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Abstract: Symmetry plays an important role in solving practical problems of applied science, espe-
cially in algorithm innovation. In this paper, we propose what we call the self-adaptive inertial-like
proximal point algorithms for solving the split common null point problem, which use a new iner-
tial structure to avoid the traditional convergence condition in general inertial methods and avoid
computing the norm of the difference between xn and xn−1 before choosing the inertial parame-
ter. In addition, the selection of the step-sizes in the inertial-like proximal point algorithms does
not need prior knowledge of operator norms. Numerical experiments are presented to illustrate
the performance of the algorithms. The proposed algorithms provide enlightenment for the fur-
ther development of applied science in order to dig deep into symmetry under the background of
technological innovation.

Keywords: split common null point problem; inertial-like proximal point algorithm; resolvent
operator; strong convergence

1. Introduction

We are concerned with the following split common null point problem (SCNPP):

find x∗ ∈ H1 to solve 0 ∈ A(x∗) (1)

and

y∗ = Tx∗ ∈ H2 to solve 0 ∈ B(y∗), (2)

where H1 and H2 are Hilbert spaces, A : H1 → 2H1 and B : H2 → 2H2 are set-valued
mappings, and T : H1 → H2 is a nonzero bounded linear operator.

The SCNPP (1) and (2), which covers the convex feasibility problem (CFP) (Censor
and Elfving [1]), variational inequalities (VIs) ( Moudafi [2]), and many constrained opti-
mization problems as special cases, has attracted important attention both theoretically
and practically (see Byrne [3], Moudafi and Thukur [4]).

The main idea to solve SCNPP comes from symmetry, that is, invariance. Therefore,
fixed point theory plays a key role here. We recall the resolvent operator
JA
r = (I + rA)−1, r > 0, which plays an essential role in the approximation theory for

zero points of maximal monotone operators as well as in solving (1) and (2) and has the
following key facts.

Fact 1: The resolvent is not only always single-valued but also firmly monotone:

〈JA
r x− JA

r y, x− y〉 ≥ ‖JA
r x− JA

r y‖2. (3)

Fact 2: Using the resolvent operator, the problem (1) and (2) can be written as a fixed point
problem:

x∗ = JA
λ (I − γT∗(I − JB

λ )T)x∗, λ > 0, γ > 0.

Symmetry 2021, 13, 2316. https://doi.org/10.3390/sym13122316 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2150-553X
https://doi.org/10.3390/sym13122316
https://doi.org/10.3390/sym13122316
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13122316
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13122316?type=check_update&version=2


Symmetry 2021, 13, 2316 2 of 22

Fact 2 transforms the problem (1) and (2) into a fixed-point problem, and the research
of the latter reflects the invariance in transformation, which is the essence of symmetry.
Based on Fact 2, Byrne, et al. [5] proposed the following forward–backward algorithm:

xn+1 = JA
λ (xn − γT∗(I − JB

λ )Txn) (4)

and obtained weak convergence, where T∗ is the adjoint of T, the stepsize γ ∈ (0, 2
L ) with

L = ‖T∗T‖.
At the same time, the inertial method originating from the heavy ball with fric-

tion system has attracted increasing attention thanks to its convergence properties in the
field of continuous optimization. Therefore, many scholars have combined the forward–
backward method (4) with the inertial algorithm to study the SCNPP and proposed
some iterates. For related works, one can consult Alvarez and Attouch [6], Alvarez [7],
Attouch et al. [8–10], Akgül [11], Hasan et al. [12], Khdhr et al. [13], Ochs et al. [14,15],
Dang et al. [16], Soleymani and Akgül [17], Suantai et al. [18,19], Dong et al. [20], Sitthithak-
erngkiet et al. [21], Kazmi and Rizvi [22], Promluang and Kumman [23], Eslamian et al. [24],
and references therein.

Although these algorithms improved the numerical solution of the split common null
point problem, there exist two common drawbacks: one is that the step size depends on
the norm of the linear operator T, which means there is a high computation cost, because
the norm of the linear operator must be estimated before selecting the step size; another
drawback is that the following condition is required:

∞

∑
n=1

αn‖xn − xn−1‖2 < ∞, (5)

which means that one not only needs to calculate the norm of the difference between xn
and xn−1 in advance at each step but also check if αn satisfies (5).

So it is natural to ask the following questions:

Question 1.1 Can we construct the iterate for SCNPP whose step size does not depend on
the norm of the linear operator T?

Question 1.2 Can condition (5) be removed from the inertial method and still ensure
the convergence of the sequence? Namely, can we construct a new inertial
algorithm to solve SCNPP (1) and (2) without prior computation of the norm
of the difference between xn and xn−1?

The purpose of this paper is to present a new self-adaptive inertial-like technique to
give an affirmative answer to the above questions. Importantly, the innovative algorithms
provide an idea of how to use symmetry to solve real-world problems in applied science.

2. Preliminaries

Let 〈·, ·〉 and ‖ · ‖ be the inner product and the induced norm in a Hilbert space H,
respectively. For a sequence {xn} in H, denote xn → x and xn ⇀ x by the strong and
weak convergence to x of {xn}, respectively. Moreover, the symbol ωw(xn) represents the
ω-weak limit set of {xn}, that is,

ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}}.

The identity below is useful:

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2

− αβ‖x− y‖2 − βγ‖y− z‖2 − γα‖x− z‖2 (6)

for all x, y, z ∈ R and α + β + γ = 1.
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Definition 1. A multivalued mapping A : H → 2H with domain D(A) = {x ∈ H,
Ax 6= ∅} is monotone if

〈x− y, x∗ − y∗〉 ≥ 0, (7)

for all x, y ∈ D(A), x∗ ∈ A(x), and y∗ ∈ A(y). A monotone operator A is referred to be maximal
if its graph is not properly contained in the graph of any other monotone operator.

Definition 2. Let H be a real Hilbert space and let h : H → H be a mapping.

(i) h is called Lipschitz with constant κ > 0 if ‖h(x)− h(y)‖ ≤ κ‖x− y‖ for all x, y ∈ H.
(ii) h is called nonexpansive if ‖h(x)− h(y)‖ ≤ ‖x− y‖ for all x, y ∈ H.

From Fact 1, we can conclude that JA
r is a nonexpansive operator if A is a maximal

monotone mapping. Moreover, due to the work of Aoyama et al. [25], we have the
following property:

〈JA
r x− y, x− JA

r x〉 ≥ 0, y ∈ A−1(0), (8)

where A−1(0) = {z ∈ H : 0 ∈ Az}.

Definition 3. Let C be a nonempty closed convex subset of H. We use PC to denote the projection
from H onto C; namely,

PCx = arg min{‖x− y‖ : y ∈ C}, x ∈ H.

The following significant characterization of the projection PC should be recalled:
given x ∈ H and y ∈ C,

PCx = z ⇐⇒ 〈x− z, y− z〉 ≤ 0, y ∈ C. (9)

Lemma 1. (Xu [26], Maingé [27]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γnan)an + γnδn + cn, n ≥ 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1) ∑∞
n=1 γn = ∞;

(2) lim supn→∞ supn→∞ δn ≤ 0 or ∑∞
n=1 γn|δn| < ∞;

(3) ∑∞
n=1 cn < ∞.

Then limn→∞ an = 0.

Lemma 2. (see e.g., Opial [28]) Let H be a real Hilbert space and {xn} be a bounded sequence in
H. Assume there exists a nonempty subset S ⊂ H satisfying the properties:

(i) limn→∞ ‖xn − z‖ exists for every z ∈ S,
(ii) ωw(xn) ⊂ S.

Then, there exists x̄ ∈ S such that {xn} converges weakly to x̄.

Lemma 3. (Maingé [29]) Let {Γn} be a sequence of real numbers that does not decrease at the
infinity in the sense that there exists a subsequence {Γnj} of {Γn} such that Γnj < Γnj+1 for all
j ≥ 0. Also consider the sequence of integers {σ(n)}n≥n0 defined by

σ(n) = max{k ≤ n : Γk ≤ Γk+1}.
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Then,{σ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞ σ(n) = ∞ and, for all
n ≥ n0,

max{Γσ(n), Γn} ≤ Γσ(n)+1.

3. Main Results
3.1. Variant of Discretization

Inspired by the discretization of the second order dynamic system d2x
dt2 + λ(t) dx

dt +
Ax = 0, we consider the following iterative sequence

xn+1 − xn−1 − θn(xn − xn−1) + γn A(xn+1) 3 0, (10)

where x0, x1 are two arbitrary initial points, and γn is a real nonnegative number. This
recursion can be rewritten as

xn+1 = JA
γn(xn−1 + θn(xn − xn−1)),

which proves that the sequence {xn} satisfying (10) always exists for any choice of the
sequences {γn} and {θn}, provided that γn > 0.

To distinguish from Alvarez and Attouch’s Inertial-Prox algorithm ([6]), we call it
inertial-like proximal point algorithm. Combining the inertial-like proximal point algorithm
and the forward–backward method, we propose the following self adaptive inertial-like
proximal algorithms.

3.2. Some Assumptions

Assumption 1. Throughout the rest of this paper, we assume that H1 and H2 are Hilbert spaces.
We study the split common null point problem (SCNPP) as (1) and (2), where A : H1 → 2H1 and
B : H2 → 2H2 are set-valued maximal monotone mappings, respectively, and T : H1 → H2 is a
bounded linear operator, T∗ means the adjoint of T.

Assumption 2. The functions are defined as:

f (x) =
1
2
‖(I − JA

r )x‖2, F(x) = (I − JA
r )x, r > 0;

and

g(x) =
1
2
‖(I − JB

µ )Tx‖2, G(x) = T∗(I − JB
µ )Tx, µ > 0.

Assumption 3. Denote by Ω the solution set of the SCNPP (1) and (2); namely,

Ω = {x∗ ∈ H1 : 0 ∈ A(x∗) and 0 ∈ B(Tx∗) },

and we always assume Ω 6= ∅.

3.3. Inertial-like Proximal Point Algorithms

Remark 1. It is not hard to find that if ‖F(yn)‖2 + ‖G(yn)‖2 = 0 for some n ≥ 0, then xn is a
solution of the SCNPP (1) and (2), and the iteration process is terminated in finite iterations. In
addition, if θn ≡ 1 and step size τn depends on the norm of linear operator T, Algorithm 1 recovers
Byrne et al. [5].

Remark 2. In the subsequent convergence analysis, we will always assume that the two algorithms
generate an infinite sequence, namely, the algorithms are not terminated in finite iterations. In
addition, in the simulation experiments, we will give a stop criterion to end the iteration for practice.
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Algorithm 1 Self adaptive inertial-like algorithm
Initialization: Choose a sequence {θn} ⊂ [0, 1] satisfying one of the three cases:
(I.) θn ∈ (0, 1) such that limn→∞θn(1− θn) > 0; (II.) θn ≡ 0; or (III.) θn ≡ 1. Select ar-
bitrary initial points x0, x1.
Iterative Step: After constructing the nth-iterate xn, compute

yn = xn−1 + θn(xn − xn−1), (11)

and define the (n + 1)th iterate by

xn+1 = JA
r (I − τnT∗(I − JB

µ )T)yn, (12)

where τn is defined as

τn =

{ g(yn)
‖F(yn)‖2+‖G(yn)‖2 , if ‖F(yn)‖2 + ‖G(yn)‖2 6= 0

0, otherwise.

3.4. Convergence Analysis of Algorithms

Theorem 1. If the assumptions (A1)–(A3) are satisfied, then the sequence {xn} generated by
Algorithm 1 converges weakly to a point z ∈ Ω.

Proof. To this end, the following three situations will be discussed: (I). θn ∈ (0, 1),
limn→∞θn(1− θn) > 0; (II). θn ≡ 0; and (III). θn ≡ 1.

(I). First, we consider the case of θn ∈ (0, 1), limn→∞θn(1− θn) > 0.

Without loss of generality, we take z ∈ Ω, and then we have z = JA
r z, Tz = JB

µ Tz and
JA
r (I − τnT∗(I − JB

µ )T)z = z from Fact 2. It turns out from (11) and (7) that

‖yn − z‖2 = ‖xn−1 + θn(xn − xn−1)− z‖2

= θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − θn(1− θn)‖xn − xn−1‖2. (13)

Since JA
r is nonexpansive, it follows from (12) that

‖xn+1 − z‖2 = ‖JA
r (I − τnT∗(I − JB

µ )T)yn − z‖2

≤ ‖(I − τnT∗(I − JB
µ )T)yn − z‖2

= ‖yn − z‖2 − 2τn〈yn − z, T∗(I − JB
µ )Tyn〉+ τ2

n‖T∗(I − JB
µ )Tyn‖2

= ‖yn − z‖2 − 2τn〈Tyn − Tz, (I − JB
µ )Tyn〉+ τ2

n‖G(yn)‖2. (14)

It follows from the property (8) of resolvent operator that

〈JB
µ Tyn − Tz, (I − JB

µ )Tyn〉 ≥ 0, Tz ∈ B−1(0),

and then from the definition of g(x), we have that

〈Tyn − Tz, (I − JB
µ )Tyn〉

= 〈Tyn − JB
µ Tyn, (I − JB

µ )Tyn〉+ 〈JB
µ Tyn − Tz, (I − JB

µ )Tyn〉

= ‖JB
µ Tyn − Tyn‖2 + 〈JB

µ Tyn − Tz, (I − JB
µ )Tyn〉

≥ 2g(yn).

Notice the definition of τn, we obtain
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‖xn+1 − z‖2 ≤ ‖yn − z‖2 − 4τng(yn) + τ2
n‖G(yn)‖2

= θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − θn(1− θn)‖xn − xn−1‖2

−4τng(yn) + τ2
n‖G(yn)‖2

≤ θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − θn(1− θn)‖xn − xn−1‖2

− 3g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 , (15)

which means that

‖xn+1 − z‖2 ≤ θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2

≤ max{‖xn − z‖2, ‖xn−1 − z‖2},

and, hence, the sequence {‖xn − z‖} is bounded, and so in turn is {yn}.
It may be assumed that the sequence {‖xn − z‖} is not decreasing at the infinity in

the sense that there exists a subsequence {σ(n)} of positive integers such that there exists a
nondecreasing sequence σ(n) for n ≥ N1 (for some N1 large enough) such that σ(n)→ ∞
as n→ ∞ and

‖xσ(n) − z‖ ≤ ‖xσ(n)+1 − z‖,

for each n ≥ 0.

Notice that (15) holds for each σ(n), so from (15) with n replaced by σ(n), we have

‖xσ(n)+1 − z‖2 ≤ θσ(n)‖xσ(n) − z‖2 + (1− θσ(n))‖xσ(n)−1 − z‖2

−θσ(n)(1− θσ(n))‖xσ(n) − xσ(n)−1‖2 −
3g2(yσ(n))

‖F(yσ(n))‖2 + ‖G(yσ(n))‖2

≤ θσ(n)‖xσ(n) − z‖2 + (1− θσ(n))‖xσ(n)−1 − z‖2,

which means that

‖xσ(n)+1 − z‖2 − ‖xσ(n) − z‖2 ≤ (1− θσ(n))(‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2),

observe the relation ‖xσ(n) − z‖ ≤ ‖xσ(n)+1 − z‖ for each n ≥ 0, the above inequality
concludes a contradiction.

Therefore, there exists an integer N0 ≥ 0 such that ‖xn+1 − z‖ ≤ ‖xn − z‖ for all n ≥
N0. Then, we have the limit of the sequence {‖xn − z‖2}, denoted by l = limn→ ‖xn − z‖2,
and so

lim
n→∞

(‖xn − z‖2 − ‖xn+1 − z‖2) = 0.

In addition, we have

∞

∑
n=0

(‖xn+1 − z‖2 − ‖xn − z‖2) = lim
n→∞

(‖xn+1 − z‖2 − ‖x0 − z‖2) < ∞.

It turns out from (15) that

θn(1− θn)‖xn − xn−1‖2 +
3g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2

≤ θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − ‖xn+1 − z‖2

= ‖xn − z‖2 − ‖xn+1 − z‖2 + (1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2)
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and so

lim
n→

θn(1− θn)‖xn − xn−1‖2 = 0,
g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 → 0,

as n → ∞, furthermore, we can conclude that g(yn) → 0 since F and G are Lipschitz
continuous (see Censor et al. [30]), and so τn → 0. Therefore, we have

‖(I − JB
µ )Tyn‖2 → 0. (16)

Now, it remains to show that

ωw(xn) ⊂ Ω.

Since the sequence {xn} is bounded, let x̄ ∈ ωw(xn) and {xnk} be a subsequence of
{xn} weakly converging to x̄. This suffices to verify that x̄ ∈ A−1(0) and Tx̄ ∈ B−1(0).

Notice limn→ θn(1− θn)‖xn − xn−1‖2 = 0 and the assumption limn→∞θn(1− θn) > 0,
we have limn→ ‖xn − xn−1‖2 = 0, which implies that

‖yn − xn‖ = (1− θn) · ‖xn − xn−1‖ → 0.

Therefore, there exists a subsequence {ynk} of {yn}, which converges weakly to x̄. It
follows from the lower semicontinuity of (I − JB

µ )T and (16) that

‖(I − JB
µ )Tx̄‖2 = lim

k→∞
inf ‖(I − JB

µ )Tynk‖2 = 0,

which means that Tx̄ ∈ B−1(0).

On the other hand, according to (11) and (12), we have

‖xn+1 − yn‖2 = ‖xn+1 − z− yn + z‖2

= ‖yn − z‖2 + ‖xn+1 − z‖2 + 2〈z− yn, xn+1 − z〉
= ‖yn − z‖2 − ‖xn+1 − z‖2 + 2〈xn+1 − yn, xn+1 − z〉
= θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − θn(1− θn)‖xn − xn−1‖2

−‖xn+1 − z‖2 + 2〈xn+1 − yn, xn+1 − z〉
= ‖xn − z‖2 − ‖xn+1 − z‖2 + (1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2)

−θn(1− θn)‖xn − xn−1‖2 + 2〈xn+1 − yn, xn+1 − z〉. (17)

Using again the property (8), we have

〈JA
r zn − zn, JA

r zn − z〉 ≤ 0, z ∈ A−1(0).

If we take zn = (I − τnT∗(I − JB
µ )T)yn in the above inequality, then we have

〈xn+1 − (I − τnT∗(I − JB
µ )T)yn, xn+1 − z〉 ≤ 0, z ∈ A−1(0),

which yields

〈xn+1 − yn, xn+1 − z〉 ≤ τn〈T∗(JB
µ − I)Tyn, xn+1 − z〉

≤ τn‖T∗(JB
µ − I)Tyn‖ · ‖xn+1 − z‖ → 0. (18)

Thus, it follows from (17) and (18) that

‖xn+1 − yn‖ → 0.
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Since the sequence (12) can be rewritten as

yn − xn+1 − τnT∗(I − JB
µ )Tyn ∈ rAxn+1;

therefore, we have

1
r
(yn − xn+1 − τnT∗(I − JB

µ )Tyn) ∈ Axn+1. (19)

In addition, it turns out from τn → 0 that

‖yn − xn+1 − τnT∗(I − JB
µ )Tyn‖ ≤ ‖yn − xn+1‖+ τn‖T∗(I − JB

µ )Tyn‖
= ‖yn − xn+1‖+ τn‖G(yn)‖ → 0.

Note that the graph of the maximal monotone operator A is weakly–strongly closed;
by passing to the limit in (19), we obtain 0 ∈ Ax̄, namely, x̄ ∈ A−1(0). Consequently,
x̄ ∈ Ω.

Since the choice of x̄ is arbitrary,we conclude that ωw(xn) ⊂ Ω. Hence, it follows
Lemma 1 that the result holds.

(II). Secondly, we consider the case of θn ≡ 0. In this case, yn = xn−1. Similar to the proof
of (15), we have that

‖xn+1 − z‖2 ≤ ‖xn−1 − z‖2 − 3g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 , (20)

and then

3g2(xn−1)

‖F(xn−1)‖2 + ‖G(xn−1)‖2 ≤ ‖xn−1 − z‖2 − ‖xn+1 − z‖2. (21)

It may be assumed that the sequence {‖xn − z‖} is not decreasing at the infinity in
the sense that there exists a subsequence {σ(n)} of positive integers such that there exists a
nondecreasing sequence σ(n) for n ≥ N1 (for some N1 large enough) such that σ(n)→ ∞
as n→ ∞ and

‖xσ(n) − z‖ ≤ ‖xσ(n)+1 − z‖,

for each n ≥ 0.

Notice that (20) holds for each σ(n), so from (20) with n replaced by σ(n), we have

‖xσ(n)+1 − z‖2 ≤ ‖xσ(n)−1 − z‖2 −
3g2(yσ(n))

‖F(yσ(n))‖2 + ‖G(yσ(n))‖2

≤ ‖xσ(n)−1 − z‖2,

which means that

‖xσ(n)+1 − z‖2 − ‖xσ(n) − z‖2 ≤ ‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2,

observe the relation ‖xσ(n) − z‖ ≤ ‖xσ(n)+1 − z‖ for each n ≥ N1, the above inequality
concludes a contradiction.

So there exists an integer N0 ≥ 0 such that ‖xn+1 − z‖ ≤ ‖xn − z‖ for all n ≥ N0.
Then, we have the limit of the sequence {‖xn − z‖2}, denoted by l = limn→ ‖xn − z‖2, and
so

lim
n→∞

(‖xn − z‖2 − ‖xn+1 − z‖2) = 0,
∞

∑
n=1

(‖xn − z‖2 − ‖xn+1 − z‖2) < ∞.



Symmetry 2021, 13, 2316 9 of 22

Now, it remains to show that

ωw(xn) ⊂ Ω.

Since the sequence {xn} is bounded, let x̄ ∈ ωw(xn) and {xnk} be a subsequence of {xn}
weakly converging to x̄. It suffices to verify that x̄ ∈ A−1(0) and Tx̄ ∈ B−1(0).

Next, we show that ‖xn − xn−1‖ → 0. Indeed, it follows from the relation between
the norm and inner product that

‖xn − xn−1‖2 = ‖xn − z + z− xn−1‖2

= ‖xn − z‖2 + ‖z− xn−1‖2 + 2〈xn − z, z− xn−1〉
= ‖xn − z‖2 + ‖z− xn−1‖2 + 2〈xn − z, z− xn + xn − xn−1〉
≤ ‖xn−1 − z‖2 − ‖xn − z‖2 + 2‖xn − z‖ · ‖xn − xn−1‖
≤ ‖xn−1 − z‖2 − ‖xn − z‖2 + 2(M + m) · ‖xn − xn−1‖,

where M is a constant such that M ≥ ‖xn − z‖ for all n and m > 0 is a given constant,
which means that

‖xn − xn−1‖2 − 2(M + m) · ‖xn − xn−1‖ ≤ ‖xn−1 − z‖2 − ‖xn − z‖2,

and then

∞

∑
n=0

[‖xn − xn−1‖ − 2(M + m)] · ‖xn − xn−1‖ ≤
∞

∑
n=0

(‖xn−1 − z‖2 − ‖xn − z‖2) < ∞,

which implies [‖xn − xn−1‖ − 2(M + m)] · ‖xn − xn−1‖ → 0 as n→ ∞.

Since ‖xn − xn−1‖ ≤ ‖xn − z‖ + ‖xn−1 − z‖ ≤ 2M, we have ‖xn − xn−1‖ → 0
and then

‖xn+1 − xn−1‖ → 0.

It follows from (21) that g2(xn−1)→ 0 and then

‖(I − JB
µ )Txn−1‖2 → 0.

By using the lower semicontinuity of (I − JB
µ )T, we have

‖(I − JB
µ )Tx̄‖2 = lim

k→∞
inf ‖(I − JB

µ )Txnk−1‖2 = 0,

which means that Tx̄ ∈ B−1(0).
Notice again that the sequence (12) can be rewritten as

xn−1 − xn+1 − τnT∗(I − JB
µ )Txn−1 ∈ rAxn+1;

therefore, we have

1
r
(xn−1 − xn+1 − τnT∗(I − JB

µ )Txn−1) ∈ Axn+1. (22)

In addition, it turns out from τn → 0 that

‖xn−1 − xn+1 − τnT∗(I − JB
µ )Txn−1‖ ≤ ‖xn−1 − xn+1‖+ τn‖T∗(I − JB

µ )Txn−1‖
= ‖xn−1 − xn+1‖+ τn‖G(xn−1)‖ → 0.

Note that the graph of the maximal monotone operator A is weakly–strongly closed,
by passing to the limit in (22), we obtain 0 ∈ Ax̄, namely, x̄ ∈ A−1(0). Consequently,
x̄ ∈ Ω.
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Since the choice of x̄ is arbitrary, we conclude that ωw(xn) ⊂ Ω. Hence, it follows
Lemma 1 that the result holds.

(III). Finally, we consider the case of θn ≡ 1. Indeed, we just need to replace xn−1 with xn
in the proof of (II) and then the desired result is obtained.

Next, we prove the strong convergence of Algorithm 2.

Algorithm 2 Update of self adaptive inertial-like algorithm
Initialization: Choose a sequence {θn} ⊂ [0, 1] satisfying one of the three cases:
(I.) θn ∈ (0, 1) such that limn→∞θn(1 − θn) > 0; (II.) θn ≡ 0; or (III.) θn ≡ 1. Choose
{αn} and {γn} in (0, 1) such that

lim
n→∞

γn = 0,
∞

∑
n=0

γn = ∞, lim
n→∞

(1− αn − γn)αn > 0.

Select arbitrary initial points x0, x1.
Iterative Step: Given the iterate xn, compute

yn = xn−1 + θn(xn − xn−1),

and define the (n + 1)th iterate by

xn+1 = (1− αn − γn)yn + αn JA
r (I − τnT∗(I − JB

µ )T)yn, (23)

where

τn =

{ g(yn)
‖F(yn)‖2+‖G(yn)‖2 , if ‖F(yn)‖2 + ‖G(yn)‖2 6= 0

0, otherwise.

Theorem 2. If the assumptions (A1)–(A3) are satisfied, then the sequence {xn} generated by
Algorithm 2 converges in norm to z = PΩ(0) (i.e., the minimum-norm element of the solution
set Ω).

Proof. Similar to the weak convergence, we consider the following three situations:
(I). θn ∈ (0, 1) and limn→∞θn(1− θn) > 0; (II). θn ≡ 0; and (III). θn ≡ 1.

(I). We first consider the strong convergence under the situation of θn ∈ (0, 1) and
limn→∞θn(1− θn) > 0.

Let us begin by showing the boundedness of the sequence {xn}. To see this, we denote
zn = JA

r (I − τnT∗(I − JB
µ )Tyn and use the projection z := PΩ(0) to obtain in a similar way

to the proof of (13)–(15) of Theorem 1 that

‖yn − z‖ = θn‖xn − z‖+ (1− θn)‖xn−1 − z‖
≤ max{‖xn − z‖, ‖xn−1 − z‖},

‖zn − z‖2 ≤ ‖yn − z‖2 − 3g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 ; (24)

hence, one can see ‖zn − z‖ ≤ ‖yn − z‖.



Symmetry 2021, 13, 2316 11 of 22

It turns out from (23) that

‖xn+1 − z‖ = ‖(1− αn − γn)yn + αnzn − z‖
= ‖(1− αn − γn)(yn − z) + αn(zn − z) + γn(−z)‖
≤ (1− αn − γn)‖yn − z‖+ αn‖zn − z‖+ γn‖z‖
≤ (1− γn)(θn‖xn − z‖+ (1− θn)‖xn−1 − z‖) + γn‖z‖
≤ max{‖xn − z‖, ‖xn−1 − z‖, ‖z‖}
≤ · · ·
≤ max{‖x0 − z‖, ‖x1 − z‖, ‖z‖},

which implies that the sequence {xn} is bounded, and so are the sequences {yn}, {zn}.
Applying the identity (7), we deduce that

‖xn+1 − z‖2 = ‖(1− αn − γn)yn + αnzn − z‖2

= ‖(1− αn − γn)(yn − z) + αn(zn − z) + γn(−z)‖2

≤ (1− αn − γn)‖yn − z‖2 + αn‖zn − z‖2 + γn‖z‖2

−(1− αn − γn)αn‖zn − yn‖2. (25)

Substituting (13) and (24) into (25) and after some manipulations, we obtain

‖xn+1 − z‖2 ≤ (1− αn − γn)‖yn − z‖2 + αn(‖yn − z‖2 − 3g2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 )

+γn‖z‖2 − (1− αn − γn)αn‖zn − yn‖2

= (1− γn)‖yn − z‖2 + γn‖z‖2 − (1− αn − γn)αn‖zn − yn‖2

− 3αng2(yn)

‖F(yn)‖2 + ‖G(yn)‖2

‖xn+1 − z‖2 ≤ (1− γn)[θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 − θn(1− θn)‖xn − xn−1‖2]

+γn‖z‖2 − (1− αn − γn)αn‖zn − yn‖2 − 3αng2(yn)

‖F(yn)‖2 + ‖G(yn)‖2

≤ θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2 + γn‖z‖2 − (1− αn − γn)αn‖zn − yn‖2

−(1− γn)θn(1− θn)‖xn − xn−1‖2 − 3αng2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 (26)

Next we distinguish two cases.

Case 1. The sequence {‖xn− z‖} is nonincreasing at the infinity in the sense that there
exists n0 ≥ 0 such that for each n ≥ n0, ‖xn+1 − z‖ ≤ ‖xn − z‖. This particularly implies
that limn→∞ ‖xn − z‖ exists and thus,

lim
n→∞

(‖xn − z‖2 − ‖xn−1 − z‖2) = 0,
∞

∑
n=1

(‖xn − z‖2 − ‖xn−1 − z‖2) < ∞.

For all n > n0, it follows from (26) that

(1− αn − γn)αn‖zn − yn‖2 + (1− γn)θn(1− θn)‖xn − xn−1‖2 +
3αng2(yn)

‖F(yn)‖2 + ‖G(yn)‖2

≤ θn‖xn − z‖2 − ‖xn+1 − z‖2 + (1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2) + γn‖z‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + (1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2) + γn‖z‖2.
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Now, due to the assumptions on αn, βn, and γn and the boundedness of {xn} and
{yn}, we have

lim
n→∞

‖zn − yn‖ = 0; (27)

lim
n→∞

(1− γn)θn(1− θn)‖xn − xn−1‖2 = 0; (28)

lim
n→∞

3αng2(yn)

‖F(yn)‖2 + ‖G(yn)‖2 = 0. (29)

It turns out from (29) that g(yn) → 0 since F and G are Lipschitz continuous and
so limn→∞ τn = 0, and from (27) that limn→∞ ‖xn − xn−1‖ = 0, which in turn implies
from (11) that

lim
n→∞

‖yn − xn‖ ≤ lim
n→∞

(‖yn − xn−1‖+ ‖xn−1 − xn‖)

= lim
n→∞

(1 + θn)‖xn−1 − xn‖ = 0.

Observing ‖xn+1 − yn‖ ≤ αn‖zn − yn‖+ γn‖yn‖ → 0, we obtain

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖ → 0.

This proves the asymptotic regularity of {xn}.
By repeating the relevant part of the proof of Theorem 1, we obtain ωw(xn) ⊂ Ω.
It is now at the position to prove the strong convergence of {xn}. Rewriting

xn+1 = (1 − γn)vn + γnαn(zn − yn), where vn = (1 − αn)yn + αnzn, and making use
of the inequality ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉, which holds for all u, v in Hilbert spaces,
we obtain

‖xn+1 − z‖2 = ‖(1− γn)(vn − z) + γn(αn(zn − yn)− z)‖2

≤ (1− γn)
2‖vn − z‖2 + 2γn〈αn(zn − yn)− z, xn+1 − z〉.

It follows from (7) that

‖vn − z‖2 = (1− αn)‖yn − z‖2 + αn‖zn − z‖2 − αn(1− αn)‖zn − yn‖2,

and then

‖xn+1 − z‖2 ≤ (1− γn)
2((1− αn)‖yn − z‖2 + αn‖zn − z‖2 − αn(1− αn)‖zn − yn‖2)

+2γn〈αn(zn − yn)− z, xn+1 − z〉.

It turns out from (24) that ‖zn − z‖2 ≤ ‖yn − z‖2; hence, we obtain

‖xn+1 − z‖2 ≤ (1− γn)‖yn − z‖2 − αn(1− αn)(1− γn)
2‖zn − yn‖2

+2γn〈αn(zn − yn)− z, xn+1 − z〉

Submitting (13) into the above inequality, we have

‖xn+1 − z‖2 ≤ (1− γn)(θn‖xn − z‖2 + (1− θn)‖xn−1 − z‖2

−θn(1− θn)‖xn − xn−1‖2)− αn(1− αn)(1− γn)
2‖zn − yn‖2

+2γn

〈
αn(zn − yn)− z, xn+1 − z

〉
, (30)
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which means that

‖xn+1 − z‖2 ≤ (1− γn)‖xn − z‖2 + (1− γn)(1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2)

−θn(1− θn)(1− γn)‖xn − xn−1‖2 − αn(1− αn)(1− γn)
2‖zn − yn‖2

+2γn

〈
αn(zn − yn)− z, xn+1 − z

〉
≤ (1− γn)‖xn − z‖2 + (1− γn)(1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2)

+2γn

〈
αn(zn − yn)− z, xn+1 − z

〉
.

For simplicity, we denote by

an+1 ≤ (1− γn)an + γnδn + cn, (31)

where an = ‖xn − z‖2, δn = 2αn〈zn − yn, xn+1 − z〉 + 〈−z, xn+1 − z〉, and
cn = (1− γn)(1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2).

Since ωw(xn) ⊂ Ω and z = PΩ(0), which implies 〈−z, q− z〉 ≤ 0 for all q ∈ Ω, we
deduce that

lim sup
n→∞

〈−z, xn+1 − z〉 = max
q∈ωw(xn)

〈−z, q− z〉 ≤ 0. (32)

Combining (28) and (32) implies that

lim sup
n→∞

δn = lim sup
n→∞

{αn〈zn − yn, xn+1 − z〉+ 〈−z, xn+1 − z〉}

= lim sup
n→∞

〈−z, xn+1 − z〉 ≤ 0.

In addition, by the assumptions on θn and γn, we have

∞

∑
n=1

cn =
∞

∑
n=1

(1− γn)(1− θn)(‖xn−1 − z‖2 − ‖xn − z‖2) < ∞.

These enable us to apply Lemma 1 to (31) to obtain that an → 0. Namely, xn → z in
norm, and the proof of Case 1 is complete.

Case 2. The sequence {‖xn − z‖} is not nonincreasing at the infinity in the sense that
there exists a subsequence {σ(n)} of positive integers such that σ(n)→ ∞ (as n→ ∞) and
with the properties:

‖xσ(n) − z‖ < ‖xσ(n)+1 − z‖, max{‖xσ(n) − z‖, ‖xn − z‖} ≤ ‖xσ(n)+1 − z‖.

Notice the boundedness of the sequence {‖xn − z‖}, which implies that there exists
the limit of the sequence {‖xσ(n) − z‖} and, hence, we conclude that

lim
n→∞

(‖xσ(n)+1 − z‖2 − ‖xσ(n) − z‖2) = 0.

Observe that (26) holds for all σ(n), so replacing n with σ(n) in (26) and transposing,
we obtain



Symmetry 2021, 13, 2316 14 of 22

(1− ασ(n) − γσ(n))ασ(n)‖zσ(n) − yσ(n)‖2 + (1− γσ(n))θσ(n)(1− θσ(n))‖xσ(n) − xσ(n)−1‖2

+
3ασ(n)g2(yσ(n))

‖F(yσ(n))‖2 + ‖G(yσ(n))‖2

≤ (1− γσ(n))(θσ(n)‖xσ(n) − z‖2 + (1− θσ(n))‖xσ(n)−1 − z‖2)− ‖xσ(n)+1 − z‖2 + γσ(n)‖z‖2

≤ θσ(n)‖xσ(n) − z‖2 + (1− θσ(n))‖xσ(n)−1 − z‖2 + ‖xσ(n) − z‖2 − ‖xσ(n) − z‖2

−‖xσ(n)+1 − z‖2 + γσ(n)‖z‖2

= (1− θσ(n))(‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2) + ‖xσ(n) − z‖2 − ‖xσ(n)+1 − z‖2 + γσ(n)‖z‖2.

Now, taking the limit by letting n→ ∞ yields

lim
n→∞

‖zσ(n) − yσ(n)‖ = 0; (33)

lim
n→∞

g(yσ(n)) = 0; (34)

lim
n→∞

‖xσ(n) − xσ(n)−1‖2 = 0. (35)

Note that we still have ‖xσ(n)+1 − xσ(n)‖ → 0 and that the relations (33)–(35) are sufficient
to guarantee that ωw(xσ(n)) ⊂ Ω.

Next, we prove xσ(n) → z.

As a matter of fact, observe that (30) holds for each σ(n). So replacing n with σ(n)
in (30) and using the relation ‖xσ(n) − z‖2 < ‖xσ(n)+1 − z‖2, we obtain

‖xσ(n)+1 − z‖2 = (1− γσ(n))(θσ(n)‖xσ(n) − z‖2 + (1− θσ(n))‖xσ(n)−1 − z‖2

−θσ(n)(1− θσ(n))‖xσ(n) − xσ(n)−1‖2)

−ασ(n)(1− ασ(n))(1− γσ(n))
2‖zσ(n) − yσ(n)‖2

+2γσ(n)

〈
ασ(n)(zσ(n) − yσ(n))− z, xσ(n)+1 − z

〉
≤ (1− γσ(n))‖xσ(n) − z‖2 + 2γσ(n)

〈
ασ(n)(zσ(n) − yσ(n))− z, xσ(n)+1 − z

〉
;

therefore, we have

γσ(n)‖xσ(n) − z‖2 ≤ ‖xσ(n) − z‖2 − ‖xσ(n)+1 − z‖2 + 2γσ(n)

〈
ασ(n)(zσ(n) − yσ(n))− z, xσ(n)+1 − z

〉
,

Notice again the relation ‖xσ(n) − z‖2 < ‖xσ(n)+1 − z‖2, we obtain

‖xσ(n) − z‖2 ≤ 2〈ασ(n)(zσ(n) − yσ(n))− z, xσ(n)+1 − z〉
≤ M‖zσ(n) − yσ(n)‖+ 2〈−z, xσ(n)+1 − z〉. (36)

[Here M is a constant such that M ≥ 2‖xn − z‖ for all n.]
Now, since ‖xσ(n)+1 − xσ(n)‖ → 0, z = PΩ(0) and ω(xσ(n)) ⊂ Ω, we have

lim sup
n→∞

〈−z, xσ(n)+1 − z〉 = lim sup
n→∞

〈−z, xσ(n) − z〉

= max
q∈ωw(xσ(n))

〈−z, q− z〉 ≤ 0.

Consequently, the relation (36) and ‖zσ(n) − yσ(n)‖ → 0 assure that xσ(n) → z, which
follows from Lemma 3 that

‖xn − z‖ ≤ ‖xσ(n)+1 − z‖ ≤ ‖xσ(n)+1 − xσ(n)‖+ ‖xσ(n) − z‖ → 0.
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Namely, xn → z in norm, and the proof of Case 2 is complete.

(II). Now, we consider the case of θn ≡ 0. In this case, we have yn = xn−1 and
xn+1 = (1 − αn − γn)xn−1 + αn JA

r (I − τnT∗(I − JB
µ )T)xn−1. Denote by

zn−1 = JA
r (I − τnT∗(I − JB

µ )T)xn−1, similar to the proof of (24)–(26), we obtain that
the sequence {xn} is bounded and

‖xn+1 − z‖2 ≤ (1− γn)‖xn−1 − z‖2 + γn‖z‖2 − (1− αn − γn)αn‖zn−1 − xn−1‖2

− 3αng2(xn−1)

‖F(xn−1)‖2 + ‖G(xn−1)‖2 ,

which implies that

(1− αn − γn)αn‖zn−1 − xn−1‖2 +
3αng2(xn−1)

‖F(xn−1)‖2 + ‖G(xn−1)‖2

≤ (1− γn)‖xn−1 − z‖2 + γn‖z‖2 − ‖xn+1 − z‖2

= (‖xn−1 − z‖2 − ‖xn+1 − z‖2) + γn(‖z‖2 − ‖xn−1 − z‖2). (37)

Next, we distinguish two cases.

Case 1. There exists n0 ≥ 0 such that for each n > n0, ‖xn+1 − z‖ ≤ ‖xn − z‖, which
implies that limn→∞ ‖xn − z‖ exists, and thus

lim
n→∞

(‖xn − z‖2 − ‖xn−1 − z‖2) = 0,
∞

∑
n=1

(‖xn − z‖2 − ‖xn−1 − z‖2) < ∞.

Since γn → 0 and limn→∞(1− αn − γn)αn > 0, it follows from (37) that

‖zn−1 − xn−1‖2 → 0;
3αng2(xn−1)

‖F(xn−1)‖2 + ‖G(xn−1)‖2 → 0,

which means that g(xn−1) → 0 since F and G are Lipschitz continuous and so τn → 0.
Similar to the proof of ‖xn − xn−1‖ → 0 in the weak convergence Theorem 1, we still have
the asymptotic regularity of {xn} and ωw(xn) ⊂ Ω.

Similar to the proof of (30), we have

‖xn+1 − z‖2 ≤ (1− γn)‖xn−1 − z‖2 − αn(1− αn)(1− γn)
2‖zn−1 − xn−1‖2

+2γn

〈
αn(zn−1 − xn−1)− z, xn+1 − z

〉
= (1− γn)‖xn − z‖2 + (1− γn)(‖xn−1 − z‖2 − ‖xn − z‖2)

−αn(1− αn)(1− γn)
2‖zn−1 − xn−1‖2 + 2γn

〈
αn(zn−1 − xn−1)− z, xn+1 − z

〉
≤ (1− γn)‖xn − z‖2 + (1− γn)(‖xn−1 − z‖2 − ‖xn − z‖2)

+2γn

〈
αn(zn−1 − xn−1)− z, xn+1 − z

〉
= (1− γn)an + γnδn + cn,

where an = ‖xn − z‖2, δn = 2〈αn(zn−1 − xn−1) − z, xn+1 − z〉 and cn = (1 − γn)
(‖xn−1 − z‖2 − ‖xn − z‖2).

Obviously, γn, δn and cn are satisfying the conditions in Lemma 1, so we can conclude
that xn → z.

Case 2. The sequence {‖xn − z‖} is not nonincreasing at the infinity in the sense that
there exists a subsequence {σ(n)} of positive integers such that σ(n)→ ∞ (as n→ ∞) and
with the properties:

‖xσ(n) − z‖ < ‖xσ(n)+1 − z‖, max{‖xσ(n) − z‖, ‖xn − z‖} ≤ ‖xσ(n)+1 − z‖.
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Since the sequence {‖xn − z‖} is bounded, there exists the limit of the sequence
{‖xσ(n) − z‖} and, hence, we conclude that

lim
n→∞

(‖xσ(n)+1 − z‖2 − ‖xσ(n) − z‖2) = 0.

Notice (37) holds for all σ(n), so replacing n with σ(n) in (37) and using the relation
‖xσ(n) − z‖ < ‖xσ(n)+1 − z‖, we have

(1− ασ(n) − γσ(n))ασ(n)‖zσ(n)−1 − xσ(n)−1‖2 +
3ασ(n)g2(xσ(n)−1)

‖F(xσ(n)−1)‖2 + ‖G(xσ(n)−1)‖2

≤ (‖xσ(n)−1 − z‖2 − ‖xσ(n)+1 − z‖2) + γσ(n)(‖z‖2 − ‖xσ(n)−1 − z‖2)

= (‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2) + (‖xσ(n) − z‖2 − ‖xσ(n)+1 − z‖2) + γσ(n)(‖z‖2 − ‖xσ(n)−1 − z‖2)

≤ γσ(n)(‖z‖2 − ‖xσ(n)−1 − z‖2).

Since γσ(n) → 0 and limn→∞(1− ασ(n) − γσ(n))ασ(n) > 0, we obtain

‖zσ(n)−1 − xσ(n)−1‖2 → 0;
3ασ(n)g2(xσ(n)−1)

‖F(xσ(n)−1)‖2 + ‖G(xσ(n)−1)‖2 → 0.

Similarly, we still have the asymptotic regularity of {xσ(n)} and ωw(xσ(n)) ⊂ Ω.

In addition, similar to the inequality above (31), we obtain the following

‖xσ(n)+1 − z‖2 ≤ (1− γσ(n))‖xσ(n) − z‖2 + (1− γσ(n))(‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2)

+2γσ(n)

〈
ασ(n)(zσ(n)−1 − xσ(n)−1)− z, xσ(n)+1 − z

〉
,

which means that

γσ(n))‖xσ(n) − z‖2 ≤ ‖xσ(n) − z‖2 − ‖xσ(n)+1 − z‖2 + (1− γσ(n))(‖xσ(n)−1 − z‖2 − ‖xσ(n) − z‖2)

+2γσ(n)

〈
ασ(n)(zσ(n)−1 − xσ(n)−1)− z, xσ(n)+1 − z

〉
,

notice again the relation ‖xσ(n) − z‖2 ≤ ‖xσ(n)+1 − z‖2 for all σ(n), we have

‖xσ(n) − z‖2 ≤ 2
〈

ασ(n)(zσ(n)−1 − xσ(n)−1)− z, xσ(n)+1 − z
〉

≤ M‖zσ(n)−1 − xσ(n)−1‖+ 2〈−z, xσ(n)+1 − z〉. (38)

[Here M is a constant such that M ≥ 2‖xn − z‖ for all n.]
Again, since ‖xσ(n)+1 − xσ(n)‖ → 0, z = PΩ(0) and ω(xσ(n)) ⊂ Ω, we have

lim sup
n→∞

〈−z, xσ(n)+1 − z〉 = lim sup
n→∞

〈−z, xσ(n) − z〉

= max
q∈ωw(xσ(n))

〈−z, q− z〉 ≤ 0.

Consequently, the inequality (38) and ‖zσ(n)−1 − xσ(n)−1‖ → 0 assure that xσ(n) → z,
which follows from Lemma 3 that

‖xn − z‖ ≤ ‖xσ(n)+1 − z‖ ≤ ‖xσ(n)+1 − xσ(n)‖+ ‖xσ(n) − z‖ → 0.

Namely, xn → z in norm, and the proof of the second situation (II) is complete.

(III.) Finally, we consider the case of θn ≡ 1. Indeed, we just need to replace xn−1 with xn
in the proof of (II), and then the desired result is obtained.
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4. Numerical Examples and Experiments

Example 1. We consider the numerical Let H1 = H2 = L2[0, 1]. Define the mappings A, B,
and T by Tx(t) := x(t), Ax(t) := x(t)

2 , and B(x)(t) := 2x(t)
3 for all x(t) ∈ L2[0, 1]. Then

it can be shown that A and B are monotone operators, respectively, and the adjoint T∗ of T is
T∗x(t) := x(t). For simplicity, we choose αn = n−1

n+1 , γn = 1
n+1 in Algorithm 2 for all n ≥ 1. We

consider different choices of initial functions x0(t), x1(t) and θn = 0.5+ 1
(n+1) ; 0; 1. In addition,

‖xn+1 − xn‖ < 10−10 is used as stopping criterion.

Case I: x0(t) = t, x1(t) = 2t;
Case II: x0(t) = e−t, x1(t) = 2sin(5t);
Case III: x0(t) = e−t, x1(t) = 2t.

It is clear that our algorithm is fast, efficient, stable, and simple to implement. All
the numerical results are presented in Figures 1–3 under different initial functions, and
the number of iterations and CPU run time remain almost consistent, which are shown
in Table 1.
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Figure 1. Three initial cases for θn = 0.5 + 1/(n + 1).
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Figure 2. Three initial cases for θn = 1.
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Table 1. Time and iterations of Algorithms 1 and 2 in Ex.1.

Algorithm Case I Case II Case III
(sec.)/(n) (sec.)/(n) (sec.)/(n)

θn = 0 Algorithm 1 4.26/16 4.75/18 4.78/18
Algorithm 2 4.80/18 9.35/20 1.67/22

θn = 0.5 + 1
(n+1) Algorithm 1 4.19/12 4.96/12 4.27/12

Algorithm 2 4.23/16 16.37/18 10.69/18
θn = 1/(n) Algorithm 1 2.56/10 2.63/10 2.60/10

Algorithm 2 3.17/12 3.25/12 3.25/12

Example 2. We consider an examplewhich is from the realm of compressed sensing. More specifi-
cally, we try to recover the K-sparse original signal x0 from the observed signal b.

Here, matrix T ∈ Rm∗n, m << n would be involved and created by standard Gaussian
distribution. The observed signal b = Tx + ε, where ε is noise. For more details on signal
recovery, one can consult Nguyen and Shin [31].

Conveniently, solving the above sparse signal recovery problem is usually equivalent
to solving the following LASSO problem (see Gibali et al. [32] and Moudafi et al. [33]):

minx∈Rn ‖Tx− b‖2

s.t. ‖x‖1 ≤ t,

where t is a given positive constant. If we define

A(x) =

{
{u : sup‖x‖1≤t〈x− y, u〉 ≤ 0}, if y ∈ Rn,

∅, otherwise,
B(x) =

{
Rm, if x = b,
∅, otherwise,

then one can see that the LASSO problem coincides with the problem of finding x∗ ∈ Rn

such that
0 ∈ A(x∗) and 0 ∈ B(Tx∗).

During the operation, T ∈ Rm∗n is generated randomly with m = 215, 27, n = 216, 28,
x0 ∈ Rn is K-spikes (K = 100, 50) with amplitude ±1 distributed throughout the re-
gion randomly. In addition, the signal to noise ratio (SNR) is chosen as SNR = 40,
αn = 0.5 + 1/(10n + 2) in two algorithms and γn = 1/n in Algorithm 2. The recovery
simulation results are illustrated in Figure 4.

Moreover, we also compare our algorithms with the results of Sitthithakerngkiet et al. [21],
Kazimi and Riviz. [22], Byrne et al. [5] which have no inertial item and Tang [34] with a
general inertial method.

For simplicity, for Algorithm 3.1 in Sitthithakerngkiet et al. [21], the nonexpansive
mappings Sn are defined as Sn = I, D = I, ξ = 0.5, and u = 0.1, the parameters
αn = 1

n+1 and βn = 0.5 − 1
10n+2 . For Algorithm 3.1 in Sitthithakerngkiet et al. [21],

Kazimi and Riviz [22], and Algorithm 3.1 in Byrne et al. [5], the step size γ = 1
L , where

L = ‖T∗T‖. For Algorithms 3.1 and 3.2 in Tang [34], the step size is self-adaptive, and
αn = 0.5 + 1/(10n + 2), γn = 1/n. The experiment results are illustrated in Figure 5 and
Table 2.
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Figure 4. Numerical results for m = 215, m = 216, and K = 100.
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Figure 5. Numerical results for m = 27, m = 29, and K = 50.

Table 2. Comparisons of Algorithm 3.1, Algorithm 3.2, and Algorithm 3.1 in Sitthithakerngkiet [21],
Algorithm 3.1 in Byrne [5], Algorithm 3.1 in Kazimi and Riviz [22], and Algorithms 3.1 and 3.2 in
Tang [34].

DOL Method Iter (n) CPU Time (s)

10−4 Algorithm 1 3 0.019
Algorithm 2 65 0.19

Algorithm 3.1-Tang [34] 3 0.14
Algorithm 3.2-Tang [34] 35 2.26
Sitthithakerngkiet [21] 78 0.12

Byrne et al. [5] 2 0.01
Kazimi and Riviz [22] 48 0.08

10−5 Algorithm 1 3 0.017
Algorithm 2 102 0.24

Algorithm 3.1-Tang [34] 8 2.37
Algorithm 3.2-Tang [34] 76 2.78
Sitthithakerngkiet [21] 1272 3.03

Byrne et al. [5] 3 0.013
Kazimi and Riviz [22] 503 0.74

From Table 2, we can see that our Algorithms 1 and 2 seem to have some competi-
tive advantages.

Compared with the general inertial methods, the main advantage of our
Algorithms 1 and 2 in this paper, as mentioned in the previous sections, is that they
have no constraint on the norm of the difference between xn and xn−1 in advance, and
no assumption on the inertial parameter θn, so it is extremely natural, attractive, and
user friendly.

Moreover, when we test Algorithm 3.1 of Sitthithakerngkiet et al. [21], Algorithm 3.1
of Byrne et al. [5], and Kazimi and Riviz [22], we find that the convergence rate depends
strongly on the step size γ, which depends on the norm of linear operator T, so another
advantage of our Algorithms 1 and 2 in this paper is the self-adaptive step size.

5. Conclusions

We proposed two new self-adaptive inertial-like proximal point algorithms
(Algorithms 1 and 2) for the split common null point problem (SCNPP). Under more
general conditions, the weak and strong convergences to a solution of SCNPP are obtained.
The new inertial-like proximal point algorithms listed are novel in the following ways:
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(1) Different from the average inertia technique, the convergence of the proposed algo-
rithms remain even if without the term below:

∞

∑
n=1

θn‖xn − xn−1‖2 < ∞.

They do not need to calculate the values of ‖xn − xn−1‖ in advance if one chooses the
coefficients θn, which means that the algorithms are easy to use.

(2) The inertial factors θn can be chosen in [0, 1], which means that θn is a possible
equivalent to 1 and opens a wider path for parameter selection.

(3) The step sizes of our inertial proximal algorithms are self-adaptive and are inde-
pendent of the cocoercive coefficients, which means that they do not use any prior
knowledge of the operator norms.

In addition, two numerical examples involving comparison results have been ex-
pressed to show the efficiency and reliability of the listed algorithms.
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