in F4. In the hybrid function
(F10–F19), CSHHO performs better in the rest of the test sets, except for F11 and F12,
where it performs lower than HHO. In the composition function (F20–F29), it still has
good ability, and the accuracy in functions F21, F22 and F26 is higher than HHO, and
the effect in functions F22, F23, F24, F26 is the same as HHO, and the effect in functions
F23 (50 dimensions), F26 (100 dimensions) is lower than HHO. In general, compared with
HHO, CSHHO can better balance the exploration and exploitation process as the number
of dimensions increases.
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Table 12. Experimental results of scalability tests in different dimensions.

Benchmark
Metric 50 100

CSHHO HHO CSHHO HHO

F1 Mean\Std 3.49 × 107\1.19 × 108 3.30 × 108\9.91 × 107 1.08 × 1010\2.06 × 109 1.10 × 1010\2.09 × 109

F2 Mean\Std 9.88 × 104\1.66 × 104 1.03 × 105\1.38 × 104 2.78 × 105\1.73 × 104 2.90 × 105\1.42 × 104

F3 Mean\Std 8.65 × 102\1.16 × 102 9.00 × 102\1.52 × 102 2.89 × 102\4.96 × 102 3.01 × 103\5.84 × 102

F4 Mean\Std 8.95 × 102\2.82 × 101 8.96 × 102\3.47 × 101 1.56 × 103\4.55 × 101 1.56 × 103\5.35 × 101

F5 Mean\Std 6.71 × 102\4.36 × 100 6.74 × 102\4.16 × 100 6.85 × 102\2.82 × 100 6.85 × 102\3.25 × 100

F6 Mean\Std 1.84 × 103\9.07 × 101 1.84 × 103\7.88 × 101 3.71 × 103\1.41 × 102 3.69 × 103\1.46 × 102

F7 Mean\Std 1.20 × 103\3.34 × 101 1.20 × 103\3.11 × 101 2.01 × 103\7.14 × 101 2.01 × 103\6.02 × 101

F8 Mean\Std 2.52 × 104\2.86 × 103 2.54 × 104\3.63 × 103 5.24 × 104\5.53 × 103 5.72 × 104\5.52 × 103

F9 Mean\Std 9.41 × 103\9.83 × 102 9.49 × 103\8.76 × 102 2.21 × 104\1.46 × 103 2.28 × 104\2.12 × 103

F10 Mean\Std 1.65 × 103\1.47 × 102 1.66 × 103\1.21 × 102 5.03 × 104\1.59 × 104 5.06 × 104\1.06 × 104

F11 Mean\Std 2.17 × 108\1.28 × 108 1.88 × 108\1.05 × 108 1.58 × 109\5.29 × 108 1.68 × 109\5.46 × 108

F12 Mean\Std 3.82 × 106\1.44 × 106 5.20 × 106\4.28 × 106 1.75 × 107\7.23 × 106 1.62 × 107\6.97 × 106

F13 Mean\Std 1.54 × 106\1.01 × 106 2.07 × 106\2.53 × 106 4.81 × 106\1.82 × 106 5.41 × 106\1.64 × 106

F14 Mean\Std 6.00 × 105\2.65 × 105 6.35 × 105\2.81 × 105 3.36 × 106\9.38 × 105 4.35 × 106\4.49 × 106

F15 Mean\Std 4.38 × 103\6.23 × 102 4.52 × 103\6.15 × 102 8.55 × 103\1.00 × 103 8.56 × 103\8.52 × 102

F16 Mean\Std 3.78 × 103\3.76 × 102 3.90 × 103\4.41 × 102 6.73 × 103\7.03 × 102 6.84 × 103\7.62 × 102

F17 Mean\Std 5.39 × 105\4.79 × 106 4.63 × 106\4.40 × 106 5.75 × 106\2.56 × 106 6.62 × 106\3.52 × 106

F18 Mean\Std 5.82 × 105\6.11 × 105 1.12 × 106\7.19 × 105 1.20 × 107\4.90 × 106 1.55 × 107\6.97 × 106

F19 Mean\Std 3.63 × 102\3.07 × 102 3.39 × 103\3.20 × 102 6.05 × 103\5.46 × 102 6.06 × 103\4.89 × 102

F20 Mean\Std 2.46 × 103\8.32 × 101 2.85 × 103\6.82 × 101 4.17 × 103\1.82 × 102 4.13 × 103\1.86 × 102

F21 Mean\Std 1.03 × 104\1.09 × 103 1.14 × 104\1.04 × 103 2.56 × 104\1.24 × 103 2.56 × 104\1.48 × 103

F22 Mean\Std 3.74 × 103\2.31 × 102 3.74 × 103\1.77 × 102 5.35 × 103\3.78 × 102 5.35 × 103\2.91 × 102

F23 Mean\Std 4.20 × 103\2.15 × 102 4.18 × 103\1.76 × 102 7.25 × 103\5.84 × 102 7.25 × 103\4.62 × 102

F24 Mean\Std 3.28 × 103\6.13 × 101 3.30 × 103\7.30 × 101 4.73 × 103\2.76 × 102 4.73 × 103\2.60 × 102

F25 Mean\Std 1.08 × 104\1.79 × 103 1.10 × 104\1.63 × 103 2.85 × 104\2.46 × 103 2.86 × 104\4.26 × 103

F26 Mean\Std 4.44 × 103\5.43 × 102 4.44 × 103\3.71 × 102 5.70 × 103\1.25 × 103 5.43 × 103\6.12 × 102

F27 Mean\Std 3.82 × 103\1.43 × 102 3.89 × 103\1.77 × 102 5.79 × 103\4.35 × 102 5.86 × 103\4.88 × 102

F28 Mean\Std 6.09 × 103\7.55 × 102 6.38 × 103\7.33 × 102 1.10 × 104\1.01 × 103 1.11 × 104\9.60 × 102

F29 Mean\Std 5.23 × 107\1.82 × 107 5.25 × 107\1.55 × 107 1.52 × 108\6.75 × 107 1.54 × 108\7.05 × 107
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5. Engineering Application

In this chapter, the proposed CSHHO is applied to model the reactive power output
of a synchronous condenser. Due to the large number of UHV DC transmission projects
in the power system, to ensure DC to DC power consumption and peaking demand, the
scale of conventional units on the receiving AC grid is reduced, the dynamic reactive
power support capability of the system is weakened, and the voltage stability margin
is reduced [81]. This requires dynamic reactive power compensation devices to have
instantaneous reactive power support characteristics in case of system failure, and the
synchronous condenser to have reactive power output characteristics to meet the dynamic
reactive power compensation requirements of the grid [82]. Modeling the reactive power
support capability of a synchronous condenser is of great theoretical significance and
practical value for the reactive power control of converter stations in high-voltage DC
transmission systems with synchronous condenser.

The existing research methods for modeling the reactive power output of synchronous
condenser are the mathematical analytical model calculation method and the experimental
result fitting method [83–86] and both require large computational effort and have low
accuracy, but few papers have studied the application of LSSVM in modeling the reactive
power output of synchronous condenser. The advantages of the least squares support
vector machine (LSSVM) are that it is less likely to fall into local minima and has high gen-
eralization ability [87]. Researchers have used various intelligent optimization algorithms
to find the optimal results of kernel function parameters and regularization parameters,
including the GA [88], Particle Swarm Optimization Algorithm (PSO) [89], Free Search
Algorithm (FS) [90], Ant Colony Optimization Algorithm (ACO) [91], ABC Algorithm [92],
GWO algorithm [93] and Backtracking Search Optimization Algorithm (BSA) [94], etc.
However, the traditional swarm optimization algorithm is prone to the defects of falling
into local optimum and low convergence accuracy in the search process. According to
the results above, the CSHHO not only reduces the probability of the algorithm falling
into local optimum and improves the convergence accuracy of the algorithm, but also has
the advantages of the basic Harris Hawk optimization algorithm: 1. the steadiness of the
searching cores; 2. the fruitfulness in the initial iterations; 3. the progressive selection
scheme [5].

This paper proposes a CSHHO-LSSVM-based reactive power modeling method based
on the numerical characteristics and global search capability of CSHHO. The optimal
values of the penalty parameters, kernel function parameters, and loss function parameters
of the LSSVM are found by using CSHHO to build the CSHHO-LSSVM model for the
reactive power output of the synchronous condenser.

5.1. Principle of LSSVM

Support Vector Machine (SVM) is an ML method based on statistical learning theory,
with kernel function as the core, which implicitly maps the data in the original space to the
high-dimensional feature space, then finds the linear relationship in the feature space [87].

LSSVM is a regression algorithm that extends the basic SVM. Compared with the
SVM algorithm, LSSVM requires fewer parameters and is more stable. LSSVM simplifies
the complex constraints, which makes the improved SVM more capable of handling data.
Moreover, by setting the error sum of squares as the loss function of the algorithm, LSSVM
enhances the performance of regression prediction and improves the prediction accuracy.
Simultaneously, the complexity of the algorithm is reduced, which reduces the processing
time of the algorithm and provides more flexibility. LSSVM uses a nonlinear model on
basis of SVM:

f (x) = (ω, φ(x)) + b (28)

The input data were (xi, yi)i = 1, · · · l where xi ∈ Rd denoted the different elements, d
denoted the dimension, yi ∈ R the expected value of the output, and l the total number



Symmetry 2021, 13, 2364 33 of 41

of inputs. φ(x) denoted the mapping function. In summary, the LSSVM optimization
objective was:

min
1
2
‖ω‖2 +

1
2

γ
l

∑
i=1

e2
i (29)

s.t.ωT ϕ(xi) + b + ei = yi(i = 1, · · · , l).
where ei denoted the error, the magnitude of which determined the prediction

accuracy;e ∈ Rl×1 denoted the error vector, γ denoted the regularization parameter
r, which determined the magnitude of the error. Adding a Lagrangian multiplier to
Equation (29),λ ∈ Rl×1, Equation (30) was expressed as:

minJ =
1
2
‖ω‖2 +

1
2

γ
l

∑
i=1

e2
i −

l

∑
i=1

λi

(
ωTφ(xi) + b + ei − yi

)
(30)

From the KKT condition, we obtained:

∂J
∂ω = 0→

l
∑

i=1
λi ϕ(xi)

∂J
∂b = 0→

l
∑

i=1
λi = 0

∂J
∂ei

= 0→ λi = γei, i = 1, 2, · · · , l
∂J
∂λi

= 0→ ωT ϕ(xi) + b + ei − yi = 0, i = 1, 2, · · · , l

(31)

By eliminating the slack variables ei and weight vectors ω, the optimization problem
was linearized: [

0 QT

Q K + 1
γ I

][
b
A

]
=

[
0
Y

]
(32)

where A = [α1, α2, · · · , αN ]
T, Q = [1, 1, · · · , 1]T, was an l × 1 dimensional column vector,

Y = [y1, y2, · · · , yN ]
T. According to the Mercer condition, K denoted a kernel function:

K
(

xi, xj
)
= ϕ(xi)

Tϕ
(
xj
)

i, j = 1, 2, · · · , N. The Radial Basis Function kernel function was
chosen for the model:

k
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
σ > 0 (33)

Therefore, the nonlinear prediction model was expressed by Equation (34):

y =
l

∑
i=1

λiK(xi, x) + b (34)

When predicting with least squares support vector regression models, the penalty
factor and radial basis kernel function parameters were the two parameters to be solved.

5.2. Simulation and Verification

The reactive power regulation results of a synchronous condenser based on PSCAD/
EMTDC simulation software were used as training samples and test samples. Table 11
shows the main parameters. The data with serial numbers 9, 14, 26 and 35 in Table 11 were
taken as the test samples, and the rest were the training samples.

First, the data were preprocessed, and the LSSVM was trained by using CSHHO to
find the penalty parameters, kernel function parameters and optimal parameters of the
loss function (γ, σ, S), and the LSSVM was predicted by applying the test sample to the
LSSVM, and the regression fitted prediction model was output. The algorithm flow is
shown in Figure 6. Figure 7 compares the output results of the LSSVM model of the test
sample and the CSHHO-LSSVM model were compared with those of the test sample and
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the errors of the LSSVM model of the test sample and the CSHHO-LSSVM model. The
output regression of CSHHO-LSSVM model was better fitted and had higher accuracy and
radial basis kernel function parameters.
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To verify the generalization ability of the CSHHO-LSSVM model, it was evaluated
by absolute deviation, as shown in Table 13. The table shows the absolute deviation
range of CSHHO-LSSVM model from 0.0123 to 0.989, indicating that the accuracy of the
CSHHO-LSSVM model was high.
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Table 13. Training samples and test samples.

Input Sample Output Sample
Excitation Current/A Exciting Voltage/V Reactive Power/Mvar System Voltage/kV

25.488 29.267 305.0 228.4
23.364 26.103 261.5 228.2
21.594 24.521 232.5 228.5
20.154 22.939 212.5 228.5

19.6824 22.148 197.5 228.6
18.8328 21.159 186.4 228.6
18.408 20.408 177.4 228.7

17.9124 19.9728 170.2 228.75
17.7 19.775 163.8 228.8

17.346 19.3795 158.5 228.8
16.992 18.984 154.2 228.8

16.7088 18.7863 150.5 228.8
16.638 18.5727 147.0 228.78
16.461 18.3987 144.2 228.85

16.1424 17.9715 137.4 228.84
15.6822 17.402 131.1 228.9
15.222 17.0065 125.0 228.9
14.868 16.611 118.35 229

14.2308 15.9782 108.75 229
12.9564 14.5346 88.5 229.1

12.39 13.8425 78.3 229.1
11.682 12.953 67.8 229.2
10.974 12.458 57.5 229.3

10.3368 11.4695 47.5 229.3
9.912 11.074 37.0 229.4
8.9916 10.283 27.5 229.4
8.4252 9.1756 17.2 229.48
7.8588 8.8592 7.5 229.5
7.2924 8.3055 1.75 229.57
6.9738 7.91 −2.5 229.6
6.372 6.9213 −11.7 229.6
5.8056 6.7235 −21.0 229.62
5.664 6.4467 −30.5 229.7
4.956 5.1415 −39.6 229.71
4.248 4.5483 −48.5 229.8
3.54 4.351 −57.5 229.875

2.832 3.164 −57.5 229.875
2.124 2.4521 −66.5 229.9

From the reactive power and system voltage simulation results of the synchronous
condenser in Tables 14–16, we can see that the maximum absolute error of the reactive
power simulation result of CSHHO-LSSVM model was 0. 989 Mvar, and the maximum
absolute error of the system voltage simulation result was 0.0415 kV, which were smaller
than the simulation results of LSSVM model, indicating that the CSHHO-LSSVM model
had higher accuracy and better regression fitting performance. The LSSVM model was
more accurate and had better regression fitting performance.
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Table 14. CSHHO-LSSV Model generalization ability verification.

Prediction Value Sample Value Absolute Error Relative Error

9
Reactive Power/MVar 163.0515 163.8 −0.7485 −0.4570

System Voltage/kV 228.7877 228.8 −0.0123 −0.0054

14
Reactive Power/MVar 144.5989 144.2 0.3989 0.2766

System Voltage/kV 228.8882 228.85 0.0382 0.0167

26
Reactive Power/MVar 28.1322 27.6 0.5322 1.9282

System Voltage/kV 229.4014 229.45 −0.0486 −0.0212

35
Reactive Power/MVar −40.5890 −39.6 −0.989 2.4975

System Voltage/kV 229.7915 229.75 0.0415 0.0181

Table 15. Reactive power simulation results comparison.

Prediction Value Sample Value Absolute Error Relative Error

LSSVM
9 162.9631 163.8 −0.8369 −0.5128
35 −40.8531 −39.6 −1.2531 3.1649

CSHHO−LSSVM
9 163.0515 163.8 −0.7485 −0.4570
35 −40.5890 −39.6 −0.989 2.4975

Table 16. System voltage simulation results comparison.

Prediction Value Sample Value Absolute Error Relative Error

LSSVM
9 228.6717 228.8 −0.1283 −0.0561
35 229.8859 229.75 0.1359 0.0591

CSHHO−LSSVM
9 228.7877 228.8 −0.0123 −0.0054
35 229.7915 229.75 0.0415 0.0181

6. Conclusions

Here, we analyzed the shortcomings of the basic HHO algorithm and applied the
chaotic mapping population initialization, adaptive weighting, variable spiral position
update and optimal neighborhood disturbance mechanisms to the classical HHO algorithm,
in which the Gauss chaotic mapping population initialization increased the coverage of the
solution space by the initial solution of the algorithm, the adaptive weighting mechanism
sped up the movement of Harris hawk populations to the optimal solution, and the variable
spiral position update increased the ability of Harris hawk populations. The optimal
neighborhood disturbance mechanism helped the improved algorithm to increase the
algorithm’s global search capability and avoided premature maturity. To verify the optimal
performance of the four strategies, the experiments were separated into two groups.

First, seven commonly used chaotic mappings were selected for the population ini-
tialization of the HHO algorithm, including Sinusoidal, Tent, Kent, Cubic, Logistic, Gauss,
and Circle mappings. The HHO algorithm’s performance after population initialization
of each of these seven mappings was evaluated. The HHO algorithm’s performance after
population initialization of Gauss mapping was significantly better than that of the HHO
algorithm after population initialization of other mappings in terms of solution accuracy.
Second, based on the results of the first set of experiments, the Gauss mapping was used
for population initialization, and adaptive weights, variable spiral position update, and
optimal neighborhood disturbance mechanisms were introduced into the algorithm after
population initialization. Next, CSHHO was compared with other classical algorithms
including WOA, SCA, CSO and advanced algorithms including GCHHO and DEPSOASS
and Improved GSA and DGOBLFOA based on 23 classical test functions and the means
and standard deviations of all algorithms were analyzed. Subsequently, each algorithm’s
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performance was evaluated comprehensively using Friedman’s test and the Bonferroni–
Holm corrected Wilcoxon signed-rank test with 5% confidence level, where numerical
analysis concluded that CSHHO outperformed the other algorithms. In detail, analyzing
the experimental results of this work, in the population initialization phase, Gauss chaos
mapping had the best results in F2, F6, F12, F17, and F23 test functions, and comparing
the results of the remaining six chaotic mappings, Gauss chaos mapping obtained the
most optimal solutions; CSHHO algorithm outperformed HHO in 17 benchmark functions
out of 23 classical test functions, outperformed WOA in 21 results, SCA in 23 results,
and CSO in 22 experiments. It outperformed GCHHO in 9 results. Meanwhile, in the
statistical experiments of advanced meta-heuristic and classical meta-heuristic, the ARVs
obtained by CSHHO were 1.93 and 2.57, respectively, which were lower than the values
obtained by other pairwise meta-heuristics in the same group of experiments. Additionally,
dimensional scalability tests were conducted for CSHHO on the IEEECEC2017 dataset,
including 50 and 100 dimensions, and the results showed that the improved optimizer
effectively handled high-dimensional data with good stability. Meanwhile, in the statistical
experiments of advanced meta-heuristic and classical meta-heuristic, CSHHO obtained
ARVs of 1.70 and 2.57, respectively, which were lower than the values obtained by other
meta-heuristic algorithms in the same set of experiments. Furthermore, dimensional scala-
bility tests were conducted for CSHHO on the IEEE CEC 2017 dataset, including 50 and
100 dimensions, and the results showed that the improved optimizer effectively handled
high-dimensional data with excellent stability.

Here, the CSHHO algorithm was also applied to the engineering problem of reactive
power output modeling of the synchronous condenser. In view of the defects of the many
calculations and low accuracy of the traditional reactive power output modeling method of
the synchronous condenser, CSHHO-LSSVM was used to model the reactive power output
of the synchronous condenser based on the advantages of LSSVM, which was not easy to
fall into local minimum and had strong generalization ability, and CSHHO had high search
accuracy and strong global search ability. The excitation current and excitation voltage of
the synchronous condenser were used as the input of the LSSVM model, and the reactive
power and system voltage were used as the LSSVM model’s output. CSHHO was used
to find the optimal values of the penalty parameter, kernel function parameter, and loss
function parameter of LSSVM. The experiment showed that the CSHHHO-LSSVM model
had better accuracy and better regression fitting performance compared with LSSVM.

In future work, we will try to improve the convergence speed and search accuracy
of the algorithm and balance the exploration and exploitation phases of the algorithm to
obtain better search performance. Additionally, the next step will be to investigate how
CSHHO can be used to solve multi-objective optimization problems. In addition, CSHHO
can also be used for evolutionary ML, such as extreme learning machines and parameter
tuning of convolution neural networks. Other problems include grid scheduling and 3D
multi-objective tracking.
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Appendix A

Table A1. The classical 23 test functions.

Function Dimensions Range fmin

unimodal benchmark functions

f1(x) =
n
∑

i=1
x2

i
30,100, 500, 1000 [100, 100] 0

f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30,100, 500, 1000 [10, 10] 0

f3(x) =
n
∑

i=1

(
i

∑
j−1

xj

)2
30,100, 500, 1000 [100, 100] 0

f4(x) = maxi{|xi |, 1 ≤ i ≤ n} 30,100, 500, 1000 [100, 100] 0

f5(x) =
n−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
]

30,100, 500, 1000 [30, 30] 0

f6(x) =
n
∑

i=1
([xi + 0.5])2 30,100, 500, 1000 [100, 100] 0

f7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30,100, 500, 1000 [128, 128] 0

multimodal benchmark functions

f8(x) =
n
∑

i=1
−xi sin

(√
|xi |
)

30,100, 500, 1000 [500, 500] −418.9829 × n

f9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30,100, 500, 1000 [5.12, 5.12] 0

f10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

30,100, 500, 1000 [32, 32] 0

f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30,100, 500, 1000 [600, 600] 0

f12(x) = π
n

{
10 sin(πy1) +

n−1
∑

i=1
(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4 u(xi , a, k, m) =

 k(xi − a)m xi > a
0− a < xi < a

k(−xi − a)m xi < −a

30,100, 500, 1000 [50, 50] 0

f13(x) = 0.1
{

sin2(3πx1) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+(xn − 1)2[1 + sin2(2πxn)

]}
+

n
∑

i=1
u(xi , 5, 100, 4)

30,100, 500, 1000 [50, 50] 0

fixed-dimension multimodal benchmark functions

f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

2 [−65, 65] 1

f15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5, 5] 0.398

f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

f19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij
(

xj − pij
)2

)
3 [1, 3] −3.86

f20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij
(

xj − pij
)2

)
6 [0, 1] −3.32

f21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.1532

f22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.4028

f23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0, 10] −10.5363
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