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Abstract: As the number of civil aerial vehicles increase explosively, spectrum scarcity and security
become an increasingly challenge in both the airspace and terrestrial space. To address this difficulty,
this paper presents an unmanned aerial vehicle-assisted (UAV-assisted) spectrum mapping system
and a spectrum data reconstruction algorithm driven by spectrum data and channel model are
proposed. The reconstruction algorithm, which includes a model-driven spectrum data inference
method and a spectrum data completion method with uniformity decision mechanism, can recon-
struct limited and incomplete spectrum data to a three-dimensional (3D) spectrum map. As a result,
spectrum scarcity and security can be achieved. Spectrum mapping is a symmetry-based digital twin
technology. By employing an uniformity decision mechanism, the proposed completion method can
effectively interpolate spatial data even when the collected data are unevenly distributed. The effec-
tiveness of the proposed mapping scheme is evaluated by comparing its results with the ray-tracing
simulated data of the campus scenario. Simulation results show that the proposed reconstruction
algorithm outperforms the classical inverse distance weighted (IDW) interpolation method and
the tensor completion method by about 12.5% and 92.3%, respectively, in terms of reconstruction
accuracy when the collected spectrum data are regularly missing, unevenly distributed and limited.

Keywords: spectrum mapping; UAV; channel model; spectrum data inference; spectrum data
completion; uniformity decision

1. Introduction

As a limited resource, spectrum is not only an important national strategy resource
but also core of 5th Generation (5G) communication technologies [1,2]. Along with the
rapidly increasing number of wireless devices and the scarcity of spectrum resources,
the challenges, including spectrum resource scarcity and serious spectrum security status,
are extending to aerospace from terrestrial space [3]. The question of how to efficiently
manage and utilize the existing limited spectrum resources has received considerable
attention [4–6]. Spectrum map is a database integrated technique that can visually display
the distribution of different radio parameters such as received signal strength (RSS) over
a geographical area and provide rich and accurate knowledge of radio context [7]. After
the services providers get the spectrum map of the area of interest, they can deploy new
base stations and allocate channels to customers according to the spectrum map. In the
existing literatures, the most spectrum maps only consider one frequency point rather than
a frequency band. The users can use several spectrum maps of different frequencies of
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interest to satisfy their own requirements. For the services providers, they mainly consider
the licensed band. Hence, it is necessary and urgent to develop a three-dimensional
(3D) spectrum mapping system that can collect the aerial spectrum data and display 3D
spectrum situation and to design a corresponding 3D spectrum mapping scheme that can
achieve precise 3D spectrum map constructions.

Using spectrum measurement instruments to collect original spectrum data of the
measurement area is the first step of the spectrum map reconstruction. Most of existing
methods deploy a large number of ground spectrum sensors in the measurement region of
interest [8]. For example, in [9,10], the measurement data are obtained by crowdsourcing
with individual mobile users or vehicles. These methods can only obtain the ground based
spectrum data, while the 3D spectrum map that can display aerial spectrum situations is re-
quired for space-air-ground integrated communication networks. Moreover, the spectrum
data collected by these instruments are usually incomplete, so that data processing method
should be employed to acquire complete data. Spectrum data processing methods typically
fall into two major categories: direct methods and indirect methods [4]. Direct methods,
which are driven by the spectrum data, usually use inverse distance weighted (IDW) inter-
polation to process data [11]. In [12–14], the authors adopted Kriging spatial interpolation
to recover incomplete original spectrum data. In [15], a tensor completion method com-
bining an inference model was proposed, which can acquire complete spectrum map of
the measurement area. In [16], the authors proposed a novel spectrum mapping scheme
in large-scale cognitive radio networks (CRNs), in which historical spectrum decision
results are used. Indirect methods are driven by the channel model. The authors adopted
a LocatIon Estimation based (LIvE) method and a SNR-aided method in [17,18], respec-
tively. They utilized prior information about the electromagnetic environment, e.g., radio
propagation models, to improve the performance of data recovery. In [19], the authors
used Kriging spatial interpolation to estimate shadow fading based on the LIvE method.
In [20], the authors firstly obtained the preliminary spectrum map according to the prior
information about the measurement area, and then corrected the preliminary spectrum
map according to the actual measured data.

Most direct methods are based on the spatial interpolation, their estimated values
of the unknown elements cannot be greater than the maximum value of the collected
spectrum data, and cannot be less than the minimum value of the collected spectrum
data. Therefore, direct methods can achieve satisfactory performance in spectrum map
reconstruction when the known collected spectrum data are evenly distributed in the
measurement area. However, their performance would degrade when the known data
are unevenly distributed (e.g., concentrated in a certain part of the measurement area).
Moreover, the aforementioned indirect methods such as LIvE method generally have better
performance than the direct methods, and the indirect methods have the same performance
whether the collected spectrum data are evenly distributed in the measurement area.
Nevertheless, most indirect methods in the existing literature have the assumption that
there is only one radiation source in the entire measurement area, which is impractical.
To address these drawbacks, this paper presents an efficient method which can achieve
high-precision 3D spectrum map reconstruction. The main contributions of this paper are
summarized as follows:

(1) We propose an unmanned aerial vehicle-assisted (UAV-assisted) 3D spectrum
mapping scheme driven by the spectrum data and the channel model. We first use a UAV
platform to collect a part of the spectrum data in the measurement area. Then, we use a
spectrum data reconstruction algorithm driven by the spectrum data and the propagation
channel model to obtain all spectrum data in the measurement area. Finally, we reconstruct
the 3D spectrum map of the measurement area according to the obtained data.

(2) We propose a model-driven spectrum data inference method to estimate a part
of the unknown spectrum data before the spectrum data completion, which utilizes the
strong directivity of the directional antenna and channel propagation model.
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(3) We propose a model-driven spectrum data completion algorithm with a uniformity
decision mechanism to estimate the spectrum data of the locations adjacent to the locations
with the measured or inferred data with a high level of accuracy, which has relatively good
performance even if the measured data are unevenly distributed.

(4) We verify the effectiveness of the proposed spectrum mapping scheme by leverag-
ing the ray-tracing technique to acquire the simulation data of the measurement area.

The remainder of the article is organized as follows. Section 2 presents the scenario
of 3D spectrum mapping. Section 3 introduces the model-driven spectrum data infer-
ence method. Section 4 introduces the model-driven spectrum data completion method.
The simulation and tested results are provided in Section 5. The conclusions are drawn in
Section 6.

2. System Model and Problem Formulation
2.1. Spectrum Mapping System

Figure 1 shows a typical scenario of 3D spectrum mapping, where the radiation sources
are unknown. The measurement area is divided into several cubes and the size is dependent
on the precision requirement of users. We have developed a UAV-assisted spectrum
mapping system in [21], which consists of an aerial platform and a ground terminal.

The aerial platform can collect the spectrum information and other information such as
geographical location information in real time. A UAV is equipped with an omnidirectional
antenna, a directional antenna and a pan-tilt that comes with the antenna. The direc-
tional antenna has the definite directionality by using the beamforming technology [22].
The ground terminal can process the collected information to construct the 3D spectrum
map of the measurement area.

As shown in Figure 1, the aerial platform of the developed system can fly over the
measurement area according to requirements, gather the data, and use different colors to
display the RSS values of the cubes where the UAV is located in real time. The RSS values
of other cubes can be estimated by model-driven spectrum data inference and completion
methods, and then the 3D spectrum map can be reconstructed.

Figure 1. UAV-assisted spectrum mapping in the 3D space.

2.2. Spectrum Map Reconstruction Scheme

Spectrum maps adopt the form of thermodynamic diagram to represent the received
signal strength (RSS) or other radio parameters in spatial domain. In our case, the recon-
structed spectrum map indicates the spatial distribution of RSS, which means that different
colors are used in denoting different RSS values.
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According to the start point and the end point of the measurement area, a 3D rect-
angular coordinates system is established. Then, the measurement area is divided into
N1 × N2 × N3 cubes according to our requirement. Number each cube according to their
center point coordinates. The center point coordinates of the cube with the serial number
(n1, n2, n3) are ((n1 − 0.5)× d1, (n2 − 0.5)× d2, (n3 − 0.5)× d3), where d1, d2 and d3 are
the length, width, and height of the cube, respectively. After the area partition is completed,
the spectrum data of the entire measurement area can be modeled as a three-order tensor
χ ∈ <N1×N2×N3 . The tensor is the extension of the matrix, the element xn1,n2,n3 in the
spectrum tensor χ denotes the RSS value of the cube whose serial number is (n1, n2, n3).

The flowchart of the spectrum map reconstruction scheme is shown in Figure 2,
and the schematic diagram of the reconstruction scheme is shown in Figure 3. When the
aerial platform of the UAV-assisted spectrum mapping system flies over the measurement
area, the aerial platform measures and records the RSS value of the cube where the UAV
is located currently. Meanwhile, it infers the RSS values of the cubes that the current
directional antenna receiving direction vectors come by according to the propagation
model. Then the final RSS values of these cubes are determined by a multi-source spectrum
data fusion method if there are two or more inferred values on the cubes. When the
planned flight route is completed, a model-driven spectrum data completion method with
uniformity decision mechanism is used to reconstruct the 3D spectrum map of the entire
measurement area. Note that we use the collected data from the directional antenna only
when inferring the spectrum data.

Figure 2. Flowchart of reconstruction scheme.

Figure 3. Schematic diagram of reconstruction scheme.
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3. Model-Driven Spectrum Data Interference
3.1. Propagation Channel Model

RSS depends on the path loss (PL) model (i.e., the propagation channel model) and
the transmitting power of all radiation sources in the entire measurement area. In this
paper, the considered PL model is determined by the characteristics of the propagation
environment [17,23]. We consider log-normal shadowing environments for fading chan-
nel analysis.

In the log-normal channel, RSS measurements (in dB) obey a normal distribution.
The ideal RSS Prx of a certain cube can be expressed as:

Pi
rx[dBm] = Pi

tx[dBm]− Li[dB]
Pi

rx[mW] = 10Pi
rx [dBm]/10

Prx[mW] =
Ntx
∑

i=1
Pi

rx[mW]

, (1)

where Pi
tx is the transmitting power of i-th radiation source, and Li is the path loss between

the cube and the i-th radiation source.
Note that it is important to choose an appropriate propagation model, since it di-

rectly affects the performance of the model-driven RSS inference and completion meth-
ods [24]. Traditional close-in (CI) model are only applicable for land mobile communica-
tions, and most of them do not consider the antenna height factor [25]. To address this
problem, the UAV technique is used for spectrum mapping in this paper, in which UAV
heights are considered when calculating the path losses [26].

The used PL model remains physically grounded to the free space path loss at a
close-in distance while the path loss exponent (PLE) dependence on UAV heights should be
added as well, which emphasizes the importance of PLE and encapsulates a fundamental
physical basis of frequency dependence due to Friis’ equation as:

L( fc, d, hUAV)[dB] = 32.4 + 20log10( fc)

+10
(

A + hUAV
B
)
· log10(d) + χσ

, (2)

where A and B are the parameters that depend on the environment and may be quite
different in different scenarios such as line-of-sight (LoS) and non-line-of-sight (NLoS)
scenarios; χσ is a zero-mean Gaussian variable representing the factor of shadow fading;
and d, fc and hUAV are the distance, the carrier frequency and the UAV height, respectively.

3.2. Spectrum Data Inference

Let Pr,dir be the RSS value of the current position of the UAV whose rectangular
coordinate is (XUAV, YUAV, ZUAV), which is measured by the directional antenna. When
Pr,dir is strong enough, there exists a radiation source in the beam direction of the used
directional antenna. Under this condition, the spectrum data inference is feasible. Assume
that most radiation sources are on the ground. We use the following equations to determine
if the RSS value is strong enough, as given by:

∆P = P̂T − Pr,dir, (3)

(
θ̂, ϕ̂
)
= arg min

θ,ϕ

(∣∣∣∣Pr,dir −
(

P̂T − Gr(θ, ϕ)− L
(

fc, d =
hUAV
cos θ

, hUAV

))∣∣∣∣), (4)

∣∣∣∣(P̂T − Gr
(
θ̂, ϕ̂
)
− L

(
hUAV , fc, d =

hUAV

cos θ̂

))
− Pr,dir

∣∣∣∣ ≤ ε, (5)

where P̂T is the transmitting power of the equivalent radiation source near the current
position of the UAV, which is estimated based on the measured RSS values collected by
the omnidirectional antenna near the current position of the UAV;

(
θ̂, ϕ̂
)

are the estimated
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spherical coordinates of the directional antenna receiving direction vector ~D; Gr(θ, ϕ) is
the pattern function of the directional antenna; ε is the maximum permissible error; and
Pr,dir is judged to be strong enough when Equation (5) is workable.

As shown in Figure 3, since the directional antenna is used, the inferred RSS values of
these cubes in its receiving direction can be obtained by:

P(n1,n2,n3)(dBm) = Pr,dir − Gr
(
θ̂, ϕ̂
)
+ L (6)

where (n1, n2, n3) is the index of the cubes that the directional antenna receiving direction
vector ~D comes by; and L is the path loss between the UAV’s location and the center
point of the cube to be inferred. The serial numbers of the cubes to be inferred can be
calculated as:

x−XUAV
a = y−YUAV

b = z−ZUAV
c

(n1 − 1)× d1 < x ≤ n1 × d1
(n2 − 1)× d2 < y ≤ n2 × d2
(n3 − 1)× d3 < z ≤ n3 × d3
0 ≤ z ≤ ZUAV
n1 = 1, 2, . . . , N1
n2 = 1, 2, . . . , N2
n3 = 1, 2, . . . , N3

, (7)

where (a, b, c) are the 3D rectangular coordinates of the directional antenna receiving
direction vectors ~D.

3.3. Multi-Source Data Fusion

When the UAV flies in the measurement area, the flight route and the directional
antenna orientation are decided by the users. Thus, some cubes may be located on two
or more directional antenna receiving direction vectors when the UAV locates at different
positions, as shown in Figure 3. In this case, the multi-source spectrum data fusion is
necessary in order to determine the final RSS values of these cubes.

Considering the RSS of a cube may be affected by two and more radiation sources, it is
reasonable that the sum of the inferred and measured RSS values of the cube approaches to
the real RSS value. Therefore, when there are two or more inferred values or the measured
values on the same cube, the final RSS value of the cube can be calculated as:

P(n1,n2,n3),final = ∑
(

P(n1,n2,n3),inf _i, P(n1,n2,n3),mea

)
, (8)

where P(n1,n2,n3),final is the final RSS value of the cube whose serial number is (n1, n2, n3);
P(n1,n2,n3),inf _1, ..., P(n1,n2,n3),inf _N are the inferred RSS values of the cube according to Equa-
tion (6) when the UAV locates at different positions; and P(n1,n2,n3),mea is the measured RSS
value if the UAV passed the cube.

4. Model-Driven Spectrum Data Completion with Uniformity Decision Mechanism
4.1. Completion Scheme

After the measurement and inference of the spectrum data, there are still some cubes
whose RSS values are unknown. Thus, an appropriate spectrum data completion method
is necessary to reconstruct the complete spectrum map of the measurement area. In this
section, we estimate the RSS values of these unknown cubes without the inferred or
measured data. Note that the measured data used by the completion method are collected
by the omnidirectional antenna. The flowchart of the proposed model-driven spectrum
data completion method with uniformity decision mechanism completion method is shown
in Figure 4.
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Figure 4. Flowchart of spectrum sensing data completion.

Specifically, we first compute the 3D spatial distribution uniformity U0 of these known
RSS data in the region near each unknown cube without the measured or inferred RSS
data after spectrum data inference. Secondly, we choose the appropriate completion
method according to the computed uniformity U0. When U0 is equal or greater than the
set threshold value Uthreshold, the spectrum data interpolation method driven by spectrum
data and channel model is chosen as the completion method to estimate the RSS value
of the unknown cube. When U0 < Uthrethold, the equivalent radiation source location
estimation based method is chosen. Lastly, the spectrum map of the entire measurement
area is reconstructed based on the completed RSS data.

4.2. 3D Spatial Distribution Uniformity Computation

In order to determine whether the measured and inferred spectrum data are evenly
distributed in the measurement area, we propose a 3D spatial distribution uniformity
computation algorithm.

In order to estimate the RSS PS0 of the cube without the measured and inferred data
whose center point is S0 and coordinates are (x0, y0, z0), we firstly choose the region that
only contains S0 and the center points Si, i = 1, . . . , N of N cubes with known RSS data are
the nearest to S0 as the computing region, whose coordinates are (xi, yi, zi), i = 1, . . . , N.
The points S0 and Si are regarded as sample points. Secondly, we divide the entire com-
puting region into several first-level unit cubes, which cover the entire computing region.
The volume of each first-level unit cube is the ratio of the total volume of the computing
region to N + 1. Thirdly, we divide these first-level unit cubes where the number of S0 and
Si is greater than one into 8 second-level unit cubes with the same volume. Fourthly, we
divide these second-level unit cubes where the number of S0 and Si is greater than one
into 8 third-level unit cubes with the same volume. Fifthly, we repeat the above steps until
there is only 0 or 1 sample point in each divided unit cube. Lastly, we encode S0 and Si
according to which level unit cube it is located in, it can be expressed as follows:

Cl =

(
1
8

)t−1
, (9)

where Cl is the coded value of the point Sl , l = 0, . . . , N, and t represents that Sl is located
in t-level unit cube. Furthermore, the 3D spatial distribution uniformity U0 of these known
RSS data in the computing region can be expressed as follows:
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U0 =

N
∑

l=0
Cl

N + 1
. (10)

U0 is a decimal that is greater than 0 and less than 1, the greater the uniformity U0 is
the more evenly the known measured and inferred data are distributed.

4.3. Completion Method for High-Uniformity Case

Conventional IDW methods are based on the assumption that the unknown RSS
values are close to the measured counterparts [27,28]. These methods only take the impact
of the distance into consideration, while the other factors, e.g., the antenna angle and
the path loss, which affect the RSS in real electromagnetic propagation environments,
are ignored [29].

Firstly, we take into account that the distance factor based on the modified Shepard’s
method (MSM), which is an enhanced inverse distance weighted interpolation method
based on the mathematical functions [11]. The distance factor can be expressed as follows:

pi =


1
di

if 0 < di ≤ r
3

27
4r

(
di
r − 1

)2
if r

3 < di ≤ r
, (11)

where di is the Euclidean distance between Si and S0, and r denotes the radius of the
influence area which has N known RSS values.

Then, we take into account that the angle factor based on the method proposed in [30],
which considers all the possible set of angles that the position of each known data makes
with all the positions of all other known data, the angles are used to compute the effect of
direction of the positions of the known data. The angle factor can be expressed as follows:

ai =

N
∑

j=1,j 6=i
(pi)

[
1− cos ϕij

]
N
∑

j=1,j 6=i
(pi)

, (12)

cos ϕij =
vivj

|vi |×|vj| ,
vi = ((xi − x0), (yi − y0), (zi − z0)),
vj =

(
(xj − x0), (yj − y0), (zj − z0)

)
.

(13)

Lastly, we consider the characteristics of the propagation environment of the measure-
ment area synthetically, which can be expressed as follows:

li =
Li
−1

N
∑

j=1
Lj
−1

, (14)

where Li is the path loss between Si and S0. Li is depends on the used channel model
such as the free space propagation model and the path loss model in Equation (2), so the
proposed completion method for high-uniformity case is a spectrum data interpolation
method driven by spectrum data and channel model.

Simultaneously considering all aforementioned factors, the weighing factor wi of the
RSS value of Si can be calculated as:

wi =
(pi)

t1(1 + ai)
t2(lc + li)

t3

N
∑

j=1

(
pj
)t1
(
1 + aj

)t2(lc + lj)
t3

, (15)
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where t1, t2 and t3 are used to control the impact on weights of the distance, angle and path
loss factor, respectively. The estimated P̂S0 can be calculated as:

P̂S0 =
N

∑
i=1

ωiPSi , (16)

where PS0 is the measured or inferred RSS value of the Si.

4.4. Completion Method for Low-Uniformity Case

When the known RSS data in the region near the unknown cube without the measured
and inferred data are relatively unevenly distributed, the assumption that the RSS value of
S0 is decided by an equivalent radiation source whose location and transmitting power
are computed according to the RSS values of N cubes with the known RSS values closest
to S0 is reasonable. We hence adopt a 3D equivalent radiation source location estimation
based method whose basis is the LIvE method in [17] to compute the RSS of S0, it can be
expressed as follows:

A =


2x1 2y1 2z1 10

−GPL−PS1
5A −1

2x2 2y2 2z2 10
−GPL−PS2

5A −1
...

...
...

...
...

2xN 2yN 2zN 10
−GPL−PSN

5A −1

,

θ =


xt
yt
zt

10
Pt
5A

xt
2 + yt

2 + zt
2

; b =


x1

2 + y2
2 + z2

2

x2
2 + y2

2 + z2
2

...
xN

2 + yN
2 + zN

2

,

GPL = 32.4 + 20log10( fc),

θ =
(
ATA

)−1ATb;

hUAV = zt; d =
√
(x0 − xt)

2 + (y0 − yt)
2 + (z0 − zt)

2,
P̂S0 = Pt − L( fc, d, hUAV),

(17)

where (xt, yt, zt) is the coordinate of the equivalent radiation source, A is the parameter in
Equation (2), and Pt is the transmitting power of equivalent radiation source.

5. Simulation Results and Analysis

Generally, the field measurement for UAV channels is very hard and costly. Some
channel modeling methods based on the ray-tracing (RT) simulations have been presented
as an alternative option [31,32]. Similarly, it is impossible to acquire all spectrum data
of the measurement area in a real world. However, it is necessary for the performance
evaluation of the spectrum map construction methods to acquire all spectrum data of the
measurement area. In this case, we leverage the RT technique to acquire the simulation
spectrum data used for the performance evaluation.

Since the 90s, the RT technique has been widely used for radio propagation modeling,
which has good performance for the small specific area and high frequency. All possible
propagation paths by tremendous amounts of rays are considered by RT technique. When
these rays interact with the scatterer surface and wedge, they can be reflected and diffracted.
After all rays are tracked with the forward technique or the reverse technique, propagation
parameters, i.e., electric field intensity or received signal strength of each ray, can be
acquired. In this article, we only concentrate on the received signal strength.

In this section, we evaluate the effectiveness and performance of the proposed spec-
trum mapping method. We also compare the proposed method with two existing spectrum
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map reconstruction methods, i.e., the IDW method and the tensor completion method.
The satellite and side view of the measurement area in Nanjing, China, is given in Figure 5.
A radiation source with 100 MHz center frequency and 0 dBm transmitting power, is set at
the center of the measurement on the ground. The measurement area is a typical campus
scenario. There are 9 buildings with the heights from 19 m to 35 m, and most of them are
about 20 m. The dimensions of terrain are 500 m by 500 m, which means there are about
7.7854× 10−5 buildings per square meter. The height of the measurement area ranges
from 10 m to 55 m. The UAV carrying the spectrum sensor equipped with a directional
antenna and an omnidirectional antenna flies all over the area at the height of 10, 15, 20, 25,
30, 35, 40, 45, 50 and 55 m, respectively, and then it obtains the simulated RSS data of the
entire measurement area. The pattern functions of two antennas are known. The length,
width and height of a cube are set to 10, 10 and 5 m, respectively. The measurement area is
divided into 50× 50× 10 cubes, and therefore the RSS data of the entire measurement area
can be modeled as the tensor χ ∈ <50×50×10. The rest parameters are given in Table 1.

(a)

(b)

Figure 5. Scenario of the measurement area: (a) satellite view and (b) side view.
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Table 1. Simulation parameters.

Parameter Value

Frequency 100 MHz
Bandwidth 5 MHz

Transmitting power 0 dBm
Antenna type Directional and omnidirectional
UAV height 10 m to 55 m

In the simulation, the flight route of the UAV is spiral as shown in Figure 5b, where the
directional antenna used to collect RSS data always points to the center of the measurement
area on the ground. Figure 6 presents the reconstruction process of our proposed spectrum
mapping scheme. The reconstruction result is shown in Figure 6d, which verifies the
effectiveness of our proposed spectrum mapping scheme when the collected spectrum
data is limited (the RSS sampling rate is approximately 3.37%). Figure 6a is the simulation
result of acquired by RT technique. The impact of the buildings in the measurement area
is considered, and therefore there exist some abrupt changes in the simulation result. It
should be noted that the data collected by the directional antenna are used only when
making the spectrum data inference, so the data shown in Figure 6 are collected by the
omnidirectional antenna.

(a) (b)

(c) (d)

Figure 6. Reconstruction process of our proposed spectrum mapping scheme: (a) RT-based data,
(b) collected data, (c) inferred data, and (d) completed data.

In order to measure the reconstruction performance of the spectrum map reconstruc-
tion methods, we define the root square error (RSE) as:

RSE[dB] = 10log10
‖χ̃− χ‖2
‖χ‖2

, (18)
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where χ̃ is the reconstructed tensor, and χ is the original simulation spectrum tensor.
When comparing the performance of the spectrum data processing methods, we

sample the data randomly, so that only a part of entries is retained in the spectrum tensor.
The sampling rate indicates the percentage of the observed elements in the tensor. Figure 7
compares the RSE of our proposed method with the classical IDW method and the tensor
completion method versus the sampling rates. In the simulation, the adopted tensor
completion method is High Accuracy Low Rank Tensor Completion (HaLRTC). It can be
seen that when sampling rate is low, i.e., the amount of valid observed measurements
is small, our proposed method is relatively accurate and stable, while the reconstruction
performance of the tensor completion is very terrible. The reconstruction performance
of the IDW method is worse than our proposed method. This is because we exploit the
characteristics of the propagation environment (i.e., PL model).

Figure 7. RSE performance of our method, IDW and tensor completion method.

In practice, random sampling is very difficult because the trajectory of the UAV is
consecutive and regular. Figure 8 shows the reconstructed data of the IDW method and
the tensor completion method when continuous and regular sampling is used (such as the
case shown in Figure 6c). Besides, these sampling data shown in Figure 6c are relatively
unevenly distributed in the measurement area. The sampling rate is roughly equiva-
lent to 0.5. It can be seen that the reconstruction performance of the tensor completion
method is very poor when there are continuous and regular losses in the spectrum tensor
even if the sampling rate is high. Our method is still relative accurate in this case (see
Figure 6a,d). The RSE of our method is −11.4513 dB, while the RSE of the tensor comple-
tion is −5.8758 dB, and the RSE of the IDW method is −10.0421 dB. The results show that
our proposed scheme outperforms the IDW method and tensor completion method by
about 12.5% and 92.3% respectively in terms of reconstruction accuracy, when the collected
spectrum data are regularly missing, unevenly distributed and limited.

(a) (b)

Figure 8. Reconstructed data by (a) tensor completion and (b) IDW method.
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6. Conclusions

In this paper, the UAV-assisted spectrum mapping scheme and the spectrum data re-
construction algorithm have been presented. Driven by the spectrum data and the channel
model, the spectrum data reconstruction algorithm can infer and complete the spectrum
data by employing the uniformity decision mechanism. In the proposed spectrum mapping
scheme, the UAV carrying the spectrum sensor equipped with an omnidirectional antenna
and a directional antenna flies over the measurement area to acquire the multi-dimensional
spectrum situation information, and then the reconstruction algorithm is used to acquire
the complete spectrum data of the entire measurement area, and finally the 3D spectrum
map is reconstructed, which enables inference of environmental characteristics such as
locations of transmitters, prevailing propagation conditions, and estimates of spectrum
usage over time and space. The performance of the proposed mapping scheme has been
evaluated in the campus scenario by comparing with the ray-tracing simulated data. The
analyzed results have shown that our proposed scheme outperforms the IDW method and
the tensor completion method by about 12.5% and 92.3% respectively in reconstruction
accuracy, when the collected spectrum data is regularly missing and limited. In the future,
the frequency and time information will be taken into account when measuring spectrum
data. In this way, the amount of the information in the reconstructed multi-dimensional
spectrum map can be increased significantly.
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