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Abstract: The synthesis of 2-pyridyltellurenyl bromide via Br2 oxidative cleavage of the Te–Te bond
of dipyridylditelluride is reported. Single-crystal X-ray diffraction analysis of 2-pyridyltellurenyl
bromide demonstrated that the Te atom of 2-pyridyltellurenyl bromide was involved in four different
noncovalent contacts: Te· · ·Te interactions, two Te· · ·Br ChB, and one Te· · ·N ChB contact forming
3D supramolecular symmetrical framework. In contrast to 2-pyridylselenenyl halides, the Te con-
gener does not react with nitriles furnishing cyclization products. 2-Pyridylselenenyl chloride was
demonstrated to easily form the corresponding adduct with benzonitrile. The cyclization product
was studied by the single-crystal X-ray diffraction analysis, which revealed that in contrast to earlier
studied cationic 1,2,4-selenadiazoles, here we observed that the adduct with benzonitrile formed
supramolecular dimers via Se· · · Se interactions in the solid state, which were never observed before
for 1,2,4-selenadiazoles.

Keywords: nitriles; noncovalent interactions; chalcogen heterocycles; chalcogen bonding; tellurium

1. Introduction

The field of noncovalent interactions has experienced rapid growth and constitutes
one of the most intensely studied areas of current chemistry. Noncovalent interactions
allow the design and construction of supramolecular materials and control of their ultimate
architectures and symmetry [1,2]. Importantly, the properties of supramolecular aggregates
are different from the sum of the constituent molecules [1,3–9]. Recently, chalcogen bonding
(ChB) has emerged as a powerful tool for the creation of such materials. In contrast to
halogen bonding (XB) or hydrogen bonding (HB), usage of ChB in crystal engineering,
preparative chemistry, sensing, etc., is still emerging [10].
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We have recently showcased that the addition of 2-pyridylselenenyl halides to a triple CN
bond of unactivated nitriles resulted in the formation of novel cationic 1,2,4-selenadiazoles [11].
Moreover, we showed that the Se atom in the adducts of 2-pyridylselenenyl halides and
nitriles could provide two σ-holes and act as a donor ChB (Figure 1).
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Figure 1. Schematic representation of adducts of 2-pyridylselenenyl halides and nitriles showing the
position of the Se-centered σ-holes and the N atom lone pair.

It is worth mentioning that chalcogen diazoles are appealing research objects due
to their utilization in the preparation of soft materials with tunable physical parame-
ters [12–15]. ChB allows modulation of the self-assembly and, therefore, fine-tuning of
charge transport within these heterocycles.

Here we describe the synthesis and crystal structure of 2-pyridyltellurenyl bromide,
compare its self-assembly in the solid-state with structurally similar selenium congener, 2-
pyridylselenenyl chloride, and compare the reactivity of these two 2-pyridylchalcogenenyl
halides towards benzonitrile. Interestingly, while 2-pyridylselenenyl chloride readily forms
an adduct with PhCN, the Te analog does not react with benzonitrile or any other simple
nitrile tested in the framework of the current study.

2. Materials and Methods

General remarks. All manipulations were carried out in air, unless specified. Unless
specified, chemicals were purchased from the commercial sources. NMR data was obtained
on a Bruker Avance neo 700; chemical shifts are given in ppm, coupling constants in Hz.
C, H, S, and N elemental analyses were performed on Euro EA 3028HT CHNS/O. Py2Se2
was prepared as reported earlier [16].

X-ray crystal structure determination.
The single-crystal X-ray diffraction data for 15 and 16 were obtained on a three-

circle Bruker D8 Venture(Kurnakov Institute of General and Inorganic Chemistry, RAS,
Bremen, Germany) or Bruker D8 QUEST PHOTON-III CCD (Zelinsky Institute of Organic
Chemistry, RAS, Bremen, Germany) diffractometers using ϕ and ω scan mode. The
diffraction data were processed using the SAINT program [17] and an absorption correction
based on equivalent reflections was applied with the SADABS program [18]. Crystal data,
details of data collection, and results of structure refinement are summarized in Table S1.
The structures were solved by the direct method and refined on F2 with anisotropic
displacement parameters for non-hydrogen atoms. The hydrogen atoms in all compounds
were placed in calculated positions and refined within the riding model with fixed isotropic
displacement parameters (Uiso(H) = 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the
other groups). All calculations were carried out using the SHELXTL program [19] and
OLEX2 program package [20].

Crystallographic data for all investigated compounds have been deposited with the
Cambridge Crystallographic Data Center, CCDC 2113480 and 2113481. Copies of this
information may be obtained free of charge from the Director, CCDC, 12 Union Road,
Cambridge CHB2 1EZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or
www.ccdc.cam.ac.uk accessed on 2 October 2021).

Computational details.
The single point calculations based on the experimental X-ray geometries of 1, 15,

and 16 have been carried out at the ωB97X-D3/Sapporo-DZP-2012 level of theory [21–24]
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with the help of the ORCA 4.2.1 program package [25]. The RIJCOSX approximation [26]
has been utilized. The QTAIM analysis [27] has been performed by using the Multiwfn
program (version 3.7) [28]. The Cartesian atomic coordinates for model supramolecular
associates are presented in Table S1 and in attached xyz-files, Supplementary Materials.

Synthesis of 15. 2-Pyridylselenenyl chloride (1 eq, 234 µmol, 45 mg) and PhCN
(4.14 eq, 970 µmol, 100 µL) were stirred in Et2O (3 mL) at ambient temperature for 3 h.
White solid precipitated, which was decantated, quickly washed with CH2Cl2 (1 mL), Et2O
(3 × 3 mL), and dried under vacuum. Yield: 60 mg (87%). Anal. Calcd for C12H9ClN2Se:
C, 48.75; H, 3.07; N, 9.48. Found: C, 48.91; H, 3.16; N, 9.39. 1H NMR (700 MHz, D2O) δ 9.21
(1H, d, J = 6.8 Hz, H5), 8.86 (1H, d, J = 8.7 Hz, H8), 8.42 (1H, t, J = 7.9 Hz, H7), 7.92 (1H, t,
J = 7.0 Hz, H6), 7.82 (1H, t, J = 7.4 Hz, H12), 7.79 (2H, d, J = 7.6 Hz, H13 & H14), 7.74 (2H, t,
J = 7.6 Hz, H10 and H11). 13C {1H} NMR δ 168.25 (C3), 157.28 (C9), 139.73 (C5), 137.14 (C8),
132.61 (C15), 129.71 (C10 and C14), 129.63 (C11 and C13), 127.29 (C12), 125.80 (C7), 122.89
(C6).

Synthesis of 16. A solution of bromine (200 µmol, 32 mg) in CH2Cl2 (10 mL) was
added to a solution of di(2-pyridyl)ditelluride (200 µmol, 82 mg) in CH2Cl2 (10 mL), and
the mixture was stirred at room temperature for 30 min. Then the solvent was removed in
vacuo, the precipitate was washed with Et2O (3 × 5 mL) and recrystallized from CH2Cl2.
Yield: 112 mg (98%). Anal. Calcd for C5H4NTeBr: C, 20.99; H, 1.39; N, 4.88. Found: C,
21.02; H, 1.41; N, 4.90.

3. Results and Discussion

Recently we demonstrated that 2-pyridylselenenyl halides selectively react with a
broad scope of nitriles to form adducts 3–14 in excellent yields (Scheme 1) [11,29].

Symmetry 2021, 13, x FOR PEER REVIEW 3 of 12 
 

 

The single point calculations based on the experimental X-ray geometries of 1, 15, 
and 16 have been carried out at the ωB97X-D3/Sapporo-DZP-2012 level of theory [21–24] 
with the help of the ORCA 4.2.1 program package [25]. The RIJCOSX approximation [26] 
has been utilized. The QTAIM analysis [27] has been performed by using the Multiwfn 
program (version 3.7) [28]. The Cartesian atomic coordinates for model supramolecular 
associates are presented in Table S1 and in attached xyz-files, Supplementary Materials. 

Synthesis of 15. 2-Pyridylselenenyl chloride (1 eq, 234 µmol, 45 mg) and PhCN (4.14 
eq, 970 µmol, 100 µL) were stirred in Et2O (3 mL) at ambient temperature for 3 h. White 
solid precipitated, which was decantated, quickly washed with CH2Cl2 (1 mL), Et2O (3 × 3 
mL), and dried under vacuum. Yield: 60 mg (87%). Anal. Calcd for C12H9ClN2Se: C, 48.75; 
H, 3.07; N, 9.48. Found: C, 48.91; H, 3.16; N, 9.39. 1H NMR (700 MHz, D2O) δ 9.21 (1H, d, J 
= 6.8 Hz, H5), 8.86 (1H, d, J = 8.7 Hz, H8), 8.42 (1H, t, J = 7.9 Hz, H7), 7.92 (1H, t, J = 7.0 Hz, 
H6), 7.82 (1H, t, J = 7.4 Hz, H12), 7.79 (2H, d, J = 7.6 Hz, H13 & H14), 7.74 (2H, t, J = 7.6 Hz, 
H10 and H11). 13C {1H} NMR δ 168.25 (C3), 157.28 (C9), 139.73 (C5), 137.14 (C8), 132.61 
(C15), 129.71 (C10 and C14), 129.63 (C11 and C13), 127.29 (C12), 125.80 (C7), 122.89 (C6). 

Synthesis of 16. A solution of bromine (200 µmol, 32 mg) in CH2Cl2 (10 mL) was 
added to a solution of di(2-pyridyl)ditelluride (200 µmol, 82 mg) in CH2Cl2 (10 mL), and 
the mixture was stirred at room temperature for 30 min. Then the solvent was removed 
in vacuo, the precipitate was washed with Et2O (3 × 5 mL) and recrystallized from CH2Cl2. 
Yield: 112 mg (98%). Anal. Calcd for C5H4NTeBr: C, 20.99; H, 1.39; N, 4.88. Found: C, 21.02; 
H, 1.41; N, 4.90. 

3. Results and Discussion  
Recently we demonstrated that 2-pyridylselenenyl halides selectively react with a 

broad scope of nitriles to form adducts 3–14 in excellent yields (Scheme 1) [11,29]. 

 
Scheme 1. Synthesis of 3–15. 

Within this work, following our interest in CN and NN triple bond activation [30–
43], we attempted to prepare analogous Te derivatives. 2-Pyridyltellurenyl bromide (16) 
was easily synthesized by the oxidation of di-(2-pyridyl)-ditelluride with molecular 
bromine. Single crystals of 16 were grown from CH2Cl2 solution, and X-ray analysis 
demonstrated the formation of 2-pyridyltellurenyl bromide (Figure 2). Overall, metrical 
parameters for 16 are similar to those of earlier reported 2-pyridyltellurenyl halides 
[44,45]. 

Scheme 1. Synthesis of 3–15.

Within this work, following our interest in CN and NN triple bond activation [30–43],
we attempted to prepare analogous Te derivatives. 2-Pyridyltellurenyl bromide (16) was
easily synthesized by the oxidation of di-(2-pyridyl)-ditelluride with molecular bromine.
Single crystals of 16 were grown from CH2Cl2 solution, and X-ray analysis demonstrated
the formation of 2-pyridyltellurenyl bromide (Figure 2). Overall, metrical parameters for
16 are similar to those of earlier reported 2-pyridyltellurenyl halides [44,45].

Interestingly, in the crystal packing of 16 each Te atom is involved in four different
noncovalent contacts: Te· · ·Te interactions, two Te· · ·Br ChB and one Te· · ·N ChB contacts
forming 3D supramolecular symmetrical framework.

In contrast, the Se analog 1, which we described earlier, does not exhibit Se· · · Se
interactions in the crystal but features analogous Se· · ·N ChB and terminal Se· · ·Cl ChB
forming supramolecular dimers (Figure 3) [46].
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Se· · ·Cl and Se· · ·N chalcogen bonding. Grey and light-grey spheres represent carbon and hydrogen
atoms, respectively.

Further, we were interested whether 2-pyridyltellurenyl bromide 16 would react with
nitriles in a similar fashion as the Se analogs 1 or 2, which we showed to easily react with a
broad scope of nitriles. Surprisingly, 16 turned to be inert towards nitriles. 16 did not react
with PhCN, CCl3CN, or MeCN in CH2Cl2 at room temperature or at slight heating (60 ◦C).

Thus, switching from the Te to Se in 2-pyridyltellurenyl halides results in a dramatic
impact on its reactivity towards nitriles.

In an extension of our earlier works, here we demonstrate that benzonitrile also easily
reacts with 1 forming cationic 1,2,4-selenadiazole 15 in excellent yield (Scheme 1). Single
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crystals of 15 were obtained from CH2Cl2, and X-ray analysis pointed to the generation of
the adduct with PhCN (Figure 4).
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Interestingly, the adduct 15 formed supramolecular dimers via Se· · · Se interactions
in the solid-state, which we never observed before. For the earlier studied cationic 1,2,4-
selenadiazoles we observed supramolecular dimerization via four-center Se· · ·N ChB,
Se· · ·Cl ChB and H· · ·Cl interactions (Figure 5), but never via Se· · · Se contacts.

Inspection of the crystallographic data revealed the presence of several nontrivial non-
covalent interactions in the crystal structures 1, 15, and 16. To understand the nature and
quantify the strength of these noncovalent interactions, the quantum chemical calculations
and QTAIM analysis [27] were carried out at theωB97X-D3/Sapporo-DZP-2012 level of
theory. For results of QTAIM analysis, see Table 1, and Figures 6–8 shown diagrams of the
Laplacian of electron density distribution ∇2ρ(r) as well as electron localization function
(ELF) and reduced density gradient (RDG) analyses for these noncovalent interactions in
the crystal structures of 1, 15 and 16.

Table 1. Electron densities–ρ(r), electron density Laplacians–∇2ρ(r) and appropriate λ2 values, densities of energy–Hb,
potential energy densities–V(r), and Lagrangian kinetic energies–G(r) (a.u.) at the bond critical points (3, −1), associated
with various nontrivial noncovalent interactions in the model supramolecular associates 1, 15, and 16, and estimated
strength for these contacts Eint (kcal/mol).

Contact * ρ(r) ∇2ρ(r) λ2 Hb V(r) G(r) Eint **

1

Se25· · ·Cl2 3.660 Å 0.007 0.021 −0.007 0.001 −0.003 0.004 0.9

16

Te49· · ·Br4 3.606 Å 0.011 0.027 −0.011 0.001 −0.005 0.006 1.6

Te2· · ·Br27 3.541 Å 0.012 0.031 −0.012 0.001 −0.006 0.007 1.9

Te1· · ·Te2 3.707 Å 0.012 0.028 −0.012 0.000 −0.006 0.006 1.9
15

Se1· · · Se27 3.936 Å 0.006 0.018 −0.006 0.001 −0.003 0.004 0.9

Se27· · ·Cl25 3.900 Å 0.006 0.017 −0.006 0.001 −0.003 0.004 0.9

* The Bondi’s (shortest) van der Waals radii for Se, Te, Cl, and Br atoms are 1.90, 2.00, 1.75, and 1.83 Å, respectively [47]. See xyz-files of
model structures in Supplementary Materials for atoms numeration. ** Eint ≈ −V(r)/2 [48].
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Se27···Cl25 3.900 Å 0.006 0.017 −0.006 0.001 −0.003 0.004 0.9 

* The Bondi’s (shortest) van der Waals radii for Se, Te, Cl, and Br atoms are 1.90, 2.00, 1.75, and 
1.83 Å, respectively [47]. See xyz-files of model structures in Supplementary Materials for atoms 
numeration. ** Eint ≈ −V(r)/2 [48]. 
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Figure 6. Laplacian of electron density distribution ∇2ρ(r) (left panels), visualization of electron localization function (ELF,
center panels) and reduced density gradient (RDG, right panels) analyses for noncovalent interactions Se· · ·Cl in the crystal
structure of 1. Bond critical points (3, −1) are shown in blue, the color scale for the ELF and RDG maps is presented in a.u.,
length units–Å.
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The QTAIM analysis of model supramolecular associates 1, 15, and 16 reveals the
existence of critical bond points (3, −1) for noncovalent interactions listed in Table 1
and shown in Figures 6–8. The low magnitude of the electron density (0.006–0.012 a.u.),
positive values of the Laplacian of electron density (0.017–0.031 a.u.), and very close to zero
energy density (0.000–0.001 a.u.) in appropriate bond critical points (3, −1) and energies
for these short contacts (0.9–1.9 kcal/mol) are typical for weak noncovalent interactions
involving halogen and chalcogen atoms in similar chemical systems [6,7,9,49–52]. The
ratio –G(r)/V(r) > 1 at the bond critical points (3, −1) reveals that the nature of appropriate
interaction is purely noncovalent [53]. The sign of λ2 can be used to distinguish bonding
(λ2 < 0, attractive) weak contacts from nonbonding ones (λ2 > 0, repulsive) [54,55]. Thus,
discussed weak noncovalent interactions in 1, 15 and 16 are attractive (Table 1).
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Figure 8. Laplacians of electron density distribution∇2ρ(r) (left panels), visualization of electron localization function (ELF,
center panels) and reduced density gradient (RDG, right panels) analyses for noncovalent interactions Se· · · Se, Se· · ·Cl,
and Cl· · ·N in the X-ray structure 15. Bond critical points (3, −1) are shown in blue, the color scale for the ELF and RDG
maps is presented in a.u., length units–Å.

In conclusion, we described the synthesis and characterization of 2-pyridyltellurenyl
bromide and attempted to perform its cyclization with nitriles. In contrast to the Se analogs,
2-pyridyltellurenyl bromide does not react with nitriles. We also performed structural
characterization of 2-pyridyltellurenyl bromide by the single-crystal X-ray diffraction.
Interestingly, the Te atom of 2-pyridyltellurenyl bromide was involved in four different
noncovalent contacts: Te· · ·Te interactions, two Te· · ·Br ChB and one Te· · ·N ChB contacts
forming 3D supramolecular symmetrical framework. In contrast, 1 did not exhibit Se· · · Se
interactions in the crystal but featured similar Se· · ·N ChB and terminal Se· · ·Cl ChB
forming supramolecular dimers. Within this study, we also prepared and performed a
structural investigation of the adduct of 2-pyridylselenenyl chloride with benzonitrile. In
contrast to earlier studied cationic 1,2,4-selenadiazoles here we observed that the adduct 15
formed supramolecular dimers via Se· · · Se interactions in the solid-state, which we never
observed before.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym13122350/s1, Table S1: Cartesian atomic coordinates for model supramolecular associates,
Table S2: Crystallographic parameters, data collection, and structure refinement details for 15 and 16.
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