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Abstract: The quasisymmetry (QS) model for square contingency tables is revisited, highlighting
properties and features on the basis of its alternative definitions. More parsimonious QS-type models,
such as the ordinal QS model for ordinal classification variables and models based on association
models (AMs) with homogeneous row and column scores, are discussed. All these models are
linked to the local odds ratios (LOR). QS-type models and AMs were extended in the literature for
generalized odds ratios other than LOR. Furthermore, in an information-theoretic context, they are
expressed as distance models from a parsimonious reference model (the complete symmetry for QS
and the independence for AMs), while they satisfy closeness properties with respect to Kullback–
Leibler (KL) divergence. Replacing the KL by φ divergence, flexible classes of QS-type models for
LOR, AMs for LOR, and AMs for generalized odds ratios were generated. However, special QS-type
models that are based on homogeneous AMs for LOR have not been extended to φ-divergence-based
classes so far, or the QS-type models for generalized odds ratios. In this work, we develop these
missing extensions, and discuss QS-type models and their generalizations in depth. These flexible
families enrich the modeling options, leading to models of better fit and sound interpretation, as
illustrated by representative examples.

Keywords: square contingency table; ordinal variables; generalized odds ratios; log-linear models;
association models

1. Introduction

A special type of square contingency table that occurs often in studies of correlated
or repeated categorical measurements, e.g., in panels or social mobility studies, is a table
with row and column classification variables measured on the same scale, which can be
nominal or ordinal. Caussinus, in his pioneering work [1], introduced quasisymmetry (QS)
models for such square contingency tables, focusing on its mathematical properties and
its connection to the models of complete symmetry (S) and marginal homogeneity (MH).
The interpretation aspects were developed later by [2–4], among others. The QS model
applies on contingency tables that have a common nominal classification scale. An ordinal
QS (OQS) model was introduced by [5].

In this work, we focus on the QS model, penetrating its features by considering the
alternative equivalent definitions of QS in terms of cell probabilities, local odds ratios
(LOR), and as a model measuring departure from the S model. Furthermore, outgoing
from the fact that, under QS, the table of LOR is symmetric, we discuss more special
parsimonious QS models that are based on the family of association models (AMs) with
homogeneous row and column scores ([3,6]). In a information-theoretic setup, QS and OQS
models were generalized through φ-divergence to the corresponding families of models
QS(φ) and OQS(φ) ([7,8]). Associated orthogonal decomposition properties of the S model
were proved for the QS(φ) and OQS(φ) models, respectively, by [7,9]. Further variants of
φ-divergence QS-type models and S decomposition properties were discussed in [10–12].
A detailed literature review on QS models and links to other models of symmetry and
asymmetry can be found in [13]. Here, we introduce a φ-divergence family of special QS
models that roots on the φ-divergence family of AMs ([14]).
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Moving from LOR to generalized odds ratios, e.g., global odds ratios (GOR), QS
models were also considered for modeling the symmetry of generalized odds ratios ([15]).
AMs for generalized odds ratios ([16]) were extended to a broader family through the
φ-divergence ([17]). Combining these two families of models discussed in [15,17], we
introduce here new flexible classes of QS models for generalized odds ratios that are based
on φ-divergence.

Overall, we revisit the QS model:

i. Aiming at an indepth discussion of its nature and properties, as consolidated by the
alternative possible definitions of QS, and consideration of special QS-type models,
with an emphasis on QS-type models that are based on homogeneous AMs.

ii. Reviewing extensions of QS-type models towards two directions: (a) in an information-
theoretic setup by replacing the role of KL divergence by φ-divergence, and (b) con-
sidering them for generalized odds ratios other than LOR.

iii. Proposing a new φ-divergence family of QS-type models by expanding the relation
of QS to homogeneous AMs for the φ-divergence AMs.

iv. Introducing a flexible family of models by extending models of ii(b) above in terms of
the φ-divergence.

The paper is structured as follows. Section 2 reviews QS and OQS models, focusing
on their structural properties, and further discusses AMs with homogeneous scores that
are of the QS-type. Section 3 presents QS and OQS models for generalized odds ratios.
Generalized families of QS and OQS models for LOR based on φ divergence are briefly
reviewed in Section 4. In Section 5, the QS-type models of Section 2.2 and the QS models
for generalized odds ratios of Section 3 are expanded to corresponding φ divergence-
based classes of models by modeling φ-scaled generalized odds ratios. A selection of the
discussed models is illustrated on two examples in Section 6. Section 7 discusses further
possible models that can be investigated. Section 8 summarizes our results.

2. Quasisymmetry Models for Square Contingency Tables

Consider an I × I contingency table cross-classifying two categorical variables X
and Y, measured on the same scale, and corresponding to the rows and columns of the
table. Let π = (πij) be the associated probability table with cell entry probabilities
πij = P(X = i, Y = j), for i, j = 1, . . . , I, where πij ∈ [0, 1] and ∑i,j πij = 1. Then, the QS
model, initially introduced by Caussinus [1], is expressed in log-linear form as

log(πij) = u + uX
i + uX

j + αj + uXY
ij , i, j = 1, . . . , I, (1)

with symmetric interactions, i.e., with

uXY
ij = uXY

ji , i < j, i, j = 1, . . . , I. (2)

Parameters in (1) satisfy some identifiability constraints. We set

uX
1 = α1 = 0 and uXY

1i = uXY
i1 = 0, i = 1, . . . , I. (3)

The degrees of freedom of (1) equal d f (QS) = (I − 1)(I − 2)/2. The αj parameters
measure the departure from model of complete symmetry S, under which πij = πji = πS

ij,
for all i < j. Indeed, QS is reduced to S if αj = 0, for all j. Model (1) fits the diagonal
entries exactly.

In terms of cell probabilities, (1) is equivalently expressed as

πij = πS
ij

2ci
ci + cj

, i, j = 1, . . . , I, (4)

with parameters ci providing insight into sources of marginal inhomogeneity, as discussed
in [7,18].
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Alternatively, the QS model can be defined in terms of the LOR

θL
ij =

πijπi+1,j+1

πi+1,jπi,j+1
, i, j = 1, . . . , I − 1, (5)

i.e., the odds ratios of all 2× 2 subtables formed by pairs of successive rows and successive
columns. These form an (I − 1)× (I − 1) contingency table, and QS is the model that has
symmetric LOR

θL
ij = θL

ji , i < j, i, j = 1, . . . , I − 1, (6)

and fits the diagonal entries of the probability table exactly, as indicated in [19]. This
definition through the LOR highlights a basic structural property of QS, facilitating its
physical interpretation and enabling generalizations in new directions by considering
alternative types of odds ratios, as we show in Section 3.

2.1. QS Model for Ordinal Classification Variables

Usually in applications of the QS model, the classification scale is ordinal. However,
QS is also applicable for tables with nominal classification variables, since it fulfils the
permutation invariance property ([20]). In the case of an ordinal scale, alternative QS-type
models are possible that are more parsimonious and provide insightful interpretation.
Agresti [5] introduced the ordinal QS (OQS) model

log(πij) = u + uX
i + uX

j + β · j + uXY
ij , i, j = 1, . . . , I, (7)

with interaction parameters satisfying (2) and under (3). In other words, OQS is a special,
more parsimonious QS model, derived from (1) when αj = β · j. It has just one parameter
more than the S model; hence, d f (OQS) = d f (S)− 1 = I(I − 1)/2− 1. Equivalently, (7)
can be expressed as

πij = πjiδ
i−j, i ≤ j, i, j = 1, . . . , I, (8)

with β = − log(δ), or as a departure from symmetry model

πij = πS
ij

δi

δi + δj , i ≤ j, i, j = 1, . . . , I. (9)

Under the OQS model, scores are assigned to the classification categories that equal the
category indices (µj = j, j = 1, . . . , I). It can be easily verified that these scores in (7) and (8)
can equivalently be replaced by any equally spaced scores, i.e., linear transformation of
µjs. More generally, one could consider an OQS model for known but unequally spaced
scores, that is, for any set of known scores µ1 ≤ µ2 . . . ≤ µI (with µ1 < µI). This model
however will no more be equivalent to (7). Analogously to the QS model, OQS reduces to
the S model when β = 0 (or δ = 1).

2.2. Association Models with Homogeneous Scores

Log-linear models with interactions for two-way contingency tables are saturated. In
case of a square table, the saturated log-linear model is given by

log(πij) = u + uX
i + uY

j + uXY
ij , i, j = 1, . . . , I. (10)

Association models (AMs) impose special structures on the interactions, thus leading
to nonsaturated dependence models of sound interpretation. They are also known as
Goodman’s AMs (see [6] and references therein). For a detailed discussion of AMs and the
associated literature, we refer to [21] (Chapter 6); a short presentation is provided in [22].

The simplest association model is that of uniform association (U) that is applied on tables
with ordinal classification variables and model interactions through just one parameter
of intrinsic association on the basis of equidistant scores assigned to the categories of the
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classification variables. The U model for square contingency tables (with classification
variables of common scale) can be expressed as

log(πij) = u + uX
i + uY

j + ζµiµj , i, j = 1, . . . , I, (11)

where ζ is the intrinsic association parameter and µ1 < µ2 . . . < µI are known scores
assigned to the classification categories, which are homogeneous for rows and columns,
and equidistant for successive categories (µi+1 − µi = δ > 0). Under (11), interaction
parameters uXY

ij = ζµiµj are obviously symmetric. Under the U model, all LORs are
equal since

log(θL
ij) = ζ(µi+1 − µi)(µj+1 − µj) = ζδ2 , i, j = 1, . . . , I − 1 , (12)

and thus (6) is trivially fulfilled. However, (11) is not of the QS-type since it does not
exactly fit on the diagonal. Its extension

log(πij) = u + uX
i + uY

j + diI(i = j) + ζµiµj , i, j = 1, . . . , I, (13)

where I is the indicator function, is the homogeneous uniform association model with
exactly fitted diagonal entries, denoted by Uhd, introduced by [3] as the uniform with main
diagonal deleted model. It is a quasisymmetric model for ordinal classifications, more
parsimonious than QS with d f (Uhd) = (I − 1)2 − I − 1. It is an alternative to OQS and
more parsimonious than OQS for I > 4.

Analogously to the OQS model, Model (13) can be considered for arbitrary known
scores µ1 ≤ µ2 . . . ≤ µI (with µ1 < µI). Furthermore, considering expression (13) with
unknown parametric scores, not necessarily ordered, the homogeneous RC model with ex-
actly fitted diagonals (RCd

h) is derived, which is another QS-type model, less parsimonious
than Uhd that can apply also to nominal classification variables. For a discussion on Uhd,
RCd

h and further homogeneous AMs of higher order (i.e., homogeneous RC(K) models)
and their links to QS, we refer e.g., to [21] (Section 9.4).

3. Generalized QS Models

In case one or both of the classification variables are ordinal, there exist other types
of odds ratios that are alternatives to LOR. In our framework of square tables with clas-
sification variables measured on the same scale, of interest are, beyond LOR, odds ratios
for tables with ordinal classification scale. The most popular type for ordinal classifica-
tion variables is the global odds ratios (GOR), which for an I × I contingency table are
defined as

θG
ij =

πi,j/πi,j

πi,j/πi,j
=

(∑s≤i,k≤j πsk)/(∑s≤i,k>j πsk)

(∑s>i,k≤j πsk)/(∑s>i,k>j πsk)
, i, j = 1, . . . , I − 1. (14)

The characterization global is because every θG
ij is based on the whole contingency

table since it dichotomizes X and Y at levels i and j, respectively, and accordingly merges
the cell probabilities. GOR treat both classification variables in a symmetric manner. When
merging is considered only for one classification variable, for example, Y, while the other
is treated locally, then the cumulative odds ratios (COR) are derived

θ
CY
ij =

πi,j/πi,j

πi+1,j/πi+1,j
=

(∑k≤j πik)/(∑k>j πik)

(∑k≤j πi+1,k)/(∑k>j πi+1,k)
, i, j = 1, . . . , I − 1. (15)

COR can be used in problems of modeling the effect of an explanatory variable on a
response. In particular, θ

CY
ij could be considered if Y is the response. Obviously, θCX

ij can be
analogously defined. For further types of generalized odds ratios and their detailed study,
their inter-relations, and associated positive dependence properties, we refer to [23].
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Motivated by the definition of QS through the symmetric LOR, the authors in [15]
introduced generalized QS-type models for generalized odds ratios other than the LOR.
In this context, the classical QS model that applies on the LOR would be denoted by QSL,
while analogously to (6), the QS property for the GOR is defined by

θG
ij = θG

ji , i < j, i, j = 1, . . . , I − 1. (16)

and denoted by QSG. On the other hand, the definition of the QSC model for the COR
requires to change also the role of the response variable

θ
CY
ij = θCX

ji , i < j, i, j = 1, . . . , I − 1, (17)

as explained in [15].

4. φ-Divergence-Based Families of Generalized QS Models

Model QS and OQS can be defined as departure from complete symmetry models
(see (4) and (9)). From a statistical information point of view, they share a common property.
Both, under certain conditions (different for each model), are the closest models to complete
symmetry when the distance in measured in terms of the KL divergence, as proved by [7,8]
for QS and OQS, respectively. Furthermore, the authors in [7,8] introduced and studied
general classes of QS and OQS models, derived by replacing the KL divergence by a family
of divergences, φ-divergence, which includes the KL as special case.

In particular, φ-divergence is an important generalized measure for measuring diver-
gence between two probability distributions. In our setup, if π = (πij), q = (qij) are two
discrete finite I × I probability distributions, the φ-divergence between q and π is given by

Iφ(q, π) = ∑
i,j

πijφ(qij/πij), (18)

where φ is a real-valued strictly convex function on [0, ∞) with φ(1) = φ′(1) = 0,
0φ(0/0) = 0, 0φ(y/0) = limx→∞ φ(x)/x (see e.g., [24]). The KL divergence

IKL(q, π) = ∑
i,j

qij log(qij/πij), (19)

is derived from (18) for φ(x) = x log x. Setting φ(x) = (1− x)2, Pearson’s divergence is
obtained, while φ(x) = xλ+1−x

λ(λ+1) , leads to the power divergence measure of Cressie and Read
(CR) [25]

ICR
λ (q, π) =

1
λ(λ + 1)

K

∑
i=1

qi

[(
qi
πi

)λ

− 1

]
, −∞ < λ < ∞ , λ 6= −1, 0, (20)

which is a flexible parametric family itself, controlled by the parameter λ. For λ → 0, (20)
converges to the IKL(q, π), for λ = 1 it corresponds to Pearson’s divergence and for
λ = −1/2 to the Hellinger divergence.

The φ-divergence-based QS family of models (QSL(φ)), introduced by [7], is defined by

πij = πS
ijF
−1(αi + γij), i, j = 1, . . . , I, (21)

with γij = γji, where F−1 is the inverse function of F = φ′. For the KL divergence

φ(x) = x log(x) and (21) leads to model (4) while for the CR φ(x) = xλ+1−x
λ(λ+1) , the QSL(λ)

family of models
πij = πS

ij{1 + λ(αi + γij)}1/λ, i, j = 1, . . . , I, (22)
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is derived. In this context, the standard QS model is denoted by QSL(0) as a member of
this family. The superscript L in these models notation indicates the fact that they impose
symmetric restrictions on LOR.

Analogously, the generalized family of OQS models, OQS(φ), is defined by

πij = πS
ijF
−1(αµi + γij), i, j = 1, . . . , I, (23)

with γij = γji and µ1, . . . , µI known monotonic equidistant scores (see [8]). OQS(φ) reduces
to (9) for φ(x) = x log(x), while, for the CR divergence, OQS(λ) is given by

πij = πS
ij{1 + λ(αµi + γij)}1/λ, i, j = 1, . . . , I. (24)

5. New Families of φ-Divergence Generalized QS Models

The QS-type models of Section 2.2 that are linked to AMs with homogenous row and
column scores can be extended to φ-divergence-based families through the φ-divergence
AMs of [14]. A brief presentation of the φ-divergence AMs and the underlying concept can
be found in [22]. Here, we focus just on the families corresponding to the U model with
homogeneous row and column scores. Associated φ-divergence-based family of models
U(φ)

h is defined as

πij = πi+π+jF−1(αi + β j + ζµiµj
)
, i, j = 1, . . . , I , (25)

where πi+ and π+j denote the i-th row and j-th column marginals respectively, i.e., πi+ =

∑I
i=1 πij π+j = ∑I

j=1 πij. For the KL divergence, U(φ)
h leads to model (11) while for the

CR–divergence it takes the form

πij = πi+π+j

[
1

λ + 1
+ λ(α1 + β j + ζµiµj)

]1/λ

, i, j = 1, . . . , I , (26)

denoted by U(λ)
h . Hence the special QS-type model Uhd defined in (13), can be extended to

a family of models

πij = πi+π+jF−1(αi + β j + diI(i = j) + ζµiµj
)
, i, j = 1, . . . , I , (27)

denoted by U(φ)
hd . The model expression corresponding to CR divergence is denoted

by U(λ)
hd .
Furthermore, the QS models for generalized odds ratios, introduced in [15] and

presented in Section 3, can be extended to a flexible φ-divergence family, based on the
φ-divergence generalized AMs of [17], which are briefly presented below, adjusted in our
set–up.

Analogously to expression (12) for the UL
h model, U(φ)

h can alternatively be expressed as

θ
L(φ)
ij = ζ(µi+1 − µi)(µj+1 − µj) = ζδ2, i, j = 1, . . . , I − 1 , (28)

where

θ
L(φ)
ij = F

(
πij

πi+π+j

)
+ F

(
πi+1,j+1

πi+1,+π+,j+1

)
− F

(
πi+1,j

πi+1,+π+j

)
− F

(
πi,j+1

πi+π+,j+1

)
, (29)

for i, j = 1, . . . , I − 1, are measures of local dependence, scaled through the φ-divergence
and denoted by LOR(φ). For φ(x) = x log x, LOR(φ) is the log(LOR), modeled in (12),
which in the sequel is denoted as θ

L(0)
ij = log(θL

ij), i, j = 1, . . . , I − 1. For the CR divergence,
(29) becomes
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θ
L(λ)
ij =

1
λ

( πij

πi+π+j

)λ

+

(
πi+1,j+1

πi+1,+π+,j+1

)λ

−
(

πi+1,j

πi+1,+π+j

)λ

−
(

πi,j+1

πi+π+,j+1

)λ
. (30)

Forcina and Kateri ([17]) provided expressions for φ-scaled generalized odds ratios
and introduced families of φ-divergence AMs for generalized odds ratios, which they
studied. Thus, for example, GOR and COR extend to GOR(φ) and COR(φ), given by

θ
G(φ)
ij = F

(
πi,j

πi+π+j

)
+ F

(
πi,j

πi+π+j

)
− F

(
πi,j

πi+π+j

)
− F

(
πi,j

πi+π+j

)
, (31)

and

θ
C(φ)
ij = F

(
πi,j

πi+π+j

)
+ F

(
πi+1,j

πi+1,+π+j

)
− F

(
πi+1,j

πi+1,+π+j

)
− F

(
πi,j

πi+π+j

)
, (32)

for i, j = 1, . . . , I − 1. The merged probabilities in (31) and (32) are the same as defined in
(14) and (15). For the KL divergence, (31) and (32) reduce to (14) and (15), while for the CR
divergence, setting F(x) = 1

λ xλ, the corresponding expressions GOR(λ) and COR(λ) are
derived. Through these φ-scaled generalized odds ratios, generalized QS models, such as
QSG and QSC, are extended to φ-divergence-based families of models by replacing in the
definitions (16) and (17) the GOR and COR by GOR(φ) and COR(φ). QS-type models for
other types of generalized odds ratios, introduced in [15], can be analogously extended to
φ-divergence-based families.

6. Examples

We first illustrate QS-type models on one of the most classical datasets of square tables,
namely, the women vision data provided in Table 1. Apart from the standard QS model
fitted often in the literature, the author in [5] fitted on this dataset the OQS model, while
the authors in [7] the QSL(λ) and in [8] the OQS(λ), for λ = 1. Furthermore, the authors in
[15] fitted QS models for generalized odds ratios other than the LOR.

Table 1. Cross-classification of 7477 women by unaided distance vision of right and left eyes. In parentheses are the MLEs
of the expected frequencies under OQS(1) model.

Left Eye Grade

Right Eye Grade Best Second Third Worst Total

best 1520 266 (263.35) 124 (133.37) 66 (59.17) 1976
second 234 (236.65) 1512 432 (418.20) 78 (88.54) 2256
third 117 (107.63) 362 (375.80) 1772 205 (202.25) 2456
worst 36 (42.83) 82 (71.46) 179 (181.74) 492 789
total 1907 2222 2507 841 7477

Our second example, provided in Table 2, cross-classifies male respondents of the 2008
General Social Survey (GSS) in the USA on the basis of their degree of pride with regard to
America’s economic vs scientific and tech achievements. We applied on this dataset the
same models as on the women-vision data.
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Table 2. Cross-classification of male respondents of GSS 2008 survey by degree of proud (VP: very
proud, SWP: somewhat proud, NVP: not very proud; NP: not proud at all) with regard to America’s
economic achievements (rows) vs scientific and tech achievements (columns). In parentheses are the
MLEs of the expected frequencies under QSG(0) model.

Science and Tech

Economic VP SWP NVP NP Total

VP 369 (368.81) 59 (58.73) 6 (6.84) 1 (0.97) 435
SWP 226 (226.63) 238 (237.69) 10 (9.74) 3 (2.85) 477
NVP 60 (59.16) 67 (67.65) 14 (13.78) 2 (2.09) 143
NP 7 (7.063) 16 (16.18) 3 (2.83) 2 (2.00) 28

total 662 380 33 8 1083

In Table 3 we provide the likelihood ratio goodness of fit (GOF) test statistic values for
QS-type models fitted on the LOR for both examples. Table 4 shows the GOF test statistics
for the generalized QS model fitted on the GOR.

Table 3. Goodness-of-fit test statistics (with corresponding P values in parentheses) for the QSL(λ)

and OQS(λ) for λ ∈ {0, 1} along with the Uhd model fitted on data of Tables 1 and 2.

Model d f Table 1 Table 2

QSL(0) 3 7.2708 (0.0638) 3.4181 (0.3315)
QSL(1) 3 7.2620 (0.0640) 20.1060 (0.0002)
OQS(0) 5 7.2804 (0.2006) 8.8867 (0.1137)
OQS(1) 5 7.2708 (0.2013) 47.7122 (<10−5)

Uhd 4 61.3082 (<10−5) 3.9002 (0.4197)

For the women-vision example, OQS models were best. The scale in this case is not of
practical importance, since QSL(0) and QSL(1), corresponding to the KL and Pearsonian
divergence, are of comparable fit (their maximum likelihood estimates (MLEs) differ on
the second decimal place). The MLEs of the expected cell frequencies under QSL(1) are
provided in Table 1. This model, i.e., (24) with λ = 1 and µi = i, i = 1, . . . , I, takes the final
form (see [8])

πij = πS
ij{1 + α(i− j)}, i, j = 1, . . . , I. (33)

The MLE for α is α̂ = −0.0534 < 0 and hence the probabilities in the lower triangle in
Table 1 are estimated to be smaller than those in the upper. Hence the vision is worse for
the left eye. Under this model, it holds

πij

πji
=

1 + α(i− j)
1 + α(j− i)

, i < j.

Thus, the odds of an observation falling in a certain subdiagonal under the main diago-
nal of the table (instead of the corresponding superdiagonal) are estimated as
π̂ij
π̂ji

= 1−0.0534(i−j)
1−0.0534(j−i) , i < j. Notice that in [8] the corresponding α̂ value is different (=0.119).

This is due to rescaling, since there is used a different set of ui scores (the π̂ij’s are the same).
The situation is different for the second example, where it is clear that the KL diver-

gence should be used for modeling the LOR (see Table 3). Furthermore we see that for this
data set, the Uhd model, that imposes a special parsimonious structure on the interaction
terms and not on the main effects (as under the OQS models), is of better fit. However, an
impressive fit is provided by the QSG models (see Table 4). The best fit is for λ = 0 and
thus the MLEs of the expected cell frequencies under QSG(0) are shown in Table 2. Hence,
for this data set the QS property is significantly stronger supported for the global (than the
local) dependencies.
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Table 4. Goodness-of-fit test statistics for the QSG(λ) models for the GOR, fitted on the data of
Tables 1 and 2 for λ ∈ {−1/2, 0, 1/3, 2/3, 1}. All models have d f = 3.

Model Table 1 Table 2

QSG(−1/2) 7.5474 (0.0564) 0.4239 (0.9353)
QSG(0) 7.6242 (0.0544) 0.1652 (0.9830)

QSG(1/3) 7.8872 (0.0484) 0.2105 (0.9759)
QSG(2/3) 8.4732 (0.0372) 0.4437 (0.9311)
QSG(1) 9.2519 (0.0261) 0.8973 (0.8261)

In our examples, we considered specific choices for the parameter λ. Analysis and
interpretation of results follows analogously for other choices of the parameter λ.

7. Discussion

In future research, it would be interesting to consider more parsimonious QS-type
models for generalized odds ratios, analogs to Uhd for LOR, as for example, the model of
uniform GOR with homogeneous (equidistant) row and column scores, i.e., satisfying

log(θG
ij ) = ζδ2 , i, j = 1, . . . , I − 1 ,

that additionally fits the probabilities on the main diagonal cells exactly. AMs that model
interactions other than local, though they are naturally defined by the corresponding type
of odds ratios, do not provide closed form expressions for the individual cell probabilities.
Hence, a definition of the associated QS-type models by expressions analog to (13) is not
possible. For the same reason, the OQS model cannot be extended to other types of odds
ratios by the approach adopted here. Since it imposes a special structure on the main
effects, this cannot be captured when defining models in terms of odds ratios; expressions
in terms of cell probabilities are required. Recently, the authors in [17] derived expressions
for such generalized AMs in terms of suitable associated marginal probabilities. These
expressions include parameters for the main effects (see Forms (9) and (10) in [17]). One
could generalize Uhd and OQS for other types of odds ratios, adopting the framework
of [17].

8. Conclusions

In this work, we revisited the QS model for square contingency tables with commen-
surable classification variables and discussed its possible equivalent formulations. QS is
mostly expressed in terms of cell probabilities, while it can alternatively be expressed in
terms of local odds ratios Its definition as a departure model from the more parsimonious
model of complete symmetry provides additional interpretation features. Furthermore,
we considered the OQS model, a more parsimonious QS-type model, applicable if the
classification scale is ordinal, which imposes a special structure on the main effects of the
model. On the other hand, further QS-type models can be derived by considering a special
structure for the interaction terms. This is possible through AMs with homogeneous row
and column scores. In particular, by adding parameters to homogeneous AMs that ensure
the exact fit on the diagonal entries of the contingency table, models are derived that model
the off-diagonal cells and have symmetric interaction terms. Thus, they are of the QS-type,
but more parsimonious than the standard QS model. All these models are related to LOR
and model local dependencies of the table. Next we present how these models can be
defined for other types of generalized odds ratios, reviewing the work of [15].

In a statistical information-theoretic setup, QS-type models and AMs satisfy properties
of closeness to a specific reference model, when their divergence from the reference model
is measured in terms of KL divergence. The reference model is that of symmetry (for
QS and OQS models) or independence (for AMs). Replacing KL divergence with φ-
divergence, generalized families of AMs, QS and OQS models for LOR were considered
by [7,8,14], respectively. The QS model was linked to GOR in [16], while [15] introduced
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and implemented QS models for GOR and other types of generalized odds ratios, without,
however, considering the link to divergence measures and associated properties. The
possible extension of these models in terms of φ-divergence was a topic for further research
in [15]. Here, we extended these models to φ-scaled generalized odds ratios and linked
them to corresponding AMs on the basis of the results and models discussed in [17].
We demonstrated the flexibility in modeling the classes of models discussed here by
implementing and discussing some of these models on two representative examples.
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