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Abstract: The flow separation state reflects the symmetry and stability of flow around spheres.
The three-dimensional structures of flow around a rigid sphere at moderate Reynolds number (Re)
between 20 and 400 by using finite volume method with adaptive mesh refinement are presented,
and the process of separation angles changing from stable to oscillating state with increasing of
Re is analyzed. The results show that the flow is steady, and the separation angles are stable and
axisymmetric at Re in less than 200. The flow is unsteady and time-periodic, and the flow separation
becomes regular fluctuations and asymmetric at Re = 300, which leads to the nonzero value of lateral
force and the phase difference between lift and lateral force. At Re = 400, the flow is unsteady,
non-periodic, and asymmetric, as is the flow separation. It’s concluded that the flow separation angle
increases when Re increases within a range between 40 and 200. With Re continues to increase, the
flow separation state changes from stable to periodically regular until quasi-periodically irregular.
The vortex structure changes from no shedding to asymmetric periodic shedding, and finally to
asymmetric and intermittently periodic vortex shedding. These results have important implications
for the stability of flow around spheres.

Keywords: flow around a sphere; flow separation; adaptive mesh; force coefficient; vortex shedding

1. Introduction

The incompressible viscous flow around a sphere is important in fluid mechanics [1,2].
There are also many applications in the ocean, such as spherical detectors, spherical buoys,
etc. The phenomenon of fluid separated from the spherical surface has been studied by
many physicists, engineers, and mathematicians [3,4], and this is attributed to its extensive
application in engineering, industrial and environmental flow. Flow stability is important
when flow around blunt bodies, and asymmetric flow separation can have a great impact
on the stability of the flow. Therefore, it is necessary to study the separation of flow
around a sphere from axisymmetric to asymmetric flow separation, which occurs at the
Reynolds number between 200 and 400 [5,6]. However, the details of flow separation are
not described much with the increase of Reynolds number. In previous literature, people
only listed the separation angles and the lengths of the separation bubble under a certain
Reynolds number, and they are all fixed values. Of course, these are applicable when the
Reynolds number is under 200. However, when the Reynolds number exceeds 270 (the
flow is unsteady under this Reynolds number [7]), it is worth thinking about that whether
the separation angle is fixed over time at a given Reynolds number.

With the increase of Reynolds number, the wake vortex and symmetry structure of
flow around a sphere have been analyzed a lot. Many experiments and simulations have
been carried out to figure out that there are various flow regimes that occur for uniform flow
around a stationary rigid sphere with increasing Reynolds number. In the literature [5,6],
some summaries that the flow mechanisms in wake field were not the same in different
Reynolds number intervals were given. Flow separation around a sphere occurs when
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the shear stress is zero [8]. The flow separation angle measured from the front stagnation
point decreases with the increasing Reynolds number between 20 and 500. It is due to
the inertia effects being more dominant than the viscous effect as the Reynolds number
increases, and the boundary layer separates from the sphere more quickly. Separation
angle measured from the rear stagnation point of steady flow around a sphere at different
Reynolds numbers under 375 was discussed [9]. As the Reynolds number gradually
increases, the separation angle also gradually increases. Moreover, the growth trend is
getting slower and slower. The variation law of the separation angle also appears when the
Reynolds number is under 1000 [10]. It is also mentioned in other literature [11] that the
variation of the separation angle with time is unstable under a certain Reynolds number,
but the authors attribute it to the instability of numerical simulation. Moreover, a new
vorticity model is established to characterize the separation of symmetric flow fields [12].

The experiments were conducted mainly by means of the condensed milk method
with the flow around a sphere at Reynolds numbers between about 60 and 300. The
separation angle also increased with the increasing Reynolds number, and this phenomenon
is consistent with the results of numerical simulation [13]. The empirical formula obtained
by the experimental method was the functional relationship between the separation angle
and the Reynolds number when the Reynolds number was between 30 and 750 [14]. Based
on this, a similar modified empirical formula also appears and the Reynolds number
was between 300 and 3000 [15]. The experiments of flow past a sphere in wind tunnels
have also been performed at Reynolds numbers ranging from 3× 104 to 3× 107 with
0.3 ≤ Ma ≤ 3 [16]. The effect of the Mach and Reynolds numbers on the position of
the separation point was investigated. Additionally, the experimental investigation of
the separation process of multi-spheres had been performed in hypersonic flow, and the
effects of the number of spheres and the ratio of the diameter on flow separation are
investigated [17,18]. Of course, experiments were conducted to study the flow separations
of a sphere rolling on an inclined plane at Reynolds number between 1350 and 1550 [19].
Flow separation was divided into four different regions, and each region had different
characteristics.

In this paper, the numerical simulation and analysis of flow around a grid sphere at
low and moderate Reynolds numbers 20 ≤ Re ≤ 400 are performed and the variation of
separation angles over time at fixed Reynolds number is on focus. The flow is steady, and
the separation angles are stable and axisymmetric at 20 ≤ Re ≤ 200. With the Reynolds
number increasing continually, the vortex in the flow field and flow separation of flow
around the sphere change from regular to irregular flow state.

2. Governing Equations and Numerical Methods
2.1. Problem Description

The whole calculation zone of the flow field is as follows Figure 1, and the computa-
tional mesh near the sphere is the right one (Figure 1b). The diameter of the sphere is d and
the length of the calculation zone is 60d. The width and height of the zone are the same
value of 10d. The fluid flows from left to right. The left side and the upper, lower, front,
and rear sides of the calculation area are all velocity inlets. The right side is a free outlet
boundary condition. The surface of the sphere is in no-slip condition.
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2.2. Governing Equations

The incompressible Navier–Stokes equations in non-dimensional form can be written
as follows:

∇ ·U = 0 (1)

∂U
∂t

+ U · ∇U = −∇p +
1

Re
∇2U (2)

In the equations, the non-dimensional variables are obtained like this:

U =
U∗

U∞
, t =

U∞t∗

d
, p =

P∗

ρU2
∞

, Re =
U∞d

ν
(3)

where, U∞ is the freestream velocity, t∗ is the calculating time, U∗ and P∗ are the velocity
and pressure of the flow, ρ and ν are the density and the kinematic viscosity coefficient of
the fluid. The superscript * means that the variable is dimensional.

2.3. Numerical Method

The viscous flow solver used is the freely available code Gerris which is described
in detail in Popinet [20]. It uses the method of direct numerical simulation (DNS). The
domain is discretized by cubic finite volumes organized hierarchically as an octree [20,21].
The tree-type discretization is very flexible and keeps the simple feature of orthogonal
discretization volume (Figure 1b). The criterion of local vorticity magnitude is employed
in order to adapt the mesh dynamically and follow the evolving turbulent wake [22]. The
cubes are dynamically divided based on certain given field parameters

δ‖∇×U‖
max‖U‖ > ε (4)

where, δ is the size of volumes. ε, which is a constant between 0 and 1, represents the
threshold limits the maximum vorticity allowed when the fluid microclusters pass through
a unit at the maximum velocity. In this paper, ε is set to be 0.01 for all conditions by
default. The selection of the local vorticity threshold enables the mesh to adapt dynamically
according to the size of the local vorticity and can capture the complex vortex structure in
the flow field with small computational complexity.

The second-order time staggered discrete fractional step projection method is used
for time dispersion [20], and this projection method depends on the Hodge decomposition
of the velocity field. The incompressible N-S equation and continuity equation are solved
by finite volume method under the hierarchical grid, and Poisson equation is solved
by projection method and multi-grid method. The convection term of the equation is
discretized by the second-order upwind Bell–Colella–Glaz scheme, which is stable for a
CFL number less than 1. The diffusion term is discretized by the implicit Crank–Nicholson
method. It has second-order accuracy and unconditional stability; therefore, both time and
space discretization have second-order accuracy.

2.4. Grid Convergence Verification

The size of mesh element has significant impacts on the convergence of the compu-
tational simulation results. It is easier to obtain more accurate results in CFD simulation
with finer mesh generally. However, the increase in mesh element number give rises to the
increase of computer time cost dramatically and reduce the efficiency of the method. In
the present study, there are seven different cases of a model named level 5 (the number of
cells 504,368), level 6 (580,132), level 7 (677,704), level 8 (724,368), level 9 (816,888), level 10
(918,972), and level11 (1,295,520). All of the above calculations are done with the Reynolds
number Re = 300 where Cd is the time-average coefficient of total drag force. Table 1 shows
the error percentages of drag coefficient between other grid levels and 11 grid level, and
the result of level 10 can guarantee a relatively stable result compared with that of level 11.
Therefore, the level 10 was adopted as the maximum division level.
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Table 1. Values of drag coefficient for different levels.

Level 5 6 7 8 9 10 11

Cd 0.6990 0.6813 0.6864 0.6932 0.6775 0.6595 0.6579

∆% 6.28% 3.57% 4.33% 5.37% 2.98% 0.24% 0%

2.5. Method Validation

In this part, the flow past a sphere with different Reynolds numbers between 40 and
500 is calculated, and the drag and lift coefficients are analyzed and compared with other
literatures. In Table 2, Cd and CL represent the average drag coefficient and lift coefficient,
respectively. St is the simplification of the Strouhal number.

Cd(t) =
Fd(t)

1
2 ρU2

∞S
, CL =

FL(t)
1
2 ρU2

∞S
(5)

Table 2. Comparison of flow parameters over a sphere with Reynolds number Re = 300.

References Cd CL St

Mimeau et al. [6] 0.673 0.066 0.133

Johnson and Patel [7] 0.657 0.069 0.137

Tomboulides and Orszag [23] 0.671 —– 0.136

Constantinescu and Squires [24] 0.655 0.065 0.136

Kim and Choi [25] 0.657 0.067 0.134

Present 0.659 0.062 0.133

Fd, FL are the drag and lift force acting on the sphere. S is the cross-section area of the
sphere perpendicular to the direction of the incoming fluid, and S = πd2/4, and

St =
f d

U∞
(6)

where f is the shedding frequency of wake vortex, which can be obtained by Fourier
transformation of the drag coefficient. Table 2 shows that the results in this paper are
consistent with the data in the literature.

Brown and Lawler [26] had fitted with a large amount of experimental data to obtain
the relationship between the time-averaged drag coefficient and Reynolds number:

Cd =
24
Re

(1 + 0.15Re0.681) +
0.407

1 + 8710
Re

, Re < 2× 105 (7)

Continue to use this algorithm to simulate the flow past the sphere under other
Reynolds numbers, and then compare the data with the empirical formula to get Figure 2.
The results are in good agreement with the empirical formula. The error between the two
does not exceed 3%.

2.6. Flow Separation

In the Cartesian coordinate system, the angle between the intercepted slice plane and
the positive axis of the y axis is set as α, α ∈ [0, π). The surface of the sphere forms a circle
in this plane, and any point on the circle is P(x,y,z). The angle between the OP and the
positive axis of the x-axis is set as θ, θ ∈ [0, 2π). The radius of the sphere is R, as shown in
Figure 3a. There are two separation points in each slice as shown in the Figure 3b; these are
θ1 and θ2. They are called upper separation points and lower separation points. The angle
between them and the positive axis of the x-axis is called the upper separation angle and
the lower separation angle, respectively.
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2.6.1. To Extract the Separation Points from the Vortices of the Points on the Surface of
the Sphere

The flow separation occurs when the vorticity at some point on the sphere is nearly
equal to zero in the Reference [27]. In addition, when the Reynolds number is equal to 20,
there is no flow separation in the flow around the sphere, as shown in Figure 4a. With the
increase of Reynolds number, the vorticity magnitude increases correspondingly, and the
curves are highly symmetrical on the surface of the sphere whether in XY–plane (Figure 5a)
or XZ–plane (Figure 5b), especially when the Reynolds number is not more than 200. The
Figure 4b shows the two turning points represented by θ1 and θ2. The separation angle θ1
increases gradually with the increase of Reynolds number, while the separation angle θ2 is
the opposite.

2.6.2. Separation Angles Validation

In other references, the separation points are represented only by the upper separation
points in the text, so only θ1 is compared with others in Table 3. With the increase of
Reynolds number, the separation angle increases gradually. Moreover, the calculated
results are highly consistent with the data in the literature.
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Table 3. Separation angles θ1(
◦) compared with other references.

Re 40 100 200 300

Lee [9] ~ 51 61 65

Kalra and Uhlherr [14] 31 50 60.5 66

Taneda [13] 34 53 63 67

Rimon and Cheng [10] ~ 53 64 68

Sadikin et al. [8] ~ 37 57 67

Seeley et al. [15] ~ 60 ~ 67

Taamneh [28] 33.3 50 62 ~

Present 33 50 61 64~68

3. Results and Discussion

The results of the flow around a rigid sphere with Re between 20 and 400 are presented
in the paper. They are concluded the streamlines, the trend of force coefficient and the
vorticity distribution on the surface of the sphere, vortex shedding, and evolution details
of flow separation.
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3.1. Lift, Drag, Lateral Force Coefficients and Streamlines

Between the Reynolds numbers of about 20~210, the flow around the sphere is a
steady axisymmetric separated flow [6]. A series of figures on the left (1) represent the
streamlines of Reynolds numbers at 20, 40, 100, 200, 300, and 400. The fluid flows from
left to right. When the Reynolds number is less than or equal to 200, the flow around
the ball under these Reynolds numbers has the same topology but has different flow
separation positions, vortex core positions and separation bubble length. In addition,
the streamline diagram is basically the same in different planes. However, when the
Re exceeds 300, everything is different, and it is no longer an axisymmetric structure.
The pressure coefficient distribution, which is defined as CP = (P− P∞)/(0.5ρU2

∞), was
presented in Figure 6(1). When the Reynolds number is less than or equal to 200, the
pressure distribution is highly symmetrical in the XY plane, and the negative pressure
region expands gradually. This indicates that when the Reynolds number does not exceed
200, the centrifugal force produced by vortex rotation and the viscous force opposite to the
radial pressure gradient cancel out each other. While the Reynolds number exceeds 200, the
closed small blue cycles in the wake represent the least pressure cells, which correspond
to the rotating center of the annular vortices. In these cases, the pressure distribution in
the near wake is no longer symmetrical. This leads to the asymmetrical flow separation at
Re ≥ 300.

When the Reynolds number is less than 200, the force coefficients in the three directions
are constant and straight, as shown in Figure 6(2). Moreover, the force coefficients in the
Y direction and the Z direction are equal to 0, which indicates that the force worked
on the sphere is highly symmetrical. The drag coefficient, lift coefficient, and lateral
force coefficient show the trend of sine or cosine function in two periods at Re = 300.
Among them, the change of lift and lateral force is completely synchronized, and it does
not fluctuate up and down at 0, which indicates that the forces on the sphere are not
symmetrical, which also corresponds to the asymmetric fluctuation of the upper and
lower separation points. The phase difference between the resistance and the two is
about 90 degrees. When the Reynolds number is equal to 400, the force coefficients in the
three directions change quasi-periodically. Meanwhile, the time mean value of the force
coefficients in the Y and Z is not equal to 0, which indicates that the shedding of the vortex
has the characteristics of certain priority direction and irregular shedding and presents
quasi-periodic shedding.

The phase difference between the lift and lateral coefficients can reflect the directional
characteristics of the flow on the cross-section perpendicular to the direction of the incoming
flow. The above Figure 6(3) are phase differences composed of lift coefficients in the Y
direction and the lateral force in the Z direction. When the Reynolds number is under
200, the phase of the lift coefficient and the lateral force coefficient almost converge at
the origin of the coordinate, that is, the lift coefficient and the lateral force coefficient
are approximately equal to zero. When the Reynolds number is equal to 300, the phase
reaches a certain direction and then returns to the oscillation, which indicates that the lift
coefficient is inclined to a certain direction but oscillates periodically, and the direction
of the oscillation is consistent with the direction when the oscillation started. This is due
to the periodic shedding of the spherical wake vortex and the statistical symmetry of the
wake vortex. When the Reynolds number is equal to 400, the phase of lift and lateral force
coefficient fluctuates unsteadily in the third quadrant, indicating that the direction of vortex
shedding begins to fluctuate in a certain range.

3.2. Vortex in the Wake Field

Vortices in the wake field after the sphere are presented in Figure 7, and two particles
that are symmetrical about the coordinate origin are selected to show their motion trajectory.
The vortices appear on the sphere at Re = 200, and only very small vortices enter the
wake field. And vorticity components in the X direction fall off alternately in the pair at
Re = 300, the positive and negative vorticity iso-surfaces with the same absolute value
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develop backward in the way of position exchange. At this moment, the trajectories of the
two particles are completely symmetrical, just as the Reynolds number is 200. However,
when the Reynolds number is equal to 400, the flow is not symmetric about the XY plane or
XZ plane, and the symmetry disappears. The vortex legs of the hairpin vortex are twisted.
By comparing with the periodic shedding vortex structure, it is found that the vortex head
of the hairpin vortex and the vortex leg of the main clip vortex become shorter. The wake
behind the sphere presents an irregular phenomenon of confusion. The trace behind the
sphere is irregularly distorted in three-dimensional space.

Symmetry 2021, 13, x FOR PEER REVIEW 8 of 15 
 

 

 

   

(a) 

   

(b) 

   

(c) 

Figure 6. Cont.



Symmetry 2021, 13, 2286 9 of 14
Symmetry 2021, 13, x FOR PEER REVIEW 9 of 15 
 

 

   

(d) 

   

(e) 

   

(f) 

Figure 6. (1) Two-dimensional streamlines and pressure distribution in the near wake of flow around a sphere. (2) Force 
coefficients in three directions. (3) Phase diagram of force components in Y and Z directions at various Reynolds numbers: 
(a) Re = 20, (b) Re = 40, (c) Re = 100, (d) Re = 200, (e) Re = 300, and (f) Re = 400. 

When the Reynolds number is less than 200, the force coefficients in the three direc-
tions are constant and straight, as shown in Figure 6(2). Moreover, the force coefficients 
in the Y direction and the Z direction are equal to 0, which indicates that the force worked 
on the sphere is highly symmetrical. The drag coefficient, lift coefficient, and lateral force 
coefficient show the trend of sine or cosine function in two periods at 300Re = . Among 
them, the change of lift and lateral force is completely synchronized, and it does not fluc-
tuate up and down at 0, which indicates that the forces on the sphere are not symmetrical, 
which also corresponds to the asymmetric fluctuation of the upper and lower separation 
points. The phase difference between the resistance and the two is about 90 degrees. When 
the Reynolds number is equal to 400, the force coefficients in the three directions change 

Figure 6. (1) Two-dimensional streamlines and pressure distribution in the near wake of flow around a sphere. (2) Force
coefficients in three directions. (3) Phase diagram of force components in Y and Z directions at various Reynolds numbers:
(a) Re = 20, (b) Re = 40, (c) Re = 100, (d) Re = 200, (e) Re = 300, and (f) Re = 400.

3.3. Time-Dependent Flow Separation

There is no flow separation when the Reynolds number is equal to 20. The flow is
steady, and an axisymmetric separation bubble exists at the back of the sphere with zero
lift and lateral force at Re ≤ 200, and the two separation points are stable, and the flow
separation is highly symmetrical. It can be seen from the following Table 4 that when
the Reynolds number is not exceeding 200, the upper and lower separation points of the
flow around the sphere are symmetrical about the x-axis. They fully satisfy the formula
θ1 + θ2 = 2π. The separation angle θ1 increases gradually with the increase of Reynolds
number, while the separation angle θ2 is the opposite.
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Figure 7. Iso-surface of vorticity component in flow direction and the trajectory of two fluid particles
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numbers at T = 65 s. (ωX = ±0.2).

Table 4. Separation angles of flow separation of the sphere at various Reynolds numbers.

Re 20 40 100 200

θ1(
◦) ~ 33 50 61

θ2(
◦) ~ 327 310 299

It is illustrated here that the symmetric separation of flow around the sphere at the
Reynolds number below 200 are similar, so only the time-dependent variation of the
separation points at Re = 200 are presented in Figure 8. When the Reynolds number is
equal to 200, the separation angles are stable with θ1 = 61o, θ2 = 299o.
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Figure 8. The time-dependent variation of separation angle over time in a period in XY–plane (a)
and XZ–plane (b) at Re = 200.

When Reynolds number exceeds 300, both the period at Re = 300 and the quasi-period
at Re = 400 are obtained from the Fourier transform of the drag coefficient. In two periods,
the upper separation angle is very stable and remains 68 degrees in XY-plane (Figure 9a)
and XZ-plane (Figure 9e). However, the lower separation angle fluctuates regularly in a
certain small range. Moreover, the variation of the separation angles in the two planes
are closely inlaid and echo each other, corresponding to the phase difference between the
lift and the lateral force coefficient, which is manifested in a certain time difference. In
other planes (Figure 9b,d,f,g), the two separation angles remain stable, except the planes
of α = 45◦ (Figure 9c) and α = 150◦ (Figure 9h). Only in the slice of α = 45◦, the upper
separation angle fluctuates, and the lower separation angle remains stable, while it is the
opposite in the slice of α = 150◦.



Symmetry 2021, 13, 2286 11 of 14Symmetry 2021, 13, x FOR PEER REVIEW 12 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. The time-dependent variation of separation angles in different planes during the two pe-
riods at 300Re = . (a) 0α = ° , (b) 30α = ° , (c) 45α = ° , (d) 60α = ° , (e) 90α = ° , (f) 

120α = ° , (g) 135α = ° , and (h) 150α = ° . 

The separation angles on different slices are similar in values, but different in varia-
tion at 300Re = . As shown in Table 5, the lower separation angles fluctuate on slices at 
some angles while others are fixed. On slices at certain angles, the sum of the two separa-
tion angles is no longer a constant of 360 degrees, even two fixed separation angles. This 
indicates that the flow separation is already asymmetric. 

Figure 9. The time-dependent variation of separation angles in different planes during the two
periods at Re = 300. (a) α = 0◦, (b) α = 30◦, (c) α = 45◦, (d) α = 60◦, (e) α = 90◦, (f) α = 120◦,
(g) α = 135◦, and (h) α = 150◦.

The separation angles on different slices are similar in values, but different in variation
at Re = 300. As shown in Table 5, the lower separation angles fluctuate on slices at some
angles while others are fixed. On slices at certain angles, the sum of the two separation
angles is no longer a constant of 360 degrees, even two fixed separation angles. This
indicates that the flow separation is already asymmetric.
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Table 5. The variation of separation angles in different slices when Re = 300.

α(◦) 0 30 45 60 90 120 135 150

θ1(
◦) 68 67 65–67 67 68 65 66 64

θ2(
◦) 292~296 296 298 296 292~296 296 294 293~295

If the Reynolds number is equal to 400, the upper and lower separation points are in
a fluctuating state, as shown in Figure 10. The lower separation angle remains basically
stable in a plane of α = 0◦, 30◦, 60◦, 90◦, but they are stable at different angles of separation.
Compared to the case of Re = 300, the separation angle varies frequently and irregularly,
similar to the lift and lateral force coefficients under this case. The asymmetric fluctuation of
the separation points corresponds to the irregular vortex falling in the wake field. Because
data discretization points are extracted every 0.1 s, it is normal that data points jump a little.
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Figure 10. The time-dependent variation of separation angles in different planes during the two
quasi-periods at Re = 400. (a) α = 0◦, (b) α = 30◦, (c) α = 45◦, (d) α = 60◦, (e) α = 90◦, (f) α = 120◦,
(g) α = 135◦, and (h) α = 150◦.

4. Conclusions

The results show that the flow separates early when the Reynolds number increases
within a certain range 40 ≤ Re ≤ 200. In this Reynolds number interval, the separation
angles are very stable at the fixed Re. As the Reynolds number continues to increase within
400, the symmetry of the flow separation around a sphere is analyzed in detail, and the
flow separation angles are no longer fixed and symmetrical. The flow separation state
changes from stable to periodically regular separation until completely irregular separation.
Under this condition, the vortex structure in the wake changes from symmetrical and stable
structure to asymmetric periodic structure, and finally to asymmetric and quasi-periodical
vortex structure.

1. The flow is unsteady and time-periodic at Re = 300. And the flow separation becomes
regular fluctuations, and the separation angle is not fixed, which is in the form that
one of the separation points is stable and the other one oscillates regularly, and at the
moment, the vortex is periodically shedding, and the flow separation is asymmetric.
This leads to the fact that the mean value of the lateral force is not equal to zero, and
the phase difference between lift and lateral force coefficients is about 90 degrees.

2. The flow is unsteady, non-periodic, and fully asymmetric at Re = 400, as is the flow
separation around the sphere. The drag coefficient is no longer a regular fluctuation.
The two separation angles become extremely unstable and disordered with time, just
like the curve of the lift and lateral force coefficients. Additionally, the flow separation
is completely asymmetric, and the vortex is spiral shedding. At the same time, the
drag coefficient changes quasi-periodically, and the phase difference of the lift and
lateral force coefficients also shows an irregular change trend.

Author Contributions: J.L.: Conceptualization, Methodology, Software, and Writing—Original Draft
Preparation. B.Z.: Visualization, Writing—Review and Editing, and Supervision. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is supported by the Specialized Research Fund of the National Key Laboratory
of Transient Physics under Grant No KX21373.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2021, 13, 2286 14 of 14

References
1. Chester, W.; Breach, D.R.; Proudman, I. On the flow past a sphere at low Reynolds number. J. Fluid Mech. 1969, 37, 751–760.

[CrossRef]
2. Achenbach, E. Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 1972, 54, 565–575. [CrossRef]
3. Okamoto, S. Turbulent shear flow behind a sphere placed on a plane boundary. In Turbulent Shear Flows 2; Bradbury, L.J.S.,

Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980;
pp. 246–256.

4. Tsutsui, T. Flow around a sphere in a plane turbulent boundary layer. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 779–792. [CrossRef]
5. Tiwari, S.S.; Pal, E.; Bale, S.; Minocha, N.; Patwardhan, A.W.; Nandakumar, K.; Joshi, J.B. Flow past a single stationary sphere, 2.

Regime mapping and effect of external disturbances. Powder Technol. 2020, 365, 215–243. [CrossRef]
6. Mimeau, C.; Cottet, G.H.; Mortazavi, I. Direct numerical simulations of three-dimensional flows past obstacles with a vortex

penalization method. Comput. Fluids 2016, 136, 331–347. [CrossRef]
7. Johnson, T.A.; Patel, V.C. Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 2000, 378, 19–70. [CrossRef]
8. Sadikin, A.; Mohd Yunus, N.A.; Abdullah, K.; Mohammed, A.N. Numerical study of flow past a solid sphere at moderate

Reynolds number. Appl. Mech. Mater. 2014, 660, 674–678. [CrossRef]
9. Lee, S. A numerical study of the unsteady wake behind a sphere in a uniform flow at moderate Reynolds numbers. Comput.

Fluids 2000, 29, 639–667. [CrossRef]
10. Rimon, Y.; Cheng, S.I. Numerical solution of a uniform flow over a sphere at intermediate Reynolds numbers. Phys. Fluids 1969,

12, 949–959. [CrossRef]
11. Lin, C.L.; Lee, S.C. Transient state analysis of separated flow around a sphere. Comput. Fluids 1973, 1, 235–250. [CrossRef]
12. Lee, D.K.; Downie, M.J.; Bettess, P. An axisymmetric model of separated flow about a sphere using discrete vortices. Int. J. Numer.

Methods Fluids 2010, 12, 809–823. [CrossRef]
13. Taneda, S. Experimental investigation wake behind sphere low Reynolds numbers. J. Phys. Soc. Jpn. 1956, 11, 1104–1108.

[CrossRef]
14. Kalra, T.R.; Uhlherr, P.H.T. Geometry of bluff body wakes. Can. J. Chem. Eng. 1973, 51, 655–658. [CrossRef]
15. Seeley, L.E.; Hummel, R.L.; Smith, J.W. Experimental velocity profiles in laminar flow around spheres at intermediate Reynolds

numbers. J. Fluid Mech. 1975, 68, 591–608. [CrossRef]
16. Karyagin, V.P.; Lopatkin, A.I.; Shvets, A.I.; Shilin, N.M. Experimental investigation of the separation of flow around a sphere.

Fluid Dyn. 1991, 26, 126–129. [CrossRef]
17. Park, S.H.; Park, G. Separation process of multi-spheres in hypersonic flow. Adv. Space Res. 2020, 65, 392–406. [CrossRef]
18. Park, S.H.; Kim, J.; Choi, I.; Park, G. Experimental study of separation behavior of two bodies in hypersonic flow. Acta Astronaut.

2021, 181, 414–426. [CrossRef]
19. Verekar, P.K.; Arakeri, J.H. Three-dimensional flow separations on a rolling sphere. Sadhana-Acad. Proc. Eng. Sci. 2019, 44, 35.

[CrossRef]
20. Popinet, S. Gerris: A tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys.

2003, 190, 572–600. [CrossRef]
21. Popinet, S.; Smith, M.; Stevens, C. Experimental and numerical study of the turbulence characteristics of airflow around a research

vessel. J. Atmos. Ocean. Technol. 2004, 21, 1575–1589. [CrossRef]
22. Liu, H.; Zhou, B.; Liu, Z.; Ji, Y. Numerical simulation of flow around a body of revolution with an appendage controlled by

electromagnetic force. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2013, 227, 303–310. [CrossRef]
23. Tomboulides, A.G.; Orszag, S.A. Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech.

2000, 416, 45–73. [CrossRef]
24. Constantinescu, G.S.; Squires, K.D. LES and DES investigations of turbulent flow over a sphere. In Proceedings of the 38th

Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000. [CrossRef]
25. Kim, D.; Choi, H. Laminar flow past a sphere rotating in the streamwise direction. J. Fluid Mech. 2002, 461, 365–386. [CrossRef]
26. Brown, P.P.; Lawler, D.F. Sphere Drag and Settling Velocity Revisited. J. Environ. Eng. 2003, 129, 222–231. [CrossRef]
27. Zhang, H.; Fan, B.C.; Chen, Z.H.; Dong, G.; Zhou, B.M. Open-loop and optimal control of cylinder wake via electromagnetic

fields. Chin. Sci. Bull. 2008, 53, 2946–2952. [CrossRef]
28. Taamneh, Y. CFD simulations of drag and separation flow around ellipsoids. Jordan J. Mech. Ind. Eng. 2011, 5, 129–132.

http://doi.org/10.1017/S0022112069000851
http://doi.org/10.1017/S0022112072000874
http://doi.org/10.1016/j.jweia.2007.06.031
http://doi.org/10.1016/j.powtec.2019.04.032
http://doi.org/10.1016/j.compfluid.2016.06.020
http://doi.org/10.1017/S0022112098003206
http://doi.org/10.4028/www.scientific.net/AMM.660.674
http://doi.org/10.1016/S0045-7930(99)00023-7
http://doi.org/10.1063/1.2163685
http://doi.org/10.1016/0045-7930(73)90009-1
http://doi.org/10.1002/fld.1650120902
http://doi.org/10.1143/JPSJ.11.1104
http://doi.org/10.1002/cjce.5450510606
http://doi.org/10.1017/S002211207500184X
http://doi.org/10.1007/BF01050124
http://doi.org/10.1016/j.asr.2019.10.009
http://doi.org/10.1016/j.actaastro.2021.01.037
http://doi.org/10.1007/s12046-018-1027-3
http://doi.org/10.1016/S0021-9991(03)00298-5
http://doi.org/10.1175/1520-0426(2004)021&lt;1575:EANSOT&gt;2.0.CO;2
http://doi.org/10.1177/0954410011433120
http://doi.org/10.1017/S0022112000008880
http://doi.org/10.2514/6.2000-540
http://doi.org/10.1017/S0022112002008509
http://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)
http://doi.org/10.1007/s11434-008-0394-2

	Introduction 
	Governing Equations and Numerical Methods 
	Problem Description 
	Governing Equations 
	Numerical Method 
	Grid Convergence Verification 
	Method Validation 
	Flow Separation 
	To Extract the Separation Points from the Vortices of the Points on the Surface of the Sphere 
	Separation Angles Validation 


	Results and Discussion 
	Lift, Drag, Lateral Force Coefficients and Streamlines 
	Vortex in the Wake Field 
	Time-Dependent Flow Separation 

	Conclusions 
	References

