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Abstract: The approximate solutions of Fredholm-Volterra integro-differential equations of multi-
fractional order within the Caputo sense (F-VIFDEs) under mixed conditions are presented in this
article apply a collocation points technique based completely on Bessel polynomials of the first kind.
This new approach depends particularly on transforming the linear equation and conditions into
the matrix relations (some time symmetry matrix), which results in resolving a linear algebraic
equation with unknown generalized Bessel coefficients. Numerical examples are given to show the
technique’s validity and application, and comparisons are made with existing results by applying
this process in order to express these solutions, most general programs are written in Python V.3.8.8
(2021).

Keywords: Fredholm-Volterra integral Equations; fractional derivative; Bessel polynomials;
Caputo derivative; collocation points

1. Introduction

Fractional calculus (FC) deals with the differentiation and integration of arbitrary
order and it is used in the real world to model and analyze big problems. Fluid flow,
electrical networks, fractals theory, control theory, electromagnetic theory, probability,
statistics, optics, potential theory, biology, chemistry, diffusion, and viscoelasticity are just
a few of the many fields where fractional calculus is used [1-4].

In recent years, fractional differential equations and integro-fractional differential
equations (IFDEs) have captivated the hobby of many researchers in various fields of
science and era due to the reality that realistic modeling of a bodily phenomenon with
dependencies not only in the immediate time, but also in the past time history can be
accomplished effectively using FC. However, in addition to modeling, the solution
approaches and their dependability are crucial in detecting key points when a rapid
divergence, convergence, or bifurcation begins. As a result, high-precision solutions are
always required. Several strategies for solving fractional order differential equations were
presented for this purpose (or integro-differential equations), [1,3,4]. The Adomian
decomposition method [5], variational iteration method [6], fractional differential
transform method [7], fractional difference method [8], and power series method [9] are
the most commonly used ideas.

However, from the beginning of 1994, Laguerre, Legendre, Taylor, Fourier, Hermite,
and Bessel polynomials have been employed in works [10-15] to solve linear differential,
integral, and integro-differential difference equations and related systems. In addition,
the Bessel polynomial of the first kind method has been used to find approximate
solutions of differential, fractional differential equations, integro-differential equations of
fractional order, LVIDEs, and LF-VIDEs [16-19].
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The aim of this paper is to expand and apply the first kind of Bessel polynomial in
matrix form, as well as the collocation techniques, to evaluate the approximate solution
for the multi-high-order linear Fredholm—Volterra integro-fractional differential

equations (FVIFDEs) of the general type:
n—1

D7"u(0) + ) i) D7) + pa(u()
=1

mq b my x (1)
=g(x) + Z Ai f F; (x,t) ED " u(t)dt + Z A f V; (x, t)ngfu(t)dt,x € [a, b]
i=0 a Jj=0 a
together with mixed conditions:
u—-1
Z{hkgu(f)(a) + A @ (b)) = Cok = 0,1, .., — 1. @)
£=0

where the fractional orders: 6, > 0,1 > - > 01 > 05 = 0,y > A1 > > @ > @ =
0,and B, > Brm,—1 >+ >B1 > Po=0,and u = max{[crn], [aml], [/?mz] } In addition, u(x)
is an unknown function, the functions p;(x), g(x) € C([a, b],R),foralll = 1,2, ...,n, and
Fi(x,t),Vi(x,t) € C(S,R), (withS = {(x,t):a <t <x <b}) are known, with constants
Pocor g, Ai,ﬂ_j and C, ER for all k,£=01,..,u—1 , i=01,..,my,j=
0,1,..,m,, (n,my, m, € Z*) are given.

2. Preliminary Considerations
2.1. Basic Definitions and Some Lemmas

Many mathematical definitions of fractional integration and differentiation have
come to light in recent years. The most frequently used definitions of fractional calculus
involves the Riemann-Liouville fractional derivative and Caputo derivative. In terms of
applicability, the Caputo concept is more dependable than the Riemann-Liouville
definition. In this section, we are interested some basic definitions and lemmas which are
used later on in this paper [1,3,4,20,21].

Definition 1. [22] A real valued function u defined on closed bounded interval [a, b] = I be in
the space C,(I), v ER, if there exist a real number k >y, such that u(x) = (x—
a)*uy(x), where ug(x) € C(I), and it is said to be in the space C}(I)iff u™(x) e
C,(I),where n € Z*U{0}.

Definition 2. [23] The Riemann—Liouville (R-L) fractional integral operator, ], of order a > 0
of a function u € C,(I),y = —1 is defined as:

a — 1 * a-—1 d +
JEulx) = WL (x —t)*tu(t)dt, a€R
Jru(x) = u).

Definition 3. [24] The Riemann—Liouville (R-L) fractional derivative operator, RDZ, of order a =
0 of a function u(x) and u € CIy(I), m = [«a] is normally defined as:
RDou(x) = D" g *u(x), m—-1<a<m, mEeN.

Definition 4. [23] The Caputo fractional derivative operator, SDZ, of a function u € C™(I)
and m = [a], (ceiling function), is defined as:



Symmetry 2021, 13, 2354

30f27

gl:gu(x) X _a[l:x u(x)]
(;fx _ s ym—-a-1 g u(t) —
{F( )a(x t) T dt, m—1<a<m
0"u(x) a=mmeEN
axm ' ’ '

where the parameter « is the order of the derivative and is allowed to be any positive real
number. The operators ,J¢ and 5D¥ are linear operators. Furthermore, we have

Lemma 1. [4] Let x > a,a € R and for u(x) = (x — a)? for some f #+ —m is not negative
integer, then

rg+1)

FGrasn* "

Ji(x—a)f =

Lemma 2. [20] The Caputo derivative of order a = 0 with n = [a] of the power function u(x) =
(x — a)P for some B = 0 is formed by:
0 if €{0,1,2,:-,n—1}
EDu(x) =4 I'(B+1) if fENandf =n
rg—a+1) orB&Nandf >n—-1

Lemma 3. [20] Let a = 0,m = [a]. Moreover, assume that u € CTi(I). Then the Caputo
fractional derivative $D%u(x) is continuous on I = [a, b] and lim[$DFu(x)] = 0.
xX—a

(x —a)f~@

2.2. Bessel Polynomial of the First Kind

The #~-th degree N-truncated Bessel polynomials of the first kind, [25,26], |- (x), 7 =
0,1, ..., N are defined by

en

(D% x\2hFr
J-(x) = Z m(z) ,7 €EN,0 < x < oo.
=0

Here, N is a positive integer that is selected in such a way that N > 7. On the other hand,
we may express the J,.(x) as follows in the matrix form.

J(x) = X(x)D" or J" (x) = DX (x). 3)
where J(x) = [Jo(®) J; (%) ... Jy(x)] and X(x) =[1xx? ..xN]
If Nis odd
1 ~1 -’z
ooz 0 Tnz (D) (S )r2n-1 0
1 (-1’7
P 0 0 EmEy
D= 1 SRS
0 0 oz 3 (D)2 0
0 0 0 —1 0
OI(N — D12Vt
1
0 0 0 0 ONIZY ey

If Nis even
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1 -1 . (1)
010120 111122 @ (@)r2y
N-2
1 -1z
oz 0 (=2 (y2v1 0
b= o GV
o o0 o .1 g
0r(V — 1)1 271
1
0 0 0 0 _
O!NI2N  dvinyxv+1)

3. Fundamental Matrix Relations

Recall Equation (1) and rewrite it as follows:

D{o ey, %) = g(x) + I ({ai}jsh, x) + 1, ({ﬁj}?:o,x). 4)
where
n-1
D(otr, ¥) = EDFMUG) + ) pu(6) EDF™ () + pa(u®)
=1
and the integral parts:

mq b my X
. my _ ﬂ
L({ad™, %) = Z 1y J F o 0% u(Odt, 1, ({5}.}. O,x) _ Z 7 J v, G 0 u(t.
]:
i=0 a j=0 a

our purpose is to find a close approximation of Equation (1) in the N-truncated Bessel
series arrangement

N
u(x) = Z a, ], (x). (5)
=0

So that a,., for all+~ = 0,1, ..., N are the unknown Bessel coefficients. Before we begin
the approximate solution we must convert the solution u(x) and its $Dy™u(x), SDy ™ 'u(x),

ED¢u(x) and ngju(x), forall [=12,..,n—1,i=01,..,my, j=0,,..,m, in the parts
D({ay}=1, %), If({ai}ﬁlo, x) and I, ({ﬁj};nzzo,x), to matrix form, within the mixed conditions

of Equation (2).

3.1. Matrix Relation for the Fractional Derivative Part D

To describe the solution u(x) of Equation (1), which is specified by the N-truncated
Bessel series of Equation (5). The function defined in relation (5) in a matrix form

[u()] =J(x)A;A = [ag a; a; ... ay]” (6)
or from Equation (3)
[u(x)] = X(x)D" A. (7)

The relationship between the matrix X(x) and its derivative X()(x) is also written as
follows:
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XD (x) = X(x)B". (®)
where
[0 1 0 0 - 0]
[0 0 2 0 - 0]
A
llO 00 0 - NJ|
0 0 0 0 - Odw+pxwv+

We will also get the recurrence relations from Equation (8):
XO(x) = X(x)
XM (x) = X(x)BT
X®(x) = XV ()B" = X(x)(B")? ©)

X@(x) = XG-V(x)BT = X(x)(BT)".

Here, note that (BT)® = [I](y11)xnv+1) iS an identity matrix of dimension (N + 1).
Using mathematical induction, we can prove that Equation (9) is correct. By applying the
same concept to Equation (7) and using Equation (9), we attain matrix relation

uPD(x) = XD (x)DTA

u®(x) = X(x)(BT)?D" A, for each 7 = 0,1, ..., and u = max{[o,], [am, |, [Bm,| } (10)

By using Equation (7) with (9) and applying the Caputo definition 4, with Lemma 1
and 2, we can convert the fractional terms Dy " 'u(x), A(0,—;) — 1 < op_y < 71(0,_,), that
is n(o,—;) = [o,—;], foralll = 0,1, ...,n — 1 to matrix form:

a0y ux) = {0y X(x)D"A
— )(Cﬁ(o'n—l)_o'n—l)D n(on-1) X(X)DTA
— JET_l(O'n—l)—Un—l) X(x) (BT)ﬁ(an_l)DTA
= x™On-D"n-1 X (x) C(71(0y) — p—y) (BT)"“WDTA.

Since
Aon-D=0n-D x () = JOOn-D70n-0[1 x 52 xN]
— [ F(l) fi(op-1)—0n-1+0 F(Z) xﬁ(an—l)_o_n—l"'l
F( ﬁ(o-n—l) —Op1 t+ 1) F( ﬁ(o-n—l) —Op t+ 2)
T'(N + 1)

ey xﬁ(an—l)_ﬂ'n_l"'N]
F( ﬁ(o-n_l) —Op t+ N + 1)
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(1)
F(7(Gn D — op T 1) 0 0
) 0 r'(2) 0
= om0t [Lax? . x ] (00 = Ot + 2)
0 0 _ I'(N+1)
I'(n(o,—;) — 0p_y + N + 1)
Putting
r(1)
F( ﬁ(an—l) — Op—g + 1) 0 0
0 L@ 0
C(n(on-1) —0n-1) = [(A(0n—)) — Oy + 2) (11)
0 0 _ I'(N+ 1)
I'(n(o,—;) — 0p_y + N + 1)1
Thus, forall = 1,2, ...,n — 1 in general we obtain
Dy tu(x) = EDJMIX(x)DTA = x™On-0=9n-1 X(x) C(A(0y-;) — 0p—y) (BT)On-UDTA.  (12)
and
EDyMu(x) = SD"X(x)DTA = x™on)=n X(x) C(7i(0y,) — 0,) (BT)™OWDTA. (13)

Using mathematical induction, we can prove that Equations (12) and (13) are correct.
By substituting expressions (7), (12) and (13) into (4), As well we can make this
assumption y(n,x) = x™OW = y(n — [,x) = x™On-0=%n-1, foralll = 1,2,..,n —

have

D({oy}i=1, %) = [y(n, x) X(x) €C((a,) — 0,) (BT)™ DT

n—-1

+ ) p) y(n = Lx) X(x) C(A(0n-1) — 0py) (BN)-0DT + p, ()X (x)D"]A.

=1

3.2. Matrix Relation for the Fredholm Integral Part I

we

(14)

The N-truncated Taylor series around (0,0), [27] and the N-truncated Bessel series can
be used to approximate the Fredholm kernel functions F;(x, t),i = 0,1, ..., m;, respectively

N N N N
Fi(x,t) = Z Z EL, x™t™ and F;(x, t) = Z Z b 1 (O], i=0,1,..,m; (15)
m=0n=0

where
1 0m+"Fi(0,0)
oxmotn '

[tF”’L;m] ~ minl

m=0 n=0

i=01,..,my,

m,n=201,..,N.

In matrix forms, the Equation (15) may be written as Equations (16) and (17),

respectively
Fi(x,t) = XCOF X" (1),

and

Fi(x,t) = JOOFLIT (D),

Fi = [tFpunl.

F;.) = [bF/rl;Ln]'

i=01..m

i=01,..,my

1 m,n=01,..,N.

m,n=01,..,N.

(16)

(17)

From Equations (16) and (17), it also comes out according to Equation (3), the

following relation
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X()FLXT(t) = J()FL)T(t), i=0,1,..,m
X(X)F:XT(t) = X(x)DTFEDXT(t), i =0,1,...,my (18)
F:=D'F.D or F.=(D")"'FiD™!, i=0,1,..,m

In the same way from Equations (12) and (13), convert (D, u(x),and 7i(e;) — 1 <
a; < n(ay),i-e, n(a;) = [a;]forall i =0,1,...,my, by apply the Caputo definition 4 with
Lemma 1 to the matrix form, we obtain
D tu(x) = D' X(x)DTA
— )(cﬁ(“i)_“i)D n(a;) X(X)DTA
_ 19
— (Alap—a;) X(x)(BT)ﬁ(ai)DTA (19

X
= x™@~% X(x) C(n(a;) — a;) (BT)*IDTA4, i=01,..,m

where C(n(a;) — a;) is defined at Equation (11). We obtain the matrix relation (20), put the
Equation (3) into (17), and then replace the obtained matrix with matrix (19) in the
Fredholm integral part I; in Equation (4)

mq b

I (fa )™ x) = Zai f Fi (x, ©) ED%u(t)dt
i=0 a
mq b

= A f JCOFST (8) 7@~ X(6) C(A(ay) — ;) (BT)" @0 DT Ade

i=0 a
mq b
= Z/li f X(x)DTF.DXT (t) t*@)=%i X(t) C(n(e;) — a;) (BT)M*) DT Adt (20)
i=0 a
mq b
= ZAiX(x)DTF;',D f XT(t) X(O)t™@-% dt | C(n(e;) — a;) (BT *)DTA
i=0 a
mq
- Z 2, X()DTFLD H, ; C(7i(a;) — ;) (BT) @ DT A,
i=0
where
b
Hf; = f X"(t) Xt gr = [nff],  i=01,..,m, 1s=01,..,N.
a

[hf'i] _ pilad—aptr+s+1 _ pi(a)-ai+r+s+1
rs n(a;) —a;+r+s+1

We can get the last matrix form (21) by replacing the matrix relation (18) into
expression (20).

, i=01,..,my, r,s=0,1,..,N.

mq

(a2 %) = ) A XCOF Hy; CGR(a) — o) (BTY@DTA. @1

=0

3.3. Matrix Relation for the Volterra Integral Part L,
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The N-truncated Taylor series around (0,0), [27] and the N-truncated Bessel series can
be used to approximate the Volterra kernel functions V;(x, t),j = 0,1, ..., m,, respectively

N N N N
Vi(x,t) = Z Z Vi x™tmand Vi(x,t) = Z Z WV 1L,  j=01,..,m, (22)
m=0n=0 m=0n=0
where
1 6”‘“‘]/]-(0,0)
m!n! odx™mot™

The relations in Equation (22) can be transformed into matrix forms:

[V)a] = ,  j=01,..,my mmn=01..,N.

Vi(x,t) = XVIXT (@), Vi=[V).)] J=01..,my mn=01.,N (23)
and

Vit t) =JV)T@), Vi=[Vi.) i=01..m; mmn=01.,N (24)

from Equations (23) and (24), it also comes out according to Equation (3) we obtain the
following relation:

XQOVIXT(@) = JOVIT@®),  j=01,..,m,
X()VIXT(t) = X(x)D"V)DXT(t), j=0,1,..,m, (25)
v.=D"VID or V,=D")W/D?' j=01,.,m,

Finally, in the same way from Equations (12) and (13), convert ngj u(x), ﬁ(ﬁj) —
1< B; <a(p)), i.e.n(B;) = [B;]. forall j = 0,1, ..., m,, by applying the Caputo definition 4
with Lemma 1, 2 and 3 to matrix form, we obtain

cPiucx) = epPixx)pTa

_ 5

_ iﬁ(ﬁj)—ﬁj) X(X) (BT)ﬁ(ﬁj)DTA

Dp™B) X(x)DTA
(26)

= x"B)-B X(x) C(A(B)) — B;) (BN IDTA,  j=01,..,m,

where C(71(B;) — B;) define at Equation (11). We obtain the matrix relation (27), put the
Equation (3) into (24) and then replace the obtained matrix with matrix (26) in Fredholm
integral part I, in Equation (4)
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L ({8 Z f (0 D (et

f JOOVIIT () £ DB X () €(R(B;) — B;) (BM™EIDT Adt

] 0 a

= 2 be f X(x)DTVDXT (t) t*F)-Bi X (t) €(7i(B;) — B;) (BM™E)DT Adt
=

@7)
= > 4 X@D'V]p f XT(t) X" P Fide | c(a(B))
j=0 a

~ ;) (B #)D"A

= Z X X(x)D"V]DH,, ;(x)C(7(B;) — ;) (BT F)DTA.

where
X
H,;(x) = fXT(t) X@®)t"ED-Bidt = [ (x)],  j=01,..,my;  1,5=01,..,N.
a

xﬁ(ﬂj)_ﬁf"'r"’s"'l — aﬁ(ﬁj)—ﬁj+r+s+1

Y ()] = , =01,..,my; 1,5=01,..,N
[Ars )] a(B)—Bj+r+s+1 g 2
We can get the last matrix form (28) by replacing the matrix relation (25) into
expression (27).
({ﬁ, Z L XCOVIH, ;(x)Cc(A(B) - ;) (BTHMF)DT A, (28)
3.4. Matrix Relation for the Conditions
Foreachk =0,1,..,u — 1 and u = max{[a,], [aml], [,Bmz] }, applying the relation (10)
to each mixed condition of Equation (2), we obtain the corresponding condition matrix
forms as follows.
u-1
{#keX(@)(BT)'DTA + Ay, X(b)(BT)'DTA} = [C, ] k=01, ..,u— 1
£=0
Thus
u—-1
Z[/Lk{,xm) + A X(b)|(BTY!DTA = [Cl, k=01,..,u—1. (29)
£=0

4. Method of Solution

To construct the fundamental matrix equation that corresponds to Equation (1), insert
the matrix relations (14), (21), and (28) into Equation (4) to obtain the following matrix
equation
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Y1, X() €(0,) = 0) (BT + 3" py() y(n = Lx) X() €0 -1) = G y) (BT -0
=1
+ P (x)X(x)DT| A
my (30)
= 900+ ) A XQF} Hy; CGi(e) — ap) (B @DTA

i=0

+ Z L X(OVIH,;)C(R(B) - B;) (BTFIDT A,
j=0

We get the following system of equations by setting the collocation points, [28],
b-a

described by x; = a + —1, i = 0,1,...,N:

n-1

y(n,x;) X(x) C(iay) — 0,) (BT DT + Z pi(x) y(n = Lx;) X(x) €(fi(op—y) = 0) (B")Hn-0D"

=1
+ P (x)X(x,)D" [ A
mq
= 9 + ) M XGx)F} Hy C(ila) - ap) (BT D7
i=0

+ Z X X(x)VIH, ;(x)C(R(B;) — B;) (B PIDTA,  i=041,..,N.
=0

or in brief, the most important matrix equation is

n-1

y(m)X €(A(0,) — 0,) (B VDT + Z p1y(n — DX C(A(0n-1) — 0p—) (BN VD + p, XD"
=1
my m, (31)
i=0 j=0
where
I[x(()n(an_l)_an_l) 0 . 0 ]| p1(Xo) 0 " 0
Y1) =] 0 xl(n(an—l)—an—z) 0 |p, = 0 p(x)) o 0
| : : : |' : : :
[ 0 0 xl(vﬁ(“n—l)‘“n—l)J 0 0 = pi(xw)
foralll =0,1,...,n, and y(0) = [I](n+1)xw+1)Po = [(Mn+1)xv+1) are the unit matrix,
X(xo)] [1 %o x5 - x0 X(x0) 0 0
X = X(?Cl) — Il x'1 x12 x-ivi' X = 0 X(?Cl) O
xeel 11 xy x2 - 2l 0 0 - X(x)

also, for each fractional order y = {0y, 0y, @; and ), foralll = 1,2,...,n,i = 0,1, ...,my,j =

0,1, ...,m; } we are putting
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rc) 0 0
ra(y)—v+1)
I'(2)
(@) —y) = NG 0
@) —-v+2)
. (') (N + 1)
F'n(y) —y +N+ 1)
0100 01"™ , , , , . .
0 0 2 0 . o [ ][R e L]
(BT)ﬁ(Y) = IO 0 0 3 0 I , ; = | tF'1L0 tF'1l1 tF:11N I' Vi = I t‘{ljo tV1]1 tVle I
| H H H N . N I ;. :. :' H ] H ] Z.
lg 8 8 8 IgJ ltFlilO ey tF1€1NJ ltV,\fO Vi, tVA{NJ
i=01,..,m,j=01,..,m,
where
i1 1 9™*"F;(0,0) . _
[cEnnl = g (= 0Lemy,  mn=01..,N
: 1 9™*"1.(0,0) )
[tV’n{Vn] = m[ /’/L' axm]at,n ) ] = 0;1, ---,mz, ’I’I’L,/I’L = 0,1, ey N
Ir hyy hoi v how] [hop (00 oy )+ oy (0]
Fif fi y y y
He; = Ihml h{ul h%l\ll l, H,;(x;) = Ihfo].(xi) hffﬁxi) hfzéﬁxi) I’,i =0,1,.. N
lnfs rly - hinl LHACH IR CH R icHeD]
where, respectively
i bﬁ(ai)—ai+r+s+1 _ aﬁ(a’i)—ai+r+s+1
h ! = ) = 011; ) ) S = 0:11 .,N
[hrs] n(a)—a;+r+s+1 ! e ns
0 x{ﬁ(ﬁj)—ﬁj+r+s+1 — q(Bj)-Bjtr+s+l
(A (x)] = — ,  Jj=01,.,my; 1rs=01.,N
i=01,..,N
I[V{ 0 0 1| I[c(ﬁ(ﬁj) - B) 0 0 1|
v =I 0o v 0 I C = 0 c(n()) - B;) 0 I
lo o V] [l o 0 c(n(8)) - )]
[Hyj(xo) 0 0 7 [(BT)"(8)) 0 0
H = | 0 Hy(w) o | .| o (BT)"(8)) 0 |
| 5 ol | : c
[ o 0 H;(xy)] | o 0 (B8]
] = 0,1, ,mz



Symmetry 2021, 13, 2354 12 of 27

DT g(x0) ao
_ T
p=|P"| 6= 9(3‘1), and A = al
DT g(xy) an

When the matrices

y(n), y(n - l)' Pn Pu X, C(ﬁ(o-n) - Un)' C(ﬁ(an—l) - Un—l)' C(ﬁ-(ai) - ai)' C(T_l(ﬁj) - Bj)f
(BTY¥e,

(BT)(on-0  (BT)R(ad), (BT)ﬁ(ﬁj),Fé, V{,Hf,i,H,,’j(x{) and DT

Foralll=12,..,n—-1,i=0,1,..,my, j=0,1,..,my, 4=0,1,..,N. In Equation (31)
we have explained that their dimensions are similar to those of (N +1) x (N +1).
Moreover, in Equation (31), these matrices X, V/, H;, C;, B/ and D,forall j =0,1,...,m,
are written in full, their measured dimensions can be observed by (N +1) X
(N+1D3(N+1D2x(N+ 13 (N+1D)2x (N+1)5(N+1D)2x (N+1)%3,(N+1)2x (N +
1)%, and (N + 1)? x (N + 1) respectively.

As a result, the fundamental matrix Equation (31) that corresponds to Equation (1)
may be expressed as

WA =G or [W:G]. (32)
where
n—1
W = y(m)X C((o,) — 0,) (BN DT + Z piy(n— DX C(A(op_y) — 0p_y) (BT)On-0DT
mq =1 2
+ anDT - Z ;ti XF% Hf,i C(T_l(a’l) —_ (Zl') (BT)ﬁ(ai)DT —_ Z A_] XV]}_IJZ‘JEJI_)
i=0 j=0

Note that, Equation (32) is a set of (N + 1) linear algebraic equations with unknown
Bessel coefficients A = [a,, a4, ..., ay]. The matrix form (29) for the conditions, on the other
hand, may be represented as

UA = [Ci] or [Up:Cil; k=01, .,pu—1,  p=max{[o,],[cm,][Bm,] } (33)
u-1
U, = Z[ﬁHX(a) + AL X(b)]|(BT)!DT A
£=0
=[ugo U1 Ugz - Urn), k=01, ..., u—1

Hence, we may solve Equation (1) under mixed conditions (2) by substituting the
rows of the matrices W and G for the rows of the matrices U, and Cy, respectively.

WA =G.

The new augmented matrix (some time may be symmetry) of the preceding system
is as follows if the last u-rows of the matrix (32) are replaced for simplicity:
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EDE2u(x) + 2§D u(x) — xu(x) = g(x) + f(e"u(t) — t$D?-
0

—2 0.8

Woo Wo1 Wo2 Won g(xo) 7
Wio Wi1 Wi2 Win g(x1)
W20 W21 W22 Wan g(xz)
[W' E] —[WN-mo WN-m1 Wn-mp2 WN-mN 9(Xn—m) (34)

Upo Up1 Up2 Uon Co
Uio U1 U2 Uin 1
Uzo Uz1 Uz2 Uzn C2

[ Uy—10 Up-11  Up-12 Uy—1,n Cu—1

Take note that rank W = rank[W: G| = N + 1. If it isn’t, the suggested technique fails
to offer a solution; but in this case, in this situation, the number of collocation points (or,
equivalently, the dimension of the matrix W") can be increased to get the specific or
general answer. As a result, we may write 4 = (W)‘lﬁ, and therefore the elements
ag, a4, ..., ay 0f A are uniquely determined.

Moreover, select that N we define needs to be greater than u, ie, N>u=
max{[o,], [m, |, [Bm,| } If it is not, the proposed strategy is thus unable to give a solution,
because matrix BT becomes a zero matrix, we only get zero solution.

5. Numerical Examples

In this work, we choose several examples where the exact solution already exists to
demonstrate the accuracy. They were all carried out on a computer using a Python
program V3.8.8 (2021). The least square errors (L.S.E) in tables are the values of
I o[ulx;) — @iy (x,)]?, M € N at M-selected collocation points x,. and the running time is
also provided in tabular form.

Example 1. Consider the linear Fredholm—Volterra integro-differential equation of multi-higher
fractional order, given by

1 x
‘u(t)) dt + f(—(x — u(t) + 2x§DFBu(t)) dt
0

where0 < x,t <1

2 20 1 4 1 11 4.2

19 2.2 x

90) = Fag®

g = 0, g1 = 0.1, 0y = 1.2
ay,=0,aq

Bo =0,B,

=0.9 - n(ay)
=18 - n(By) = [Bol = 0,n(B,) = [B1] =2

66’

+ r3.1) Tr(41)

2ot Trae’ treo”®

with the boundary conditions

2u®P(0) +u®(1) =1 and uP(1) = -1

which is the exact solution u(x) = x(1 — x).
Let us now determine the N-truncated Bessel series approximate solution uy(x)

u() = un() = ) a ) ()
=0
Here, from the considered, example we have:

- 1(0y) = [op] = 0,7(0y) = [01] = 1,7(0,) = [03] = 2

[ag] = 0,7(ay) = [a1] = 1

u =max{[1.2],[0.9],[1.8] } =2
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p1(x) = x,p2(x) = —x,Fy(x,t) = e*, F(x,t) =t,Vo(x,t) =x —t,V,(x,t) =x,
=14 =-11=-1,1,=2

Hence u = 2 so take N = 3, the collocation point sets are {xo =0, x; = %, X, = 2,

X3 = 1}, and the fundamental matrix equation of the given (LF-VFIDEs) is derived from
Equation (31), written as

Y(2)X C(A(oy) — 03) (BT™2DT + p, y(1)X C(7(0y) — 01) (BT)™DT + p,XDT

1 1
= > A XFi Hy; C@(a) — @) (BTY@ODT —

Z‘jm—n‘ CB'D |A=6
i=0 j=0
where
X(0) 1 0 0 0
_ 2 3 v XA/ _ |1 1/3 1/9 1/27
Xe) =D xx* XLX =1y =1 23 a/9 827
XD 11 1 1
[0 0 0 0 1
1
g 10 0 0 lo —2 o ol
3 /3 0 of | 3 I
Pr=lo o0 2/3 0'1"2_|0 . ol
0 0 0 1 | 3 |
lo 0o o -dl
0 0 0 0T 0 0 0 0
0 (1/3)°8 0 0 0 (1/3)* 0 0
2) = y(1) =
y(2) 0 0 2/3)%8 0 y(1) 0 0 2/3)%° 0
0 0 0 1] 0 0 0 1
1 0 o | 1 0 0
r'(1.8) r(1.9)
1 1
0 — 0 0 0 — 0 0
re.8 2.9
C(i(o) — 07) = @ (o) — o) = @ ,
0 O TGy O 0 EET))
0 0 0 —6 0 0 0 —6
r(4.8)] r(4.9)]
—1 0 0 0 —1 0 0 0
r(1.1) r(1.2)
0 ; 0 0 0 ; 0 0
r.a I'2.2
C(lay) - a;) = @b @) ~ ) = @2
0 0 r(3.1) 0 0 0 I'(3.2) 0
0 0 0 —6 0 0 0 —6
r(4.1)] r(4.2)]
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010 0 00 2 0
T _ (pTYA(o1) — (RTYyA(ay) — |0 0 2 0 ™2 _ (RTYA(ox) — (pTYAB) — |0 0 0 6
BT = (BTY"V = (BTyMe = |8 ) & 2 (BT)? = (BT = BTy =) ) OO

00 0 0 00 0 0
[1 0 0 0]
|1 0 0 0] 01 0 0 0 -1 0 0 00 0 0
1
o | | . lo o o ofl,o0 |1 0 0 0., [1 000
Fi Iz I'Ff 000 o' lo o o of'VeTlo 0 0 of
1
£ 0 0 o 0 0 0 0 0 0 0O 0 0 0 0
1 1 1 17 -1 1 1 11
- Z - Z - — — — 1 0 0 0
1 2 3 4 11 21 31 41 1
11 1 1 1 1 1 1 0 5 0 0
2 3 4 5 121 31 41 51 T _[—1 1
Hpo=17 1 1 1PHa=17 1 1 1'D_T 0 5 0y
3 4 5 6 3.1 41 51 6.1 -1 1
11 1 1 1 1 1 1 0 — 0 —
- Z - Z - — — 16 48/
4 5 6 7. 41 51 61 7.1
X(0) 0 0 0 er? 0 0 01| I[V% 0 0 01|
0 1
| 0 xam 0 0 ,170=|0 Ve o Ol,V1=|0 vi 0 o]
0 0 X2/3) 0 o o0 Vv° o] lo o v of
0 0 0 XD lo o o v lo o o v
[Hy,0(0) 0 0 0 [Hy,1(0) 0 0 0

& _i 0 H,,(1/3) 0 0 Iﬁ _i 0 H,.(1/3) 0 0 |
°71 o0 0 H,,(2/3) o """ ] o 0 H,(2/3) 0
| o 0 0 H,,(1] | o 0 0 H,, (1]

ERNCaNCE R

3 2 3 & 3 2 3 &

00 0 0 & @ @ o & @ & e

lo oo o 12 3 5 12 3 "4 s
Bo® =0 0 0 o Mo =an gy s e TP Zide @ @ gy
0000 3 24 5 "6 3 24 5 6

4 s 7 "4 5 6 7|

101 1 1 (D @ @ @

132 3 3% 12 22 32 42
1111 00 0 0 @* ®** B 3)*°

|2 3 4 5 oo oo 122 32 42 52
Hv,O(l)_ 1 1 1 1'Hv,1(0)— 0 0 0 0 'Hv,1(1/3)_ (%)3,2 (%)4.2 (%)5.2 (% 6.2 ¢
3 456 0000 32 42 52 62

1 1 1 l (%)4.2 (%)5.2 (%)6.2 (% 7.2

4 5 6 7 "42 52 62 724



Symmetry 2021, 13, 2354 16 of 27

(& B % O 1 1 1 1;

12 22 32 42 12 22 32 a2

(%)2.2 (%)3.2 (%)4.2 (%)5.2 1 1 1 1

22 32 42 52 22 32 42 52

H ,1(2/3) = 'H ,1(1) = U
' G @ @2 @t L1 L
32 42 52 6.2 32 42 52 6.2

. . . . 1 1 1 1

A** 32 B B - — — —

"42 52 62 72 42 52 62 72

[CR(B) — By) 0 0 0
S CEB) — 1) 0 0 |
Lo 0 CB) — 1) o F
Lo 0 0 cGB) - ol
Ir(BT)Wl’ 0 . 0 01 —0.28262788 D"
_ T\n 1 _ _ T
Bl =| 0 (B") O_ 0 | G = 0.90165393 and D = DT
| o0 0 (BT)(B) 0o | —0.47693449 D
| o 0 0 (BTY50 0.94267344 pT
putting all above matrices in matrix Equation (32) and calculating it, this fundamental
matrix equation’s augmented matrix is:
—1.07079233 —0.02572358 0.03539616  0.00866477 : —0.28262788
[W:G] = —1.85498405 —0.12829141 0.09107227 0.01393314 : -0.90165393
' —2.40595015 —0.22844205 0.01161705 0.01241051 : —0.47693449
—2.7722549  —0.23879802 —0.19720588 —0.02479584 : 0.94267344
For our consider example, the boundary conditions from Equation (33) have the
following matrix forms:
UkA = [Ck] or [Uk: Ck]; k = 0,1
or clearly
[Uy:Co] =[-0.5 1.3125 0.25 0.0625 : 1]
[U;:C1] =[-0.5 0.3125 0.25 0.0625 : -—1]
The new augmented matrix depending on conditions is constructed as follows from
the system (34):
—1.07079233 —0.02572358 0.03539616 0.00866477 : —0.28262788
[W E] _ —1.85498405 —0.12829141 0.09107227 0.01393314 : -—0.90165393
' -0.5 1.3125 0.25 0.0625 : 1
—-0.5 0.3125 0.25 0.0625 : -1

The Bessel coefficient matrix 4 is obtained by solving this system.

[-1.98357176 x 107 2.00000000 — 8.00269502 6.01076421]"

>
I

hence, for N = 3 the approximate solution of the problem is formed as

uz(x) = 0.0002242544x3 — 1.0003363816x% + 1.0x — 0.0000019836

for N = 6 and N = 10, similarly as steps above and running the general python program
which are written for this purpose we obtain the approximate solution of the problem,
respectively
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ug(x) = —0.0003537963x® + 0.0007932088x°> — 0.0006209581x* + 0.000229553x3
— 1.0000240462x2 + 1.0x + 0.0000090551

and

u10(x) = 0.0000000661x° — 0.0000002889x° + 0.00000052947x% — 0.00000053514x7
+ 0.000000328x° — 0.00000012512x°> + 0.0000000293x*
— 0.00000000370x3 — 0.999999999656939x2 + 1.0x + 0.00000000015

In Table 1, Comparison the exact solution u(x) with the approximate solution uy (x)
of example 1 for N = 3,6 and 10, respectively, in terms of least square error and running

time.

Table 1. Compares the exact solution u(x) with the approximate solution uy (x) of example 1.

Xi

Exact Solution
Example 1.

N-Approximate Solution uy (x)

N=3

N=6

N=10

0.0

0.00

—1.9835710 x 107%

9.05511829 x 107%

1.53060853 x 10710

0.1

0.09

8.99948769 x 1072

9.00089897 x 1072

9.00000002 x 10792

0.2

0.16

1.59986355 x 10701

1.60009167 x 107%1

1.60000000 x 107%1

0.3

0.21

2.09973797 x 1071

2.10009729 x 107%1

2.10000000 x 107%1

0.4

0.24

2.39958548 x 1071

240010676 x 107%1

2.40000000 x 1071

0.5

0.25

249941953 x 1071

2.50012188 x 107%1

2.50000000 x 107%1

0.6

0.24

2.39925358 x 1071

240014679 x 107%1

2.40000000 x 107%1

0.7

0.21

2.09910109 x 1072

2.10018608 x 107%1

2.10000000 x 107%1

0.8

0.16

1.59897550 x 10701

1.60024025 x 107%1

1.60000000 x 107%1

0.9

0.09

8.98890288 x 1072

9.00298712 x 10792

9.00000005 x 10792

1.0

0.00

—1.141107 x 107%*

3.30162295 x 107%

5.74892312 x 10710

L.S.E.

5.5474382 x 10798

3.72530728 x 107%°

1.13502895 x 10718

Running Time/Sec

0.47589683

0.227055311

0.57032561

Example 2. Let us now consider the LF-VIFDEs on the closed bounded interval [0,1] given by

X
60 u(x) + 5 6D fu(x) + Vx§DR%u(x) + (x* + Du(x)

1 x
=g(x)+ f((sin(x) —0)§D2u(t) + 2(e* — )5 u(t)) dt + 3 f tsinh(x)§DFu(t) dt
0 0

where
2 1 1 2 2
99 =ra 7 * iy tran  tras Vgt O DEHD?
—(—+—)'()— 4 . 66 2'1'h()+<4'2 4 2.2 + 7.6)
rey e/ T reef Ttan® MY T \ran TTED TTER9)

with the boundary conditions:
u(0)+u®1) =5 and u (1) +u?0) =6

The exact solution is u(x) = (x + 1)2.
Let us now calculate the coefficients a,.,# = 0: N of approximate solution with the
aid of the truncated Bessel series:

N
u() = un() = ) a]()
=0
Here, from the considered example we have:
0, =05,0,=08,,0; =13 - n(gy) = [0y] = 1,71(0,) = [0,] = 1,n(03) = [05] =2
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a; =09, a, =11 - n(y) =[a;] = 1, n(ay) = [ay] =2
=19 - a(B) =[B] =2, pu=max{[1.3],[1.1],[1.9]} =2 and A, = 1,1, = 2,1, = 3
p1(x) = ;,Pz(x) = VX, p3(x) = (x* + 1), Fi(x, t) = sin(x) — ¢, F,(x,t) = (e — 1), V4 (x,t) = tsinh(x)

Hence u = 2 so take N = 3, the set of collocation points, and the fundamental matrix
equation of the given (LF-VFIDESs) is derived from Equation (31), written as

[¥(3)X C(7i(03) — 03) (BT)™°)DT + p, y(2)X C(7(0,) — 03) (BT)*2) DT
+p,y(DX C(A(oy) — 0y) (BT)*VUDT + p,XDT
— L XFt Hyy C(A(ay) — ay) (BT)M@) DT

After inputting each of the parameters above by running the general python
program, which are written for this purpose for N = 3, we obtain the approximate
solution of the problem,

uz(x) = 0.0029061023x3 + 0.99568824199x% + 2.0015004466x + 0.9984047624

Similarly, the approximate solution of the problem for N = 6 and 11, respectively,
we obtain

ug(x) = 4353138854 x 10~ 7x® — 4.54065912 x 1075x5 + 5.511176789 x 10 5x*
— 1.135105524 x 1075x3 + 1.0000204x2 + 1.999983583x
+ 1.000013642

and

U1 (x) = 3.2299188319 x 107 7x — 1.5377530537 x 10 6x1°
+ 3.1687057159 x 1076x° — 3.716458436 x 10~ 6x8
+ 2.73904171 x 107%x7 — 1.319310342 x 10°x®
+ 4.181528996 x 107 7x°> — 8.549654914 x 10~ 8x*
+ 1.082189316 x 1078x3 + 0.9999999996x% + 1.9999999996x
+ 1.0000000003.

In Table 2 comparison in terms of least square error and running time the exact
solution u(x) with the approximate solution uy(x) of example 2 for N = 3,6 and 11,
respectively.

Table 2. Compares the exact solution u(x) with the approximate solution uy (x) of example 2.

Exact Solution N-Approximate Solutions uy(x)
Y Example 2. N=3 N=6 N=11
0.0 1.00 0.99840476 1.00001364 1.00
0.1 1.21 1.2085146 1.2100122 1.21
0.2 1.44 1.43855563 1.44001116 1.44
0.3 1.69 1.6885453 1.69001058 1.69
0.4 1.96 1.95850105 1.96001056 1.96
0.5 2.25 2.24844031 2.25001115 2.25
0.6 2.56 2.55838052 2.56001232 2.56
0.7 2.89 2.88833911 2.89001391 2.89
0.8 3.24 3.23833352 3.24001556 3.24
0.9 3.61 3.60838119 3.6100167 3.61
1.0 4.00 3.99849955 4.00001642 4.00
L.S.E. 2.66633874 x 10795 194276005 x 107°° 7.33991398 x 10~

Running Time/Sec 0.449205636 0.2821376323 0.6396300792
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Figures 1 and 2 illustrate a comparison between the exact solution and approximate
solution of LF-VIFDEs of Examples 1 and 2, respectively. To show the result of the
proposed method to an exact solution, we present Tables 1 and 2, respectively. Each of the
plots is drawn with our Python program version 3.8.8 (2021).

Exact solution
Approximate solution N=3
Approximate solution N=6
Approximate solution N=10

0.25

b

0.20

0.15

u(x)

0.10

0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 1. Comparison of the exact and approximate solution of example 1.

---- Exact solution

4.0| >k Approximate solution N=3
T Approximate solution N=6

3¢ approximate solution N=11

3.5

3.0

2.0

1.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2. Comparison of the exact and approximate solution of example 2.

Example 3. Let us consider the linear Fredholm—Volterra fractional integro-differential equation
on the closed bounded interval [0,1]:

1

D273 u(x) = g(x) + f (t sin(;—c)gD?'“u(t) +2(x — %)thl'“u(t)) dt + f (—eng?‘su(t) + (—Z)teng}'su(t)) dt
0

[oe]

0

where

xi+027 sin (i) (l + 1.36) (i + 1.36) exxl+1.5 2(1- + 1_5)exxl+2.5

2x
9() = ZO T(i+236) TG+127) T(+336) T(i+336) T(+25  TG+35)

i=

with the boundary conditions
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u(0) +u™(0) =—-1 and u(1) —u®@) =1

which is the exact solution u(x) = 1 — e”*.
Let us now calculate the coefficients a,.,# = 0: N of approximate solution with the
aid of the truncated Bessel series:

N

u() = un() = ) a]()
=0

Here, from consider example we have:

0, =073 ->n(0) =[o] =1

a; =064 - n(ay) =[] =1, a, =1.64 - n(ay) =[ay] =2

Br=05 = ) =[fl=1  Ba=15 - a(B) =[p1] =2

u = max {[a1], [a;], [B;]} = max{[0.73],[1.64],[1.5] } = 2

p1(x) =0,F (x,t) = tsin( ) Fy(x,t) = (x ——) Vi(x,t) =e5Vo(x,t) =te*and 44 = 1,4, =
LA =-1, 1, =-2

Suppose that, we take N terms from the homogeneous part g(x):

x 4027 N sm( )(l +136) (i4+136) eXxi*tlS 20+ 1.5)e*xi+%5
9 = Z F(l ¥ 2. 36) FG+127) ' T(i+336) T(i+336) T({+25  T{+35)

i=0

N

Hence u = 2, the fundamental matrix equation of the given (LF-VFIDEs) is derived
from Equation (31), written as
[J’(l) X C(a(0y) — 0y) (BT)™VDT — 2, XF} He, C(A(ay) — ay) (BT)M@)pT

- /’lzXF? Hf,Z C(T_l(az) - 0{2) (BT)ﬁ(aZ)DT 11XV1H16131D /’lzXVZHzczBZD A G

We choose if N=5, the approximate solution of the problem for N =
4,10, 21, respectively
Uy(x) = —0.0569736258x* — 0.1665069441x3 — 0.49426610634x% — 1.0017991281x
+ 0.001799128086

Uo(x) = —0.0112791176x° + 0.04361473251x° — 0.07167515469x% + 0.06498524957x’
— 0.03711020557x® + 0.00378578712x°> — 0.0441096211x*
— 0.1664357675x3 — 0.4999839118x2 — 0.999999027x
— 9.72893359856624 x 1077,

and

Uy (%) = 2649.390397x%1 — 26487.723779x2° + 123552.0169x° — 357222.928001x'8
+ 717359.135397x'7 — 1062540.52114x® + 1203203.42788x1°
— 1065423.12951x* + 748326.26838x13 — 420462.50002x12
+ 189747.93897x'! — 68792.817648x1° + 19970.45119x° — 4609.812041x8
+ 836.75503981x7 — 117.510711061x° + 12.4665060412x°>
— 1.0098682157x* — 0.11440971986x3 — 0.50180747163x2
— 0.99996814632x — 3.1859671582 x 107>

we choose if N =10, the approximate solution of the problem for N =
4,10, 21, respectively
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u,(x) = —0.05759757087x* — 0.1652553696x> — 0.4950425756x% — 1.001653973x + 0.001653973

uy(x) = 3.399204141e — 6x1° — 2.0679446987¢ — 5x° + 1.254303583e — 5x8
— 0.000242474208x” — 0.001356395456x° — 0.008348879766x°
— 0.0416618228x* — 0.166667629x3 — 0.4999998846x>

— 1.0000000056x + 5.656145543 x 107°,

and

Uy1 (%) = 0.0366737297x? — 0.36713669x%° + 1.714854990x'° — 4.9651991545x18

+ 9.9858420757x'” — 14.8143137167x'® + 16.8038086x15

— 14.90654178x + 10.49049965x'® — 5.9069139812x12

+ 2.6719828271x1 — 0.97127108855x° + 0.282792909x°

— 0.0655249586x8 + 0.0117379624x” — 0.00307302784x°
0.008153528584x° — 0.041680721487x* — 0.1666659001x3
0.5000000273x% — 0.9999999995x — 4.670435338 x 10710

Similarly doing it for N = 16, the approximate solution of the problem for N =
4,10, 21, respectively

u,(x) = —0.057597577x* — 0.165255357x3 — 0.495042583x% — 1.001653971x
+ 0.0016539713

Uyo(x) = 3.4214653141e — 6x1° — 2.0612514452¢ — 5x° + 1.2077128326e — 5x8
— 0.000241586656x” — 0.0013572657x° — 0.0083483752x°
— 0.0416620032x* — 0.1666675894x% — 0.499999889x?
— 1.000000005x + 5.395456491 x 10~°

and

Uy; (x) = —0.000949182285x% + 0.00893091688x2° — 0.03880287140x'°

+ 0.103101802x'® — 0.186859983473284x7 + 0.24354820561x16
0.2337645213x%> + 0.1652048762x* — 0.08287855594x!3
0.0253870484x'? — 0.0005131248x'! — 0.0043926365x1°
0.00281921684x° — 0.0010956089x8 + 8.623002860e — 5x”
0.00144403537x% — 0.00832553568x> — 0.0416674549x* — 0.16666661x3
0.500000002x2 — 0.99999999995x — 4.983565034 x 10711,

I+ + |

In Table 3 presents a comparison between the exact solution u(x) and approximate
solution uy (x), when we choose N = 5,10, and 16, respectively. For each of them we chose
N = 4,10,and 21, respectively depending on the least square error and running time.

Table 3. Comparison between the exact solution u(x) and approximate solution uy(x) for example 3.

(@)

. N=5
Exact Solution - -
X; Example 3. N-Approximate Solution uy (x)
N=4 N =10 N=21

0.0 0.0 0.00179913 —9.72893360 x 107 —3.1859672 x 1075
0.1 —0.10517092 —0.10349565 —0.105171555 —0.10520278
0.2 —0.22140276 —0.21975456 —0.221402690 —0.22143482
0.3 —0.34985881 —0.34818173 —0.349857839 —0.34989091
0.4 —0.4918247 —0.49011807 —0.491822593 —0.49185648
0.5 —0.64872127 —0.64704118 —0.648717441 —0.64875193
0.6 —0.8221188 —0.82056543 —0.822111722 —0.82214657
0.7 —1.01375271 —1.0124419 —1.01373901 —1.01377394

0.8 —1.22554093 —1.22455843 —1.22551392 —1.22554873
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0.9 —1.45960311 —1.45893959 —1.45955258 —1.45958517
1.0 —1.71828183 —1.71774668 —1.71820801 —1.71823455
L.S.E. 2.3130923 x 1075 8.99107006 x 1079° 9.87875607 x 10~°
Running Time/Sec 0.49988222 2.92118477
Exact Solution - N =10 -
b Example 3. N-Approximate Solution uy (x)
N =10 N =21
0 0.0 1.65397131 x 107%3 5.65614554 x 10~9° —4.67043534 x 1010
0.1 —0.10517092 —1.03632867 x 1071 —1.05170912 x 107t —1.05170919 x 10~°1
0.2 —0.22140276 —2.19892725 x 1071 —2.21402752 x 10701 —2.21402759 x 10701
0.3 —0.34985881 —3.48324488 x 107! —3.49858802 x 10701 —3.49858808 x 1001
0.4 —0.4918247 —4.90265271 x 107°1 —4,91824692 x 10701 —4,91824698 x 10701
0.5 —0.64872127 —6.47190428 x 1071 —6.48721264 x 10701 —6.48721271 x 10701
0.6 —0.8221188 —8.20713545 x 107°! —8.22118794 x 10701 —8.22118801 x 10t
0.7 —1.01375271 —1.01258644 —1.01375270 —1.01375271
0.8 —1.22554093 —1.22469917 —1.22554092 —1.22554093
0.9 —1.45960311 —1.45908002 —1.45960311 —1.45960311
1 —1.71828183 —1.71789552 —1.71828182 —1.71828183
L.SE. 1.89772271 x 10795 3.87412311 x 10716 2.32392057 x 10718
Running Time/Sec 0.515326499 2.749377012
Exact Solution - N =16 X
x; Example 3. N-Approximate Solution uy (x)
N =10 N=21
0.0 0. 1.65397131 x 107%3 5.39545649 x 1079° —4.98356503 x 1011
0.1 —0.10517092 —1.03632867 x 1071 —1.05170913 x 1071 —1.05170918 x 1071
0.2 —0.22140276 —2.19892725 x 1071 —2.21402753 x 1071 —2.21402758 x 1071
0.3 —0.34985881 —3.48324488 x 107! —3.49858802 x 10701 —3.49858808 x 1071
0.4 —0.4918247 —4.90265271 x 107°1 —4.91824692 x 1071 —4.91824698 x 10701
0.5 —0.64872127 —6.47190428 x 10701 —6.48721265 x 10701 —6.48721271 x 10701
0.6 —0.8221188 —8.20713545 x 107°! —8.22118794 x 10701 —8.22118800 x 10t
0.7 —1.01375271 —1.01258644 —1.01375270 —1.01375271
0.8 —1.22554093 —1.22469917 —1.22554092 —1.22554093
0.9 —1.45960311 —1.45908002 —1.45960311 —1.45960311
1.0 —1.71828183 —1.71789552 —1.71828182 —1.71828183
L.S.E. 1.89771908 x 10703 3.4403856 x 10716 3.45079782 x 10720
Running Time/Sec 0.5199816226 2.90862059

Figure 3a—c illustrates a comparison between the exact solution and approximate
solution of (LF-VIFDEs) of equation above, respectively. To show the result of the
proposed method to an exact solution, we present Table 3, respectively. Each of the plots
is drawn with our Python program version 3.8.8 (2021).
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Figure 3. (a) Comparison of the exact and approximate solution, when N = 5. (b) Comparison of the
exact and approximate solution, when N = 10. (c) Comparison of the exact and approximate
solution, when N = 16.

Example 4. Suppose that the following linear Fredholm—Volterra fractional integro-differential
equation given by

ED2Bu(x) = g(x) + f (% (t — 2)$D23u(t) + (t + cos (x))thl'3u(t)> dt

0
+ f <% (xT—t) u(t) + [tan(x)t] SDt”u(t)) dt, 0<x,t<2
0

where
_ . L o2 @7 ., 1 7037 _ .
9() _1”(2.2)’512_r(1.2)xo2 T (4.7) Y r(3.7) (7237 =237 = (1.7)2")
YeR)) (217 4+ 227 cos(x)) — %(%x‘* - %x3 + x2>

with the boundary conditions
u@+u)=4 uD0O0)+u®@2)=2 and u@®0)+u?R2) =4
which is the exact solution u(x) = x? — x + 1.
Now let us find the approximate solution given by the N-truncated Bessel series
N
U@ = un(®) = Y arJp ()
=0
Here, from consider example we have:
g1 = 0.8 - 7—1(0-1) = [0-1] =1

a; =03,a, =13 - n(ay) =[aq] = 1,n(ay) =[ay] =2
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Bo=0,p1 =2.7 - 1(By) = [Bo] = 0,n(B) = [B1]1 =3

1 -
=—,/‘[2=1’ /‘[02

u=max{[08],[13],[27]} =3, A =3

and  py(x) = 0,F,(x,t) = t = 2, Fy(x,£) = ¢ + cos(x), Vo, ) = (5°) , Va (. 0) = tan(x)
from Equation (31), the fundamental matrix equation of the given problem is written as

[y(1) X €(ioy) = ay) (B)™VD" — 4, XF} Hp s C(iay) — @) (B DT

Thus, the approximate solution of the problem for N = 5,9, 12, respectively

us(x) = 0.00595039974990515x° — 0.0295085156834566x* + 0.0436273982107945x3
+ 0.98520400357289x2 — 0.998052135471447x + 0.99399626495166,

ug(x) = —6.93792068979952 X 107 7x% + 6.12616976553793 x 107°x® — 2.13390478665744 x 10~ 5x7
+ 3.69079850914571 x 1075x° — 3.01713615634192 x 10~°x5
+ 1.16291867668927 x 107 °x* + 1.66943823538962 x 10~ °x3
+ 0.999993226980557x% — 0.999998942794685x + 0.99999725431996,

and

uy,(x) = —5.96684668513465 x 1071%x12 + 6.51569719257085 x 10~ 9x1?

— 3.10471674650442 x 1078x1% + 8.49087433427835 x 10~ 8x°
1.47156926969634 x 10~7x® + 1.67915537193858 x 10~ "x”
1.26723286902409 X 1077x® + 6.23462096628266 x 10~8x°
— 2.05277535525461 x 1078x* + 5.82167120066757 x 10~ 9x3
+ 0.999999998891922x% — 0.999999999885384x + 0.999999999582705.

In Table 4. presents a comparison between the exact solution u(x) and approximate
solution uy(x) for N = 5,9 and 12, respectively, depending on the least square error and
running time.

Table 4. Comparison between the exact solution u(x) and approximate solution uy(x) for example 4.

N Exact Solution N-Approximate Solution uy (x)
¢ Example 4. N=5 N=9 N=12
0.0 1.00 0.99399626 0.99999725 1.00
0.1 091 0.90408383 0.90999731 091
0.2 0.84 0.83409771 0.83999732 0.84
0.3 0.79 0.78420236 0.78999737 0.79
0.4 0.76 0.75450572 0.7599975 0.76
0.5 0.75 0.74506629 0.74999774 0.75
0.6 0.76 0.75590034 0.75999808 0.76
0.7 0.79 0.78698902 0.78999852 0.79
0.8 0.84 0.83828549 0.83999904 0.84
0.9 0.91 0.90972207 0.90999961 0.91
1.0 1.00 1.00121742 1.00000023 1.00
L.S.E. 0.0002244 4.72053254 x 10711 1.11096853 x 10718
Running Time/Sec 0.568155527 1.649296999 6.3344522

Figure 4 illustrates a comparison between the exact solution and approximate
solution of linear (FVIFDEs). To show the result of the proposed method to an exact
solution, we present Table 4. Each of the plots is drawn with our Python program version
3.8.8 (2021).
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3.0| & Approximate solution N=5
—— Approximate solution N=9
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u(x)

1.5

1.0

Figure 4. Comparison of the exact and approximate solution of example 4.

6. Conclusions

Multi-fractional order linear integro-differential equations are generally difficult to
solve analytically. In many situations, it is necessary to approximate solutions. In this
work, we present a new technique for numerically solving the linear Fredholm—Volterra
integro-fractional differential equation of multi-fractional order of the Caputo sense using
first-order Bessel polynomials. The comparison of the results achieved with the exact
solution, the exact solution, and the other methods suggests that the procedure is very
effective and convenient. We introduced this with some illustrative examples of the
approach and their least square error to minimize the error terms on the specified domain
and running time are also given in tabular form. It is obvious that as N rises, the error rate
reduces and the answer becomes closer to the exact solution. One significant benefit of the
technique is that the Bessel coefficients of the solution may be determined relatively
quickly using computer code developed in Python v3.8.8 (2021). As an example, consider
the Python v3.8.8 (2021).

Future directions: Using the residual error function, we can enhance the Bessel
collocation method for solving the multi-high fractional-order system of Fredholm-
Volterra integro-differential equations and their delay. This technique can also be used to
make an accurate error estimation.
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