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Abstract: We investigate the effect of the interatomic distances and thermal reservoir on the coherence
dynamics of the atoms considering the dipole–dipole interaction (DDI) and collective damping effect
(CDE). We show that the control and protection of the coherence are very sensitive to the interatomic
distances and reservoir temperature. Furthermore, we explore the distance effect between atoms and
reservoir temperature on the time evolution of the total quantum correlation between the two atoms.
The obtained results could be useful to execute these quantum phenomena and also considered as a
good indication to implement realistic experiments with optimal conditions.

Keywords: quantum dynamics; collective damping; dipole–dipole interaction; quantum coherence;
total quantum correlation
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1. Introduction

Numerous quantum phenomena have been regarded as resources for performing
various tasks in quantum optics and information during the last few decades, both theo-
retically and experimentally (QOI). In general, quantum correlations require the coherent
superposition of quantum states [1–7]. It all started with Einstein, Podolsky, and Rosen’s
idea of the “EPR paradox” [8]. They discussed how quantum mechanics theory might give
rise to “spooky action at a distance”. The matter has been described by E. Schrödinger as
the capability of local measurements to impact a quantum system without having access
to it [9]. Subsequently, Bell introduced an inequality to demonstrate that this action could
create a quantum correlation that defies any classical description [10]. Quantum coher-
ence underlies various quantum effects in nanomaterials [11,12], quantum measurements
and quantum metrology [13–17], applications of quantum mechanics to biological ob-
jects [18–20], connection between quantum coherence with entanglement [21], operational
interpretation of coherence in quantum key distribution [22], application of coherence to
the thermodynamics [23,24], conversion coherence to quantum correlations [25], extrac-
tion the work from coherence [26], coherence in a nuclear magnetic resonance quantum
simulator [27], relationship between the coherence and quantum speed limit [28], non-
Markovianity measure based on the amount of coherence [29] and connection between
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coherence and EPR steering [30]. In keeping with the fundamental significance of quantum
coherence, only lately has a rigorous theory of coherence been established, along with some
essential restrictions, to ensure that the quantum coherence is considered as a physical
resource [31]. Thus, certain quantum measures have been suggested to verify these con-
straints, in particular those based on the relative entropy and the l1 norm [31]. Moreover,
the convex-roof construction or nonlocal correlation can be used to detect the amount of
coherence [21,32] and an operational theory of quantum coherence has been proposed [33].

Quantum coherence has recently attracted much attention to the development of ex-
perimental technique with the control and observation of quantum phenomena in different
quantum systems. Realistic quantum systems are always unavoidably interacting with their
environment, which results in decoherence during the dynamics [34]. During the past few
decades, the relaxation and dephasing in open quantum systems have been largely studied
in the literature considering Markovian and non-Markovian dynamics. Investigations of
the decoherence phenomenon in open systems with Markov approximation has generated
great interest in various domains ranging from grasping the fundamental features of quan-
tum mechanics to the advanced experimental applications in QOI [35]. Coherence, along
with many other quantum properties, is often studied without considering the influence of
the environment on the quantum systems. Recently, many works have been focused on the
dynamics of the quantum coherence under the effect of the external environment [36–45].
Based the above considerations, the purpose of this paper is to investigate the effect of
atom distance and reservoir temperature on the evolution of quantum coherence and total
correlation considering DDI and CDE. We find that the measure of the coherence decreases
from its maximum initial value and then experiences oscillations that dampen with time,
and it presents a constant behaviour when the time takes large values. On the other hand,
we display the quantum correlation dynamics with respect to the distance between the
atoms and bath temperature when the atoms are initially started from a separable state.
We find that the oscillations of the measure of total correlation also depend on the atoms’
distance and provides rapid oscillations that are damped with the time.

The following is a breakdown of the current paper’s structure. The physical model
and its dynamics are introduced in Section 2. The several measures of quantumness that
are utilized in this study are described in Section 3. In Section 4, we present and discuss
the findings. The final part contains the conclusions.

2. The Hamiltonian Model and Dynamics

Let us consider a system of two atoms in interaction with an electromagnetic field [46,47].
The Hamiltonian of the physical system is formulated as

H = − i
2

∑
i=1

∑
~ks

[
~di ·~g~ks(~ri)a~ks

(
σ+

i e−i(ωk−ωi)t
)]

− i
2

∑
i=1

∑
~ks

[
~di ·~g~ks(~ri)a~ks

(
σ−i e−i(ωk+ωi)t

)]
+ H.c. (1)

where, the atoms are supposed to be close in order to take into account the DDI and CDE.
The distance between the atoms are used to prescribe the separation between the two
atoms. The quantity ~di defines the transition dipole moment, σ+

i (σ−i ) describes the dipole
raising (lowering operator), ωi is the transition frequency, the vector~ri denotes the position
of the ith atom, a~ks defines the annihilation operator of the field with the mode~ks of a
frequency ωk and a wave vector~k. The expression of the coupling constant ~g~ks is

~g~ks(~ri) =

√
ωk

2ε0h̄V
ê~ks exp i~k ·~ri, (2)
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where ê~ks is the polarization vector of the electric field and V is the quantization volume.
The master equation of two-atom density operator can be written as

∂ρ

∂t
= − iω0

2

∑
i=1

[σz
i , ρ]− i ∑

i 6=j
Ωij

[
σ+

i σ−j , ρ
]

− 1
2
(n̄ + 1)

2

∑
i,j=1

γij

(
σ+

i σ−j ρ− 2σ−j ρσ+
i + ρσ+

i σ−j

)
(3)

− 1
2

n̄
2

∑
i,j=1

γij

(
σ−i σ+

j ρ− 2σ+
j ρσ−i + ρσ−i σ+

j

)
.

Here, the operator σz
i indicates the Pauli operator with the component Z for the ith atom,

Ωij and γij describe the DDI and CDE, respectively, n̄ represents the thermal number and
γii describes the spontaneous decay rate. They are introduced by

Ωij = − 3
4

γ

[
1−

(
~d.~rij

)2
]

cos
[
k0rij

]
k0rij

+
3
4

γ

[
1− 3

(
~d.~rij

)2
][

sin
[
k0rij

]
(k0rij)2 +

cos
[
k0rij

]
(k0rij)3

]
, (4)

and

γij =
3
2

γ

[
1−

(
~d.~rij

)2
]

sin
[
k0rij

]
k0rij

+
3
2

γ

[
1− 3

(
~d.~rij

)2
][

cos
[
k0rij

]
(k0rij)2 −

sin
[
k0rij

]
(k0rij)3

]
(5)

where rij = |ri − rj| prescribes the interatomic distance with the unit vector r̂ij, k0 = ω0/c,
and ~d is the unit vector of the atomic transition dipole moment. We consider that two
atoms are initially prepared in the density matrix of the form

ρ(0) =
1
4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (6)

with maximal value of the quantum coherence for the reduced atomic density matrix.

3. Coherence and Total Correlation

The measures of quantumness, such as quantum coherence and total quantum corre-
lation, are reviewed in this section.

The diagonal components of the system density operator determine the essential char-
acteristics of coherence. The l1 norm of quantum coherence exactly detects the amount of
coherence by taking into account the non-diagonal elements’ absolute values. The distance
between the interested state and the nearest incoherent state is the measure of coherence.
The l1 norm of coherence is introduced as

Cl = min
δ∈I
‖ρ− δ‖l1 = ∑

i 6=j

∣∣ρij
∣∣. (7)

Here, I describes the set of incoherent states and i (j) is the row (column) index. The relative
entropy coherence is defined by
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Cr = S
(

ρ||ρdiag

)
= S

(
ρdiag

)
− S(ρ) (8)

where the function S(ρ) = −Tr(ρ log2 ρ) denotes the von Neumann entropy and the operator
ρdiag describes the quantum incoherent state. Cl1 and Cr both achieve monotony for all
system states. It has been proven that the function Cl1 characterizes the upper bound of the
function Cr for a pure state.

Currently, the total quantum correlation is a useful physical resource and its concept
is associated to the local quantum uncertainty (LQU) and can be considered as a measure
of quantum correlations [48]. It is defined by [49]

U1D = min
KΓ

1

I
(

ρ, KΓ
1

)
, (9)

where the parameter Γ describes the spectrum of KΓ
1 , I indicates the amount of the Skew

information, and the minimization over a chosen spectrum of observables results in a
specific measurement of the family. The LQU is defined by

U1D(ρ12) = 1− λmax{W12}, (10)

where λmax is the maximum eigenvalue of the 3 × 3 symmetric W12 with the matrix
elements

(W12)ij = Tr{√ρ12(σi1 ⊗ I)
√

ρ12
(
σj1 ⊗ I

)
}. (11)

For pure states, the LQU is normalized to 1 and coincides with the value of the linear
entropy.

4. Result and Discussions

The numerical results associated to the amount of coherence and quantum correlation
are presented in Figures 1–3. These figures display the dynamical behaviour of measures
of quantumness according to the main physical parameters of the model and the initial
state form of the two-atom system.

To show the influence of distance between the atoms and reservoir temperature on
the time evolution of the coherence, in Figures 1 and 2 we plot, respectively, Cl1 and Cr
versus the time γt for various values of r considering n̄ = 0 and n̄ = 0.5. The black and
blue lines are for n̄ = 0 and n̄ = 0.5, respectively. In general, the figures show some
important dynamical features of the quantum coherence with an oscillatory behaviour. We
can observe that the amount of the quantum coherence decreases from its maximal value
and then shows oscillations that dampen with time and it reaches a constant value when
the time becomes large. The rise in the value of the coherence depends on the DDI and CDE.
This phenomenon can be comprehended as the reversed flow of the information between
atoms and environment, where the DDI is responsible for the oscillations of the functions
Cl and Cr via the exchange of the energy between the atoms. Furthermore, the exchange
of the energy is damped out and then with time the oscillations of Cl and Cr are reduced.
We can see that the delay in the coherence loss can be caused by the control of the distance
parameter r. For small values of r, the measures Cl and Cr exhibit rapid oscillations during
the dynamics. This behaviour can be explained by the increase of the emitted energy by
one of the atoms that result an enhancement in the oscillations of the quantum coherence.
As the parameter r increases, the energy exchange between the atoms decreases, so the
measures Cl and Cr decrease exponentially, which agrees with the results of the case of two
atoms each locally interacting its own environment. On the other side, it is observed that
the temperature effect on the quantum coherence is similar to the different values of the
parameter r. The presence of the thermal reservoir, n̄ 6= 0, leads to destroying the amount
of the quantum coherence during the time evolution. The obtained results demonstrate a
good understanding of the influence of the physical parameters on the quantum coherence
considering the distance between atoms for open systems.
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Figure 1. Quantum measure of the coherence, Cl , against the time γt for various values of r. Panel
(a) is for k0r = 0.15, panel (b) is for k0r = 0.2, panel (c) is for k0r = 0.25 and panel (d) is for k0r = 0.3.
The black line corresponds to n̄ = 0 and blue line corresponds to n̄ = 0.5. In general, the figure
demonstrates some interesting dynamic characteristics of the quantum coherence with regard to
the values of r and n̄, where the measure of the coherence depends largely on the distance of the
two atoms, displaying oscillations during the temporal evolution. The dynamical behaviour of the
coherence measure in thermal environment is similar to that of the vacuum case with a decrease in
the amount of measure.
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Figure 2. Quantum measure of the coherence, Cr, against the time γt for various values of r. Panel
(a) is for k0r = 0.15, panel (b) is for k0r = 0.2, panel (c) is for k0r = 0.25 and panel (d) is for k0r = 0.3.
The black line corresponds to n̄ = 0 and blue line corresponds to n̄ = 0.5. In general, the figure
demonstrates some interesting dynamic characteristics of the quantum coherence with regard to
the values of r and n̄, where the measure of the coherence depends largely on the distance of the
two atoms, displaying oscillations during the temporal evolution. The dynamical behaviour of the
coherence measure in thermal environment is similar to that of the vacuum case with a decrease in
the amount of measure.
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Figure 3 displays the dynamics of the total quantum correlation versus the dimension-
less time γt for various values of r with n̄ = 0 and n̄ = 0.5. The black and blue lines are
for n̄ = 0 and n̄ = 0.5, respectively. We can see that the dynamical behaviours of the total
correlation and coherence are similar according to the values of the parameters r and n̄.
These features make coherence a good candidate for describing the quantum correlation
in the present model, and therefore its implementation in various fields of QOI. It is well
known that in some circumstances, the environments do not have to destroy the correlation
and coherence among quantum systems, but can instead be produced over time. We may
deduce that this possibility is reliant on the dynamic generator selected and the initial
system state. Beginning with the initially separable state of the two atoms, in which each
atom is specified in an optimum state, coherence and correlation can maintain throughout
time. This is possible in the current physical model and is enabled by the reduced dynamics
master equation. In a nutshell, the results demonstrate that the control and preservation
of the coherence and correlation can occur by controlling the DDI and CDE in terms of
the distance of atoms as well as exploiting the temperature effect to describe realistic
experimental scenarios with optimal conditions.
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Figure 3. Quantum measure of the total quantum correlation, U1D, against the time γt for various
values of r. Panel (a) is for k0r = 0.15, panel (b) is for k0r = 0.2, panel (c) is for k0r = 0.25 and
panel (d) is for k0r = 0.3. The black line corresponds to n̄ = 0 and blue line corresponds to n̄ = 0.5.
In general, the figure demonstrates some interesting dynamic characteristics of the total correlation
with regard to the values of r and n̄, where the measure of the correlation depends largely on the
distance of the two atoms, displaying oscillations during the temporal evolution. The dynamical
behaviour of the correlation measure in thermal environment is similar to that of the vacuum case
with a decrease in the amount of measure.

5. Conclusions

We have investigated the dynamical behaviour of the coherence and total quantum
correlation for atoms in the presence of the thermal reservoir. We have explored the effect of
atoms’ distance and temperature on the time variation of coherence by taking into account
the DDI and CDE. We have found that the measure of the coherence decreases from its
maximum initial value and then experiences oscillations that dampen with time and it
presents a constant behaviour when the time takes large values. Moreover, we have shown
that the control and preservation control of the quantum coherence can be adjusted by a
considerable choice of the atoms’ distance and temperature of the bath. The decrease in
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the value of the distance leads to rapid oscillations of the measure function of coherence
and its amount decreases with an increasing temperature. On the other hand, we have also
studied the quantum correlation dynamics with respect to the distance between the atoms
and bath temperature when the atoms are initially started from a separable state. We have
shown that the oscillations of the measure of total correlation also depend on the atoms’
distance and provides rapid oscillations that are damped with the time. The correlation
dynamics in the thermal reservoir is similar to that of the vacuum reservoir with a decrease
in the amount of measure. Finally, the results demonstrate that the control and preservation
of the coherence and correlation can occur by controlling the DDI and CDE in terms of
the distance of atoms as well as exploiting the temperature effect to describe realistic
experimental scenarios with optimal conditions.

Finally, we mention that we investigate here only the coherence dynamics for the
case of diatomic systems. Certainly a study of polyatomic systems will make a useful
contribution to understanding the dynamics of coherence. Another important line of
research is to consider the dynamical behaviour of the coherence in terms of interatomic
distances under the influence of non-Markovian environments.
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