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Abstract: This paper proposes a new multi-objective bi-level programming model for the ring road
bus lines and fare design problems. The proposed model consists of two layers: the traffic manage-
ment operator and travelers. In the upper level, we propose a multi-objective bus lines and fares
optimization model in which the operator’s profit and travelers’ utility are set as objective functions.
In the lower level, evolutionary multi agent model of travelers’ bounded rational reinforcement
learning with social interaction is introduced. A solution algorithm for the multi-objective bi-level
programming is developed on the basis of the equalization algorithm of OD matrix. A numerical
example based on a real case was conducted to verify the proposed models and solution algorithm.
The computational results indicated that travel choice models with different degrees of rationality sig-
nificantly changed the optimization results of bus lines and the differentiated fares; furthermore, the
multi-objective bi-level programming in this paper can generate the solution to reduce the maximum
section flow, increase the profit, and reduce travelers’ generalized travel cost.

Keywords: bus line; fare; interactive reinforcement learning; multi-objective bi-level programming

1. Introduction
1.1. Background and Motivation

In recent years, with the continuous increase of the scale of big cities, the road network
of many large cities presents a ring structure spreading from the center to the periphery.
From the perspective of urban planning, in cities with high population density, the ring
road plays an important role in alleviating congestion in urban centers and realizing
rapid connectivity between urban areas [1]. The ring road traffic congestion index should
show the characteristics of gradually decreasing from the core area to the periphery, and
according to the Beijing Transportation Development Annual Report 2021, the traffic
congestion index in Beijing has decreased under the COVID-19 virus situation; however,
congestion still occurs frequently in some ring roads. For example, during the rush hour of
public transportation, there has been a long period of congestion between Ciyunsi bridge
and Dajiaoting bridge on the middle east fourth ring road, which indicates that the bus
line operation on the ring road needs to be further optimized.

In addition, in the existing research of traffic flow evolution and travel behavior,
scholars have carried out some important research on the endogenous complexity of travel
behavior, such as traveler’s reference point dependency, psychological account, regret
aversion, and social interaction [2,3]. Through these studies, scholars found that, under the
influence of bounded rationality, social interaction, and behavioral complexity, the traffic
flow evolution is affected by the complexity of group decision making. Therefore, the
design and operation scheme of bus lines will also be affected by the complexity of travelers’
group behavior in terms of traffic system optimization, the impact of travelers’ bounded
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rationality, social interaction, and daily evolutionary complexity on the optimization results
of the transportation system, which deserves more in-depth research.

1.2. Literature Review

The optimization of bus line operation seeks to facilitate people’s traveling by ad-
justing the existing stop schedule plan, differentiated fares, timetable, etc. In general, the
objective function contains profit maximization, maximizing travel utility, minimizing the
operation cost, etc. In recent years, more and more studies have found that optimizing the
variables related to travel behavior or utility can significantly improve the performance
of traffic system. Hm et al. [4] found that optimizing the timetable on the basis of the
dynamic travel demand of passengers can effectively increase the line passenger flow.
On the basis of the multi-source big data, Yu et al. [5] accurately extracted candidate sta-
tions, which are very popular with travelers and convenient for transfer; the empirical
study of a real case showed that the optimized lines can quickly satisfy travelers’ demand.
Aiming at minimizing the cost of travelers and operators, Liang et al. [6] established a
multi-objective optimization model of bus networks, which successfully reduced travelers’
waiting time and the in-vehicle time. Aiming at the optimization problem of bus network
with demand response and the revenue of operators, Huang et al. [7] proposed a two-stage
(static phase and dynamic phase) optimization model to solve the network design problem.
Zhang et al. [8] introduced the travel time dependence of travelers into the bus timetable
optimization problem, significantly improving the utility of passengers.

On the other hand, some studies in recent years have also found that, in addition
to reasonable bus line design, the differentiated fares can also improve the efficiency of
the traffic system; compared with the traditional fare scheme, differentiated bus fares
strategy often has more advantages [9,10]. The differentiated fares system can effectively
reduce travelers’ time cost and alleviate traffic congestion during peak hours [11,12]. The
implementation of differentiated fares based on comfort level can reduce social costs
and is more conducive to the public transport system than charging congestion fees [13].
In addition, the differentiated bus fares scheme can achieve a better balance between
eliminating externalities and ensuring consumer surplus, as well as improving the Pareto
distribution [12,13].

From the above literature review, it can be seen that the joint improvement and
optimization of bus network and fare scheme can effectively improve the efficiency of
transportation system. However, the research on the joint optimization of bus network and
differentiated fares need to be further deepened; moreover, most of the existing studies of
bus lines and fares have some basic assumptions, such as simplifying travelers’ behavior
factors, but the cluster behavior of travelers is usually not considered. Some typical studies
have found that after the implementation of the optimization scheme, there will still be a
social dilemma [14,15] in the use of transportation resources. This is because, on the one
hand, the traffic system is a typical complex socio-economic system; travelers’ decision
making will be affected by social environment and bounded rationality [16]; and under the
influence of multi-channel information, cluster travel behavior has the characteristics of
learning and interaction [17,18]. On the other hand, travel choice is a day-to-day evolution
process [19], and thus there is an uncertain causal relationship between travelers’ traffic
information and behavior [20]. In addition, it is very difficult for travelers to accurately
obtain the utility information of all potential travel modes, and thus it is also difficult to
simulate the process of travel experience accumulation by using the analytical model.

The work of this paper is mainly divided into two parts: firstly, travelers’ reinforce-
ment learning with social interaction is introduced into the ring road bus lines design
problem. Secondly, a multi-objective bi-level programming of bus lines and differentiated
ticket fares joint optimization model is established, and the solution algorithm in which the
swarm intelligence multi-objective optimization algorithm is combined with the equaliza-
tion algorithm of OD matrix is designed. Moreover, the model we proposed in this paper
was applied to the Fourth Ring Road in Beijing to verify the effectiveness of the model.
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1.3. Paper Organization

The remainder of this paper is organized as follows. The problem statement and
basic assumptions are presented in Section 2. The analysis of generalized travel cost is
presented in Section 3. Section 4 describes travelers’ BM reinforcement learning model with
social interaction, which is followed by the properties of the model. Section 5 proposes the
multi-objective bi-level programming model of bus lines and differentiated ticket fares,
and Section 6 presents the corresponding solution algorithm of multi-objective bi-level
programming. Section 7 presents the numerical example under real case to verify the
proposed model and algorithm. Section 8 concludes this paper.

2. Problem Statement and the Basic Assumptions
2.1. Problem Statement

Consider a graph G = (V, A) of urban ring road that contains N main bus stops,
where V is the set of bus stop and A is the set of links (a ∈ A). Let R denote the set of ring
bus lines, where each bus line is composed of bus stops and links, and let p denote the travel

mode of private car and b the travel mode of shared bike. Let D =

 D1,1 · · · D1,N
...

...
DN,1 · · · DN,N


denote the demand matrix in graph G, in which Di,j represents the travel demand between
bus stop i and j. In the ring road, travelers always choose the shortest route, in daily travel
activities, travelers can choose buses, private car, and shared bike between OD i and j; thus,
Dr

i,j is the travel demand of bus line r between OD i and j. Due to the competition between
different travel modes and travelers’ option between different bus lines on the ring road,
the traffic flow will transfer among different ring bus lines, private cars, and shared bike.

In reality, there are often different stop schedule plans for different ring bus lines on
the ring road; let Nline

max denote the maximum number of ring bus lines on the ring road.
Thus, the stop schedule plans can be represented as a 0–1 matrix (see Table 1):

Table 1. The matrix of stop schedule plans.

Bus Stop 1 Bus Stop 2 Bus Stop i Bus Stop N

Bus line 1 1 1 1 1
Bus line 2 0 1 0 1

Bus line k 1 1 1 0

Bus line Nline
max 0 0 1 1

It can be seen from Table 1 that in the matrix, “1” represents the fact that the bus
will stop here, and “0” represents the fact that the bus will not stop here. In addition,
there are differentiated ticket fares Pr per kilometer for the Nline

max bus lines; if travelers
choose private car or shared bike, they will have to pay the parking fee or bike sharing fee.
The objective of the bus operation management department is to optimize and adjust the
stop schedule plans and differentiated fares of bus lines, so as to improve the operation
income, expand social welfare, and balance the transportation resources. Therefore, in this
paper, we set the matrix of stop schedule plans and differentiated fares of bus lines as the
optimization variables.

2.2. Basic Assumptions

(1) Travel demand between bus stops. The travel demand D between bus stops is
obtained from real daily bus IC card data in Beijing.

(2) Travelers’ bounded rationality. It is difficult for travelers to know the accurate utility
information of all potential travel modes at the same time. Travel decision-making is
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affected by travel cost, information interaction, and historical travel experience; thus,
travelers’ perception of utility is a process of reinforcement learning.

(3) Travel modes. There are three optional travel modes among bus stops: (1) buses,
(2) private car, and (3) shared bike. In the ring bus lines, travelers can travel between
any two bus stops without changing lines, and they always choose the shortest path
(in a ring bus line, there are clockwise and counterclockwise paths from bus stop i
to bus stop j). Let d* denote the critical distance of bicycle riding; when the distance
between OD is larger than d*, travelers will not choose to ride a bicycle (Figure 1).
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3. Generalized Travel Cost

By summarizing the literature on travel behavior, we find that the generalized travel
cost consists of the following elements:

(1) Psychological time of waiting the bus

For travelers who choose buses, they arrive at the bus stop in the Poisson process
with the intensity of λ; let φr denote the departure frequency of bus line r, let τx denote the
time of traveler x’s arrival at the bus stop, and the arrival of travelers can be regarded as
independent random variables which obey the uniform distribution on the interval [0, 1

φr
].

Thus, we have E(τx) =
1

2φr
, and the waiting time can be represented as 1

φr
− τx. Let S(τ)

denote the number of travelers arriving at the bus stop at time τ, and thus the expected

waiting time of travelers can be formulated as E

[
S(τ)
∑

x=1

(
1
φr
− τx

)]
. According to the time

processing theory, there is a certain difference between travelers’ psychological feeling and
the actual physical time, and the psychological feeling is more in accordance with travelers’
perception of utility. Therefore, the physical time should be converted into psychological

time α
(

1
φr
− τx

)β
, and α and β represent travel purpose coefficient and attention coefficient,

respectively. Moreover, we have
Epsy

S(τ)
∑

x=1
α
(

1
φr
− τx

)β
 = λ

∫ τ
0 α
(

1
φr
− τx

)β
dτx

E[S(τ)] = λ
φr

(1)

Solve Equation (1), and travelers’ psychological time of waiting the bus can be for-
mulated as Tr

psy = α

φ
β
r (β+1)

; for the travelers who choose private car and shared bike, their

psychological time of waiting is 0.

(2) Travel time

For travelers who choose buses between OD i, j on day t, if they choose the bus line
r, the travel time can be represented as Tr,t

i,j . For travelers who choose private cars, in this
paper, we assume that the travel time of private car between OD i, j equals the shortest



Symmetry 2021, 13, 2301 5 of 24

bus line travel time, which can be represented as Tp,t
i,j = min

r∈R

{
Tr,t

i,j

}
. For travelers who

choose shared bike, the travel time between OD i, j is Tb,t
i,j =

di,j
vb

, in which di,j is the distance
between bus stop i and j, and vb is the average speed of a bicycle.

(3) Crowding degree

For travelers who choose buses, due to the restrictions of bus capacity and different
stop schedule plans, the bus will be crowded; take bus line r which contains Nr bus stops
for instance, and let f r+,t

i,i+1 and f r−,t
i,i+1 represent the up direction (from i to i + 1) and down

direction (from i + 1 to i) traffic flow between bus stop i and i + 1 on day t, respectively.
Thus, we have 

f r+,t
i,i+1 = f r+,t

i−1,i +
Nr
∑
j=i

Dr,t
i,j −

i
∑

j=1
Dr,t

j,i

f r−,t
i,i+1 = f r−,t

i+1,i+2 +
i+1
∑

j=1
Dr,t

i+1,j −
Nr
∑

j=i+1
Dr,t

j,i+1

(2)

Then the maximum section flow is max
{

f r+
i,i+1 + f r−

i,i+1

}
(r ∈ R, i ∈ V), and the crowd-

ing degree of bus line r between bus stop i and j on day t can be formulated as
Cr+,t

i,j =
j−1
∑

s=i

η f r+,t
s,s+1

Vr ·φr

Cr−,t
i,j =

j−1
∑

s=i

η f r−,t
s,s+1

Vr ·φr

(3)

Here, Vr represents the bus capacity of line r, and η is crowding factor. In addition,
we assume that the crowding degree (not traffic jam) of private car and shared bike is 0.

(4) Bus ticket fare, parking fee of private car, and bike sharing fee

For travelers who choose buses, let Pr denote the fare per kilometer of bus line r; thus,
travelers need to pay Pr · di,j. For travelers who choose private car and shared bike, they
need to pay the parking fee and bike sharing fee, which are represented as P̃p and P̃b.

(5) The effect of social interaction on travel cost

Let ξx = 1 denote traveler x chooses bus, and ξx = −1 represents traveler x chooses
other travel modes, while λm is social interaction level. Let E(µx) denote traveler’s expecta-

tion of travel mode choice between bus stop i and j; thus, E(µx) =
∑

y 6=x
E(µy)

Di,j−1
, and according

to the principle of multiplier interaction, the effect of social interaction on day t can be
formulated as

Mt
i,j(ξx, µx) =

λm · ξx · ∑
y 6=x

E
(
µy
)

Di,j − 1
(4)

In summary, the generalized travel cost between bus stop i and j on day t can be
formulated as{

Gκ,t
i,j = ζpsy · Tκ

psy + ζT · Tκ,t
i,j + ζC · Cκ,t

i,j + ζP · Pκ · di,j + ζM ·Mt
i,j(ξx, µx), (κ = r, r ∈ R)

Gκ,t
i,j = ζT · Tκ,t

i,j + ζC · Cκ,t
i,j + ζP · P̃κ + ζM ·Mt

i,j(ξx, µx), (κ = p, b)
(5)

Here, ζpsy, ζT , ζC, ζP, ζM represent cost coefficients.
In the existing studies, some scholars use the social interaction model to simulate

group travel choice behavior, but in reality, the essence of “interaction” is the diffusion
of asymmetric and incomplete travel information in the group. Travelers make decisions
based on the external information they receive, rather than being directly influenced by
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other travelers’ behavior. Therefore, in this paper, travelers’ social interaction is reflected in
the information of generalized travel cost (Equation (5)) rather than the choice behavior itself.

4. BM Reinforcement Learning Model with Interaction

In real travel activities, travelers’ behavior is not always completely rational, and
counterintuitive paradox often occurs in daily travel choice decision making, which con-
flicts with the traditional expected utility theory. In recent years, regret theory has been
developed continuously. Regret theory holds that the decision making of travelers’ route
(travel mode) choice is not only related to the utility of the selected route itself, but also
related to the feedback generated by the comparison with other alternative routes (travel
modes). At present, regret theory has been found to be more accurate in describing travel-
ers’ decision-making behavior in an uncertain environment, and the calculated results are
more in accordance with the reality. Therefore, this paper describes travelers’ generalized
cost according to regret theory.

4.1. Utility Based on Regret Theory

The model construction of regret theory has experienced the improvement process
from RRM1 [21] to RRM2 [22], and then to the consideration of path impedance and
“regret feeling” [23]. In this paper, the construction idea of the regret theory is organically
combined with the above travel scenarios, and the travel mode choice model is constructed
as follows.

The regret cost based on generalized travel cost is formulated as

h
κ,t
i,j = Gκ,t

i,j − δ

(
min

κ∈{R,p,b}

{
G′κ,t

i,j

}
− G′κ,t

i,j

)
(6)

The formation of regret psychology is based on the objective generalized cost observed
by travelers; thus, we use G′κ,t

i,j to represent the generalized travel cost without social
interaction. According to the design method of regret function, the function δ(x′) can be
represented as

δ(x) = 1− e−ψ·x′ (7)

Here, ψ represents travelers’ regret aversion level; the larger the value of ψ, the more
regret-averse the traveler is.

Furthermore, in this paper, we assume that travelers’ regret aversion level ψ is hetero-
geneous. Let Nagent be the number of agents participating in the reinforcement learning
simulation between each OD pair; Nagent agents form the decision space Ωagent (x ∈ Ωagent),
and agents are distributed in the grid, with each node representing a traveler. After the
traveling between bus stop i and j on day t, each traveler would like to update their ψ
through information exchanging in the Moore neighborhood (unlike the travel information
on various intelligent devices, regret aversion is an endogenous psychological activity, and
thus we set a small interaction range).

This process can be designed as follows:
(1) Each traveler x chooses the traveler with the lowest regret cost in the neighborhood

(denoted as x∗).
h

κ,t
i,j,x∗ = min

{
h

κ,t
i,j,x

∣∣∣x ∈ Ωneighbor

}
(8)

(2) Let ψx∗ be the regret aversion level of traveler x∗, and traveler x updates their value
of ψx with the intensity of pc.

ψt+1
x = (1− pc) · ψt

x + pc · ψt
x∗ (9)

4.2. Bush–Mosteller Reinforcement Learning Model Based on Regret Theory

Most of the existing studies use logit model to depict the choice of travel mode, in
which travelers know exactly the utility of each potential choice when making decisions.
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However, in reality, it is difficult for travelers to know the accurate utility information
of all potential choices, and travelers’ choice of travel mode is a process of continuous
improvement of their own experience that is affected by travel cost, information interaction,
and historical travel experience. Therefore, in this paper, the Bush–Mosteller reinforce-
ment learning model is introduced to simulate the evolution process of travelers’ travel
mode choice.

Traveler x can only choose one single travel mode in one day, and they may choose
different travel modes in a few days, which indicates that in a long period of daily travel
activities, travelers can not only obtain the perceptive utility (PU) of every travel mode but
can also gain the experience of travel mode utility (EU) on day t. Let Uκ,t

i,j and Et
i,j denote

the PU of travel mode κ and the EU on day t, respectively, which can be formulated as

Uκ,t
i,j,x =


∑t

s=1

(
−h

κ,t
i,j,x

)
·εκ,s

i,j,x

∑t
s=1 εκ,s

i,j,x
, s ≤ L

∑t
s′=t−L

(
−h

κ,t
i,j,x

)
·εκ,s

i,j,x

∑t
s=t−L εκ,s

i,j,x
, s > L

(10)

Et
i,j,x =


∑t−1

s=1

(
−h

κ,t
i,j,x

)
t−1 , s ≤ L

∑t−1
s=t−L

(
−h

κ,t
i,j,x

)
t−L , s > L

(11)

Here, εκ,s
i,j,x is the 0–1 variable; if traveler x chooses the travel mode κ between bus stop

i and j on day t, then εκ,s
i,j,x = 1, or else εκ,s

i,j,x = 0. L represents traveler’s memory length of
historical regret cost.

On day t, traveler x will make a comparison between Uκ,t
i,j,x and Et

i,j,x:

uκ,t
i,j,x =


Uκ,t

i,j,x−Et
i,j,x∣∣∣max

{
Uκ,t

i,j,x−Ex,t
i,j

}∣∣∣ , Uκ,t
i,j,x ≥ Et

i,j,x

Uκ,t
i,j,x−Et

i,j,x∣∣∣min
{

Uκ,t
i,j,x−Ex,t

i,j

}∣∣∣ , Uκ,t
i,j,x < Et

i,j,x

(12)

Let l denote the learning intensity of travelers; traveler x updates the choice probability
of travel mode κ (represented as ωκ,t

i,j,x) and the choice probabilities of other travel modes

¬κ (represented as ω−κ,t
i,j,x ) between bus stop i and j.

ωκ,t
i,j,x =

 ωκ,t−1
i,j,x +

(
1−ωκ,t−1

i,j,x

)
· l · uκ,t−1

i,j,x , uκ,t−1
i,j,x ≥ 0

ωκ,t−1
i,j,x + ωκ,t−1

i,j,x · l · u
κ,t−1
i,j,x , uκ,t−1

i,j,x < 0
(13)

ω¬κ,t
i,j,x =


ω¬κ,t−1

i,j,x −ω¬κ,t−1
i,j,x · l · uκ,t−1

i,j,x , uκ,t−1
i,j,x ≥ 0

ω¬κ,t−1
i,j,x −

ω¬κ,t−1
i,j,x ·ωκ,t−1

i,j,x ·l·u
κ,t−1
i,j,x

1−ωκ,t−1
i,j,x

, uκ,t−1
i,j,x < 0

(14)

The average choice probability between bus stop i and j can be represented as(
ωκ,t

i,j,x, ω−κ,t
i,j,x

)
, and the traffic flow of travel mode κ between bus stop i and j is Qκ,t

i,j = Dij ·ωκ,t
i,j,x.

4.3. Properties of the Model

Theorem 1. There exists the equilibrium state of traffic flow among all the bus stops. The necessary
and sufficient condition for the non-zero traffic flow of each travel mode to reach the equilibrium
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state is that the perceptive utility (PU) of each travel mode is the same as the experience of travel
mode utility (EU), which can be formulated as

Qij

∑
x=1

Uκ
i,j,x(ψx) =

Qij

∑
x=1

Ei,j,x(ψx), κ ∈ {R, p, b} (15)

Proof. On day t, travelers between bus stop i and j can be divided into two groups, travelers
who choose travel mode κ from the first group, and travelers who do not choose travel
mode κ from the second group. For travelers from the first group, they make decisions
based on Equation (13), and the probability updating formula of choosing travel mode κ
can be formulated as

∆ωκ,t
i,j,x =

ωκ,t
i,j,x −ωκ,t−1

i,j,x

ωκ,t−1
i,j,x

=


(

1−ωκ,t−1
i,j,x

)
·l·uκ,t−1

i,j,x

ωκ,t−1
i,j,x

, uκ,t−1
i,j,x ≥ 0

l · uκ,t−1
i,j,x , uκ,t−1

i,j,x < 0
(16)

For travelers from the second group, they make decision based on Equation (13), and
the probability updating formula of choosing travel mode κ can be formulated as

∆ωκ,t
i,j,x =


−l · u¬κ,t−1

i,j,x , u¬κ,t−1
i,j,x ≥ 0

−
ω¬κ,t−1

i,j,x ·l·u¬κ,t−1
i,j,x

1−ω¬κ,t−1
i,j,x

, u¬κ,t−1
i,j,x < 0

(17)

Therefore, the probability updating formula of choosing travel mode κ for all the
travelers between bus stop i and j can be represented as

Dij

∑
x=1

∆ωκ
i,j,x =

Qκ
i,j

∑
x=1

∆ωκ
i,j,x + ∑

¬κ∈{R,p,b}

Q¬κ
i,j

∑
x=1

∆ωκ
i,j,x

=



Qκ
i,j

∑
x=1

(
1−ωκ

i,j,x

)
·l·uκ

i,j,x
ωκ

i,j,x
− ∑
¬κ∈{R,p,b},u¬κ,t−1

i,j,x ≥0

Q¬κ
i,j

∑
x=1

l · u¬κ
i,j,x − ∑

¬κ∈{R,p,b},u¬κ,t−1
i,j,x <0

Q¬κ
i,j

∑
x=1

ω¬κ
i,j,x ·l·u

¬κ
i,j,x

1−ω¬κ
i,j,x

, uκ
i,j,x ≥ 0

Qκ
i,j

∑
x=1

l · uκ
i,j,x − ∑

¬κ∈{R,p,b},u¬κ,t−1
i,j,x ≥0

Q¬κ
i,j

∑
x=1

l · u¬κ
i,j,x − ∑

¬κ∈{R,p,b},u¬κ,t−1
i,j,x <0

Q¬κ
i,j

∑
x=1

ω¬κ
i,j,x ·l·u

¬κ
i,j,x

1−ω¬κ
i,j,x

, uκ
i,j,x < 0

(18)

Moreover, combine and expand Equation (17)

Dij

∑
x=1

∆ωκ
i,j,x =



l1 ·



Qκ
i,j

∑
x=1

[
Uκ

i,j,x(ψx)−Ei,j,x(ψx)
]

ωκ
i,j,x

− ∑
κ∈{R,p,b}

Qij

∑
x=1

[
Uκ

i,j,x(ψx)− Ei,j,x(ψx)
]

+ ∑
¬κ∈{R,p,b},u¬κ

i,j,x<0

Q¬κ
i,j

∑
x=1

(
1−2ω¬κ

i,j,x

)
·
[
U¬κ

i,j,x(ψx)−Ei,j,x(ψx)
]

1−ω¬κ,t−1
i,j,x


, uκ

i,j,x ≥ 0

l2 ·



Qκ
i,j

∑
x=1

[
Uκ

i,j,x(ψx)− Ei,j,x(ψx)
]
− ∑
¬κ∈{R,p,b},u¬κ

i,j,x≥0

Q¬κ
i,j

∑
x=1

[
U¬κ

i,j,x(ψx)− Ei,j,x(ψx)
]

− ∑
¬κ∈{R,p,b},u¬κ

i,j,x<0

Q¬κ
i,j

∑
x=1

ω¬κ
i,j,x ·

[
U¬κ

i,j,x(ψx)−Ei,j,x(ψx)
]

1−ω¬κ
i,j,x


, uκ

i,j,x < 0

(19)

Sufficiency: when the condition of (15) is satisfied,
Dij

∑
x=1

∆ωκ
i,j,x = 0 holds, and the traffic

flow reaches equilibrium.
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Necessity: when
Dij

∑
x=1

∆ωκ
i,j,x = 0 holds, for ωκ

i,j,x 6= 0 and ω¬κ
i,j,x 6= 0, with the continuous

updating of ψx, travelers’ ψx tends to be the same, and thus we have
Qij

∑
x=1

Uκ
i,j,x(ψx) =

Qij

∑
x=1

Ei,j,x(ψx), κ ∈ {R, p, b}. �

5. Multi-Objective Bi-Level Programming of Bus Lines and Differentiated
Ticket Fares
5.1. Constraints

(1) Constraint of the bus stop setting

For each bus stop schedule plan Xr, the number of bus stops should be larger than or
equal to 2:

N

∑
i=1

Xr,i ≥ 2, r ∈ R (20)

(2) Constraint of the traffic flow

The total daily travel demand between bus stops is fixed:

Dij = ∑
κ∈{R,p,b}

Qκ,t
i,j (21)

(3) Reasonable fare range and the constraint of total fare revenue

Public transport has the attribute of social public welfare; thus, the ticket fare and
revenue should be controlled within a certain range:

Pr,min ≤ Pr ≤ Pr,max(∀r ∈ R) (22)

∑
i∈V

∑
j∈V

∑
r∈R

Qr
i,j · Pr · di,j ≤ M (23)

5.2. Objective Function

The traffic management department encourages people to choose public transport or
shared bike through bus lines optimization and fare policy adjustment, which can change
travelers’ social equilibrium, so as to avoid pollution and congestion caused by a large
number of private cars and solve the social dilemma. For the transportation management
department, under the market conditions, on the one hand, it is necessary to maximize
the profits generated by the public transport system; on the other hand, it is necessary to
maximize the travel utility of travelers, so as to realize social welfare. Since it is difficult to
determine the a priori weight of the two objectives and travelers’ bounded rationality in
reality, in this paper, the idea of Pareto optimization is introduced to transform the bus line
and fare optimization problem into a multi-objective optimization problem.

The objective function of buses’ profit maximization can be formulated as

maxF1(X, Pr) = ∑
i∈V

∑
j∈V

(
∑
r∈R

Qr
i,j · Pr · di,j − ∑

r∈R
φr · cr

)
(24)

where cr represents the average operating cost. The objective function of maximizing travel
utility can be formulated as

maxF2(X, Pr) =


− ∑

i∈V
∑

j∈V
∑

r∈R
Qr

i,j · Gr
i,j − ∑

i∈V
∑

j∈V
Qp

i,j · G
p
i,j − ∑

i∈V
∑

j∈V
Qb

i,j · Gb
i,j, di,j ≤ d∗

− ∑
i∈V

∑
j∈V

∑
r∈R

Qr
i,j · Gr

i,j − ∑
i∈V

∑
j∈V

Qp
i,j · G

p
i,j, di,j > d∗

(25)
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Moreover, for a large number of individual travelers, they need to maximize the utility
through the reinforcement learning process of travel choice and the evolutionary process
of heterogeneous regret aversion level.

maxF3 = Uκ,t
i,j,x

(
ωκ,t

i,j,x, h
κ,t
i,j,x

)
, x ∈ Ωagent (26)

5.3. The Multi-Objective Bi-Level Programming Model

It is worth mentioning that Equations (24)–(26) constitute a multi-objective bi-level pro-
gramming problem in which the problem max F(X, Pr) = [F1(X, Pr), F2(X, Pr)]

T forms the
upper-level programming and the problem maxF3 represents the lower-level programming.
The multi-objective bi-level programming model can be represented as

max F(X, Pr) = [F1(X, Pr), F2(X, Pr)]
T

maxF3 = Uκ,t
i,j,x

(
ωκ,t

i,j,x, h
κ,t
i,j,x

)
, x ∈ Ωagent

s.t.
N
∑

i=1
Xr,i ≥ 2, r ∈ R

Dij = ∑
κ∈{R,p,b}

Qκ,t
i,j

Pr,min ≤ Pr ≤ Pr,max, r ∈ R
∑

i∈V
∑

j∈V
∑

r∈R
Qr

i,j · Pr · di,j ≤ M

(27)

Definition 1. The Pareto optimal solution of bus stop schedule plan and differentiated ticket
fares. For the variables (Xa, Pr,a) and (Xb, Pr,b) under constraints, if Fi(Xa, Pr,a) ≥ Fi(Xb, Pr,b)
(i = 1, 2) and there exists at least one i that satisfies Fi(Xa, Pr,a) > Fi(Xb, Pr,b), then (Xa, Pr,a)
dominates (Xb, Pr,b), which is denoted by (Xa, Pr,a) � (Xb, Pr,b). Moreover, if vector (Xc, Pr,c) is
not dominated by any other variables, then (Xc, Pr,c) is non-dominated solution. The set of objective
function values calculated by all non-dominated vectors constitute the Pareto frontier of bus line
and fare optimization problem.

It can be seen that the introduction of multi-objective bi-level programming can
provide traffic management departments with a decision-making space that is not affected
by a priori probability and can tradeoff between economic income and the travelers’ utility
complexity.

6. Solution Algorithm of Multi-Objective Bi-Level Programming

It can be seen from the above model that the multi-objective bi-level programming
problem has the characteristics of multivariable and nonlinear; therefore, in this paper, we
designed a solution algorithm in which the swarm intelligence multi-objective optimization
algorithm is combined with the equalization algorithm of OD matrix. The algorithm steps
are as follows:

Step 1: Population initialization. In recent years, swarm intelligence optimization
algorithm based on complex network has been proven to be very effective in avoiding local
optimum. Therefore, we first establish a network with grid structure for the population
and introduce the small world network generation algorithm to depict the connections
between individuals in the population, where each individual represents a solution (X, Pr).

Step 1.1: Set the region i′ ∈
[
0, np

]
, j′ ∈

[
0, np

]
as the complex network genera-

tion area; both i′ and j′ are integers, and each node (i′, j′) represents an individual in
the population.

Step 1.2: Each individual (i′, j′) establishes connection with the surrounding eight
neighbors to form a cellular network.

Step 1.3: Here, we introduce the method in literature [24]. Let pcut be the rewiring
probability of the network, pcut ∈ [0, 1]. We set a random number prand ∈ [0, 1] for each
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node (i′, j′); if prand ≤ pcut, cut one of node (i′, j′)’s links randomly, and then establish a
new link between node (i′, j′) and a node that is not in the surrounding eight neighbors of
node (i′, j′). Thus, the new neighborhood is established. In order to make the population
space achieve a better balance between complete certainty and complete randomness, we
set pcut = 0.5.

Step 2: The real encoding technique is employed, and the solution corresponding
to individual (i′, j′) is (X, Pr)i′ ,j′ , in which the Xr,i in X is encoded with random number
between 0 and 1. A random number larger than 0.5 means Xr,i = 1, otherwise Xr,i = 0.

Due to the existence of equilibrium conditions in the group Bush–Mosteller model,
given the bus stop schedule plan (represented as the 0–1 matrix X) and the differentiated
ticket fares Pr(r ∈ R), through the continuous iteration of Tκ,t

i,j , Cκ,t
i,j , and Mt

i,j, the equilibrium
traffic flow OD matrix of various travel modes between bus stops can be obtained. The OD
matrix equalization algorithm is designed as follows:

Step 2.1: Within a certain distance di,j ≤ d∗, there is a competitive relationship between
bus and shared bike; for each OD pair in D, given the bus ticket fare Pr · di,j (r ∈ R), the
shared bike management department will set the optimal equilibrium bike sharing fee P̃b
on the basis of generalized Nash equilibrium.

 P̃k
b = argmax

[
Q̂k

b

(
Pk−1

r

)
· P̃k

b

]
Pk

r = argmax
[

Q̂k
r

(
P̃k−1

b

)
· Pk

r

]
Q̂k

b

(
Pk−1

r

)
= Qk−1

b + ∂Qb
∂Pr

(
Pk

r − Pk−1
r

)
+ ∂Qb

∂P̃b

(
P̃k

b − P̃k−1
b

)
Qk−1

b = argmin
∫ Qk−1

b
0 G

(
P̃k−1

b

)
dx

s.t. P̃min
b ≤ P̃k

b ≤ P̃max
b , r ∈ R

(28)

Equation (28) is a generalized Nash equilibrium problem in which min
∫ Qk−1

b
0 G

(
P̃k−1

b

)
dx

represents the estimation of traffic flow by shared bike operators, and it can be calculated on
the basis of logit model, where ∂Qb

∂Pr
and ∂Qb

∂P̃b
represent the derivative relationship between

traffic flow and the price of shared bike. Equation (28) can be solved by the method of
classical sensitivity analysis, but we will not go into much detail here.

Step 2.2: For the given bus stop schedule plan X, differentiated ticket fares Pr, parking
fee P̃p, and bike sharing fee P̃b, set the initial value of Cr,0

i,j and M0
i,j to 0; set the iteration

time t = 0; and calculate the OD flow matrix Qκ,t on the basis of Equations (10)–(14).
Step 2.3: Substitute the Qκ,t into Equation (2) and calculate the traffic flow f r+,t+1

i,i+1

and f r+,t+1
i,i+1 of bus lines; then, the value of Cr,t+1

i,j and Cr−,t+1
i,j are obtained. Moreover, the

number of travelers that choose other travel mode ( ∑
y 6=x

µy) is obtained; substitute ∑
y 6=x

µy

into Equation (4) and the value of Mt+1
i,j is calculated.

Step 2.4: The generalized travel cost matrix (G =

 G1,1 · · · G1,N
... Gi,j

...
GN,1 · · · GN,N

) between

bus stops is calculated according to Equation (5).
Step 2.5: Update the OD matrix of traffic flow according to Equations (10)–(14) on the

basis of the new G, and the Qκ,t+1 is obtained.

Step 2.6: For all the travel mode κ, let max
i,j∈V,i 6=j

{ ∣∣∣Qκ,t+1
i,j −Qκ,t

i,j

∣∣∣
Qκ,t

i,j
≤ ς

}
represent the termi-

nation condition (flow difference between different evolution steps). If this condition is
satisfied, the algorithm will stop the iteration; otherwise, return to Step 2.3. Thus, Qκ,t+1 is
the traffic flow matrix corresponding to the given bus stop schedule plan (the 0–1 matrix
X) and the differentiated ticket fares Pr(r ∈ R). Then, calculate the objective function
F(X, Pr) = [F1(X, Pr), F2(X, Pr)]

T based on Qκ,t+1.
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Step 3: Establish the set of local non-dominated solutions for each individual in the
population. Let NDi′ ,j′ denote the non-dominated solutions set of individual (i′, j′). Add
the objective function values (solutions) of individual (i′, j′)’s neighbors F(X, Pr)ni′ ,nj′ into
NDi′ ,j′ : if the solution in NDi′ ,j′ is dominated by the newly added solution (F(X, Pr)ni′ ,nj′ �
NDi′ ,j′(k′)), then delete the dominated solution in NDi′ ,j′ ; if the newly added solution is
not dominated by any solution in NDi′ ,j′ , add the new solution into NDi′ ,j′ .

Step 4: Establish the set of global non-dominated solutions for all individuals. Let
NDg denote the global non-dominated solutions set, and add the objective function values
(solutions) of every node of the population into NDg: if the solution in NDg is dominated
by the newly added solution (F(X, Pr)i′ ,j′ � NDg(k′)), then delete the dominated solution
in NDg; if the newly added solution is not dominated by any solution in NDg, add the
new solution into NDg.

In terms of the constraint condition, we introduce the method of “constraint violation
value” to illustrate the constraint violation degree of a solution; the constraint violation
value is formulated as

CV
[
(X, Pr)i′ ,j′

]
=

〈
∑
i∈V

∑
j∈V

∑
r∈R

Qr
i,j · Pr · di,j ≤ M

〉
(29)

where 〈x〉 means if x ≤ 0, then 〈x〉 = 0, otherwise 〈x〉 = |x|. It can be seen that the smaller
the value of CV, the better the solution is. Therefore, the dominance between two solutions
F(X, Pr)1 and F(X, Pr)2 can be redefined as

F(X, Pr)1 dominates F(X, Pr)2 if one of the following conditions is satisfied: (1) F(X, Pr)1
is a feasible solution, but F(X, Pr)2 is non-feasible solution; (2) Both F(X, Pr)1 and F(X, Pr)2
are non-feasible solutions, and CV[(X, Pr)1] < CV[(X, Pr)2]; (3) Both F(X, Pr)1 and F(X, Pr)2
are feasible solutions, and F(X, Pr)1 Pareto dominates F(X, Pr)2.

Step 5: Calculate the crowding distance in NDi′ ,j′ and NDg. Taking NDg as an
example, the solutions in NDg are arranged in descending order from 1 to Nk′ according
to the objective function value Fs(X, Pr)k′(s = 1, 2, k′ ∈ [1, Nk′ ]), where Nk′ represents the
number of solutions. The crowding distance of the k′th solution of the objective function s
is formulated as {

diss,k′ = Fs(X, Pr)k′+1 − Fs(X, Pr)k′−1
diss,k′ = ∞, k′ = 1 or k′ = Nk′

(30)

Then, the crowding distance of the k′th solution is disk′ =
2
∑

s=1
diss,k′ .

Step 6: Selection. We introduce the “roulette” method to select the optimal solution in
NDi′ ,j′ and NDg, and thus the probability of individual corresponding to the k′ solution
being selected is disk′/∑ disk′ ; the individual selected in NDi′ ,j′ are marked as (i′′ , j′′ ), and
individual selected in NDg are marked as (i′′′ , j′′′ ).

Step 7: Crossover. Set Y = (X, Pr). According to the literature [24], let µi′ ,j′ =(
Yi′′ ,j′′ + Yi′′′ ,j′′′

)
/2 and σi′ ,j′ =

∣∣∣Yi′′ ,j′′ − Yi′′′ ,j′′′
∣∣∣, then the crossover between Yi′′ ,j′′ and

Yi′′′ ,j′′′ is formulated as

Yi′ ,j′ = N
(
µi′ ,j′ ,σ

2
i′ ,j′

)
(31)

Step 8: Mutation. Let pm be the probability of chaotic mutation; here, we use the “tent
map” to iterate the chaotic sequence for its good ergodicity. The tent map is formulated as

ρt+1 =

{
2ρt, ρt ∈ [0, 0.5]

2− 2ρt, ρt ∈ (0.5, 1]
, and the individual is updated according to the probability

pm(the value range of Yi′ ,j′ is
[
Yi′ ,j′ ,min, Yi′ ,j′ ,max

]
):

Yi′ ,j′ = Yi′ ,j′ ,min + ρt

(
Yi′ ,j′ ,max − Yi′ ,j′ ,min

)
(32)
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Step 9: Determining whether the algorithm meets the termination condition (the
Pareto front cannot be improved). If so, the algorithm stops, otherwise, return to Step 2.

The flow chart of the solution algorithm is illustrated in Figure 2.
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7. Case Study: Optimization of Bus Line and Fares of Fourth Ring Road in Beijing
7.1. Case and Parameter Setting

At present, there are two bus circle lines on the Fourth Ring Road in Beijing (bus
no. 400 and bus no. 400 fast; bus no. 400 fast does not stop at every bus stop), and the
abovementioned model is introduced to design the feasible differentiated bus lines. In
this paper, 12 bus stops of bus no. 400 with large traveler flow on the Fourth Ring Road
in Beijing were selected as the object bus stops (see Figure 3; bus stops with very few
travelers were not considered). The OD matrix was obtained from the average passenger
flow data between bus stops recorded within one month (bus card data). If there was no
special explanation later, then we illustrated the parameters of the model and algorithm in
Tables 2 and 3.
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Table 2. Average travel demand among bus stops in a real case.

Travel
Demand Dij

1. Wu Ke Song
Qiao Nan

2. Si Ji Qing
Qiao Nan

3. Zhong Guan
Cun Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang Jing
Qiao Dong

7. Hong Ling
Jin Qiao Bei

8. Da Jiao Ting
Qiao Nan

9. Xiao Hong
Men Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei
Da Di

1. Wu Ke Song
Qiao Nan 0 26.45 19.16 18.83 20 5.93 2.68 2.68 2.68 2.68 2.68 2.68

2. Si Ji Qing
Qiao Nan 10.54 0 36.44 22.89 27.34 15.33 12.44 11.68 11.54 10.54 11.54 11.74

3. Zhong Guan
Cun Yi Jie 5.57 10.2 0 13.31 28.57 17.47 11.07 7.13 8.3477 6.57 5.57 6.57

4. Xue Yuan
Qiao Dong 3.77 4.77 4.77 0 52.44 23.8 10.7 5.86 5.53 4.77 4.77 4.97

5. An Hui Qiao
Dong 11.14 12.96 11.14 30.68 0 46.34 31.49 17.44 13.76 12.94 12.22 12.64

6. Wang Jing
Qiao Dong 2 2 2 3 38.12 0 20.87 11.7 4.67 3.47 4 3.33

7. Hong Ling
Jin Qiao Bei 3.39 4.39 3.39 3.39 3.39 4.39 0 9.17 15.25 8.45 10.06 6.39

8. Da Jiao Ting
Qiao Nan 4.54 5.54 5.54 5.54 4.54 5.87 6.39 0 12.97 4.54 4.54 5.54

9. Xiao Hong
Men Qiao 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 0 11.31 23.8 6.1

10. Huang Tu
Gang 6.56 4.21 3.735 3.96 3.36 3.36 3.36 3.36 4.8 0 32.39 18.71

11. Yi Hai Hua
Yuan 6.48 4.54 2.49 2.32 2.29 2.18 2.18 2.18 2.18 1.18 0 27.08

12. Bei Da Di 45.23 26.03 22.96 22.64 22.34 22.2 22.7 22.2 22.56 25.49 21.2 0
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Table 3. Parameter setting.

Symbol Meaning Value Symbol Meaning Value

np × np
population size of the

swarm algorithm 25 d∗ critical distance of bicycle riding 5 (km)

Nline
max

maximum number of
bus lines 5 φr departure frequency of bus line 5

ζpsy, ζT , ζC, ζP, ζM cost coefficients 0.05 l travelers’ learning intensity 0.9

λm social interaction level 1.5 L traveler’s memory length 10

Vr bus capacity 150 pc
traveler’s interaction intensity

of risk aversion 0.8

[
Pmin

r , Pmax
r

] fare range of bus per
kilometer [0, 0.5] P̃p parking fee 10

ψt
x

travelers’ regret
aversion level [0, 1] Nagent

the number of agents in
reinforcement learning 100

pm mutation probability 0.01 cr average operating cost 10

Symmetry 2021, 13, x FOR PEER REVIEW 15 of 26 
 

 

7. Case Study: Optimization of Bus Line and Fares of Fourth Ring Road in Beijing 
7.1. Case and Parameter Setting 

At present, there are two bus circle lines on the Fourth Ring Road in Beijing (bus no. 
400 and bus no. 400 fast; bus no. 400 fast does not stop at every bus stop), and the above-
mentioned model is introduced to design the feasible differentiated bus lines. In this pa-
per, 12 bus stops of bus no. 400 with large traveler flow on the Fourth Ring Road in Beijing 
were selected as the object bus stops (see Figure 3; bus stops with very few travelers were 
not considered). The OD matrix was obtained from the average passenger flow data be-
tween bus stops recorded within one month (bus card data). If there was no special expla-
nation later, then we illustrated the parameters of the model and algorithm in Tables 2 
and 3. 

 
Figure 3. Representative bus stops on the Fourth Ring Road in Beijing. 

  

Figure 3. Representative bus stops on the Fourth Ring Road in Beijing.



Symmetry 2021, 13, 2301 16 of 24

Table 3 illustrates the parameter setting of the model, in which the value of λm and cr
are determined on the basis of the literature [10], the fare range of bus per kilometer and
parking fee are determined on the basis of the mean value of real price in Beijing and the
value range is appropriately expanded, and the average departure frequency of a bus line
is determined by recording the departure frequency at the important bus stop. It is difficult
for travelers to remember their travel experience every day in the past, and thus we set the
value of L to 10 and set the value of Nagent to 100 to ensure that the evolution results of BM
model can converge in limited iteration time. By summarizing the relevant literature [25],
we found that when the average travel distance is less than 5 km, there will be a demand
for shared bike; thus, we set d∗ = 5.

7.2. Convergence of OD Matrix Equalization Algorithm

Step 2 of the solution algorithm in Section 6 is the OD matrix equalization algo-
rithm; here, we first verified the Theorem 1 by numerical simulation under different bus
line planning.

In Figure 4a, the vertical axis represents the mean value of

∣∣∣Qκ,t+1
i,j −Qκ,t

i,j

∣∣∣
Qκ,t

i,j
in all the

OD pairs (Table 2); after about 20 steps of iteration, the value tends to 0. Figure 4b–d
shows the traffic flow evolution among some typical OD pairs with 2, 3, and 4 bus lines,
respectively. It can be seen that the OD matrix equalization algorithm based on multi-agent
reinforcement learning and social interaction can make the traffic flow between bus stops
converge to a stable state. Theorem 1 is numerically verified under the condition of OD
matrix (multi-OD pairs).
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7.3. Optimization Results of the Differentiated Bus Lines and Fares

The optimization results of the multi-objective bi-level programming model in this
paper can be illustrated by the Pareto front obtained through the above solution algorithm.
Moreover, in order to compare the effects of different travel choice models (complete
rationality and bounded rationality) on the optimization results, we also introduced the
traditional logit model based on regret theory (lower level of (27), β = l, ψ = 0.5) to
simulate the travel mode choice behavior:

h
κ,t
i,j = Gκ,t

i,j − δ

(
min

κ∈{R,p,b}

{
G′κ,t

i,j

}
− G′κ,t

i,j

)
Qκ

i,j = Di,j ·
exp

(
−β·hκ,t

i,j

)
∑

κ∈{R,p,b}
exp

(
−β·hκ,t

i,j

) (33)

Figure 5 illustrates the Pareto optimal solutions obtained by the multi-objective bi-
level programming based on the two travel choice models (BM reinforcement learning
model with interaction and logit model), and Tables 4 and 5 show the representative Pareto
optimal solution based on these two models. It can be seen from Figure 5 that, compared
with the traditional logit model with complete rationality, the multi-objective bi-level
programming based on BM reinforcement learning model obtained higher travelers’ utility
but lower profit, which indicates that the increase of travelers’ learning behavior under
the assumption of regret theory improves the effectiveness of group decision making and
then reduces the profit of buses. It can also be seen from Tables 4 and 5 that different travel
choice models have significantly changed the optimization results of bus lines and the
differentiated fares. Moreover, except for the bus lines that stop at every bus stop, it can be
seen from the profit-oriented optimal solutions (solution B3) that the lower the number of
bus stops, the higher the ticket fare.
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Table 4. Representative Pareto optimal solution based on BM reinforcement learning model.

Scheme 1

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.0041

Bus line 1 0 0 0 0 0 1 1 1 0 1 1 0 0.0091

Bus line 2 0 0 0 0 0 0 1 1 1 0 1 0 0.1132

Bus line 3 1 0 1 1 1 1 0 0 0 1 1 0 0.3668

Bus line 4 1 1 1 1 1 1 1 1 0 1 1 1 0.3853

Solution B2

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.4321

Bus line 1 0 0 1 0 1 1 0 0 1 0 1 1 0.2245

Bus line 2 0 1 1 0 0 0 1 1 1 1 1 1 0.2838

Bus line 3 1 1 1 0 1 0 1 1 1 1 1 1 0.3405

Bus line 4 1 1 0 1 0 1 1 1 0 1 0 1 0.2402

Solution B3

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.4864

Bus line 1 1 1 1 0 1 0 1 0 1 0 1 0 0.4704

Bus line 2 1 1 1 1 0 1 1 1 1 1 1 1 0.0910

Bus line 3 1 1 1 0 1 1 0 0 1 1 1 0 0.3836

Bus line 4 0 1 0 0 0 1 1 0 1 1 1 0 0.4724



Symmetry 2021, 13, 2301 19 of 24

Table 5. Representative Pareto optimal solution based on logit model.

Solution L1

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.1954

Bus line 1 1 1 1 1 0 1 0 1 1 0 0 1 0.2473

Bus line 2 0 1 1 0 0 0 1 0 0 1 0 0 0.3761

Bus line 3 1 1 0 0 0 1 0 1 1 0 1 0 0.2140

Bus line 4 1 0 1 1 1 1 0 1 1 1 1 1 0.0372

Solution L2

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.3338

Bus line 1 0 0 0 1 0 1 0 0 1 1 1 1 0.1492

Bus line 2 0 1 1 1 0 1 1 1 1 1 0 1 0.0632

Bus line 3 0 0 0 0 0 0 1 1 1 0 1 1 0.3072

Bus line 4 1 0 1 0 0 1 0 0 0 1 1 1 0.3573

Solution L3

Stop
Schedule

Plans

1. Wu Ke
Song Qiao

Nan

2. Si Ji
Qing Qiao

Nan

3. Zhong
Guan Cun

Yi Jie

4. Xue Yuan
Qiao Dong

5. An Hui
Qiao Dong

6. Wang
Jing Qiao

Dong

7. Hong
Ling Jin
Qiao Bei

8. Da Jiao
Ting Qiao

Nan

9. Xiao
Hong Men

Qiao

10. Huang
Tu Gang

11. Yi Hai
Hua Yuan

12. Bei Da
Di

Fare per
Kilometer

Bus no. 400 1 1 1 1 1 1 1 1 1 1 1 1 0.1500

Bus line 1 0 1 1 0 0 1 0 0 0 1 0 1 0.4658

Bus line 2 0 0 1 0 0 0 0 1 0 0 0 0 0.5621

Bus line 3 0 1 1 0 0 1 1 0 1 1 0 0 0.4197

Bus line 4 0 0 0 0 0 0 0 0 1 0 1 0 0.2452
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It can be seen from Table 6 that the continuous evolution of travelers’ regret aversion
level in BM reinforcement learning model effectively reduces the generalized travel cost
(lower than logit model); therefore, the profit of the BM model is also lower than logit
model. Moreover, on the basis of the optimized bus lines, compared with the ticket fare
under real case (bus no. 400: RMB 2 within 10 km, RMB 1 for every additional 5 km), the
differentiated fares effectively reduce the maximum section flow of bus lines, which means
that the balance of passenger flow distribution in the bus network has been improved.

Table 6. Calculation results of the model.

BM Reinforcement Learning Model Logit Model

Pareto Optimal Solution B1 B2 B3 L1 L2 L3

Generalized travel cost 2.8443 3.9530 4.2712 3.7683 4.5115 5.5936

Average operating profit of buses −142.8101 −127.2018 −103.8919 −161.8960 −121.2167 −90.0820

Maximum sec tion flow
(max

{
f r+
i,i+1 + f r−

i,i+1

}
(r ∈ R, i ∈ V))

of the optimal bus lines
110.8276 80.0160 68.3004 69.3548 92.4435 95.4080

Maximum sec tion flow
(max

{
f r+
i,i+1 + f r−

i,i+1

}
(r ∈ R, i ∈ V)) of the

optimal bus lines based on real ticket fare
79.1855 84.3061 75.3261 69.5392 92.9450 92.6598

7.4. Effect of Important Parameters on Optimization Results

(1) Maximum number of bus lines

Change the maximum number of bus lines Nline
max and investigate the corresponding

changes of the optimal solution.
It can be seen from Figure 6 that with the decrease of Nline

max, the traveler utility de-
creases, and the operating profit of buses increases. Furthermore, in reality, there are two
bus circle lines on the Fourth Ring Road in Beijing (bus no. 400 and bus no. 400 fast); under
the condition of Nline

max = 2, a comparison is made between the corresponding Pareto opti-
mal solution and the bus lines and ticket fares under real case (Table 7). Table 7 shows that
compared with the bus lines and fares under real case (bus no. 400 and bus no. 400 fast),
the multi-objective bi-level programming proposed in this paper can generate the solution
to reduce the maximum section flow, increase the profit, and reduce the generalized travel
cost, thus reducing congestion.
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Table 7. The comparison between Pareto optimal solution and the real case.

Pareto Optimal Solutions and the Real Case B1
′

B2
′

B3
′

Maximum sec tion flow (max
{

f r+
i,i+1 + f r−

i,i+1

}
(r ∈ R, i ∈ V)) of the optimal

bus lines and differentiated fares
140.1102 89.9407 81.2725

Maximum sec tion flow (max
{

f r+
i,i+1 + f r−

i,i+1

}
(r ∈ R, i ∈ V)) of bus lines

under real case (bus no. 400 and bus no. 400 fast in Beijing)
101.3021 96.2163 87.2309

Average operating profit of the optimal bus lines and differentiated fares −75.3130 −56.5348 −37.3504

Average operating profit of bus lines under real case (bus no. 400 and bus no.
400 fast in Beijing) −63.0251

Generalized travel cost of the optimal bus lines and differentiated fares 0.4730 0.6485 0.9972

Generalized travel cost of bus lines under real case (bus no. 400 and bus no.
400 fast in Beijing) 0.7104

(2) Traveler’s learning behavior

On the basis of the optimal bus lines and differentiated fares obtained from the multi-
objective bi-level programming, we analyzed the impact of travelers’ behavior on the
objective function through numerical simulation.

Figure 7 illustrates the effect of traveler’s learning behavior (travelers’ learning in-
tensity l and traveler’s interaction intensity of risk aversion pc) on generalized travel cost,
wherein it can be seen that the generalized travel cost corresponding to the representative
Pareto optimal solution decreases with the increase of l and pc. This result indicates that
travelers’ reinforcement learning and information exchanging on risk aversion level in
the multi-objective bi-level programming are effective; therefore, increasing the dissemi-
nation of travel cost information and risk attitude among travelers can effectively reduce
travel costs.
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7.5. Equilibrium Analysis of Ring Road Bus Line Planning

In reality, the management department of buses is not always able to accurately
perceive the complexity of travelers’ decisions; therefore, the management department of
buses often predicts group behavior on the basis of general equilibrium theory. Moreover,
when taking the social interaction into consideration, we find that the equilibrium condition
of travelers from the perspective of bus management department can be formulated as [10]

E(ξx) = tanh

β

−G′
κ
i,j + λm ·

∑
y 6=x

E
(
ξy
)

Di,j − 1


 (34)
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Furthermore, the social equilibrium equation of all travelers among the bus lines can
be formulated as

µ∗ = tanh
[

β
(

λmµ∗ − G′
κ
i,j

)]
(35)

Here, µ∗ represents the average choice proportion of a travel mode when travelers’
behavior is in equilibrium; therefore, the adjustment of bus lines and travelers’ group be-
havior can change the social equilibrium. On the basis of the representative Pareto optimal
solution, we analyzed the proportion of travel mode choice according to Equation (34) and
investigated the impact of optimal bus lines and differentiated fares on the equilibrium.

Figure 8a shows the relationship between subjective expectation curves (based on
Equation (34)) of different bus line schemes (Pareto optimal solutions and the bus lines and
ticket fares under real case, Nline

max = 2) and travelers’ group selection equilibrium under the
multi-agent BM reinforcement learning model. It can be seen that, when λm = 1.5, neither
Pareto optimal solution nor bus lines and ticket fares under real case can make travelers’
subjective expectation and actual decision reach equilibrium; however, compared with
the bus lines and ticket fares under real case, the model proposed in this paper produces
Pareto optimal solutions that make the subjective expectation curve closer to equilibrium
(B1 and B2). Moreover, it can be seen from Figure 8b that, when λm = 2.3, the Pareto
optimal solution B2 reaches unique equilibrium; in this equilibrium state, the proportion of
travelers who choose bus is greater than 0.5, and the Pareto optimal solution B1 produces
two equilibrium points, namely, advantage equilibrium point (the proportion of travelers
who choose bus is greater than 0.5) and disadvantage equilibrium point (the proportion of
travelers who choose bus is less than 0.5). Therefore, Figure 8a,b shows that the complexity
of travelers’ group behavior will significantly shift the social equilibrium equation, and
the increase of social interaction intensity makes the subjective expectation curve move to
the upper left. For the management department of buses, different bus line and fare plans
(from B1 to B3) will also significantly shift the social equilibrium equation, and thus the
management department of buses can appropriately increase the dissemination of accurate
travel cost information among travelers to promote the formation of equilibrium.
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8. Conclusions

In this paper, a multi-objective bi-level programming model of bus lines and dif-
ferentiated ticket fares for the urban ring road was proposed. The operating profit and
travelers’ utility are taken as objective functions. In the new model we have proposed,
travelers’ reinforcement learning behavior and social interaction for higher utility based on
regret theory is introduced. Through the numerical analysis based on real bus lines (the
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bus circle lines on the Fourth Ring Road in Beijing), we made the following conclusions:
(1) Travel choice models with different degrees of rationality have significantly changed the
optimization results of bus lines and the differentiated fares. (2) Compared with the ticket
fare under real case, the differentiated fares effectively reduce the maximum section flow
of bus lines. (3) Compared with the bus lines and fares under real case, the multi-objective
bi-level programming in this paper can generate the solution to reduce the maximum
section flow, increase the profit, and reduce the generalized travel cost. (4) In order to en-
courage travelers to choose buses, the management department of buses can appropriately
increase the dissemination of accurate travel cost information among travelers to promote
the formation of advantage equilibrium and to reduce travelers’ travel costs. Moreover,
travelers should also increase the intensity of learning and the social interaction of risk
aversion level to reduce their generalized travel costs.

In addition, this paper shows that, compared with the logit model with complete
information and complete rationality, under the condition of multi-objective optimization,
the evolutionary learning behavior of travelers can reduce the operating profit of trans-
portation system. Therefore, it can be seen that, whether under the condition of complete
rationality or under the condition of complex cluster behavior, the more accurate travelers
master the utility information, the higher the travel utility, and the lower the profit of the
transportation system.
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