
symmetryS S

Article

How Does Spacetime “Tell an Electron How to Move”?

Garnet Ord

����������
�������

Citation: Ord, G. How Does

Spacetime “Tell an Electron How to

Move”? Symmetry 2021, 13, 2283.

https://doi.org/10.3390/

sym13122283

Academic Editors: Peter Rowlands

and Congfeng Qiao

Received: 28 September 2021

Accepted: 9 November 2021

Published: 1 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, Ryerson University, Toronto, ON M5B 2K3, Canada; gord@ryerson.ca

Abstract: Minkowski spacetime provides a background framework for the kinematics and dynamics
of classical particles. How the framework implements the motion of matter is not specified within
special relativity. In this paper we specify how Minkowski space can implement motion in such a way
that ’quantum’ propagation occurs on appropriate scales. This is done by starting in a discrete space
and explicitly taking a continuum limit. The argument is direct and illuminates the special tension
between ’rest’ and ’uniform motion’ found in Minkowski space, showing how the formal analytic
continuations involved in Minkowski space and quantum propagation arise from the same source.
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1. Prolog

Problems with the concept of ’motion’ go back to antiquity. For example, Zeno’s
paradoxes provided an early illustration that our concepts of ’rest’ and ’motion’ do not
have clear boundaries. To this day, while the calculus provides a mathematically rigorous
model of motion using limits, the model itself is outside the domain of any ‘physical reality’
accessible to an actual observer. Thus we can imagine an experiment to determine a ratio
∆s/∆t, where ∆s and ∆t represent measurements of physically small lengths and times
respectively. However, under no circumstances can one conduct an experiment where, in
the measurement of velocity, ∆t = 0, or where a limit as ∆t→ 0 is actually taken.

Despite the impossibility of observing or verifying the physical analogs of continuity
and differentiability, the use of infinite divisibility and smoothness in classical theories
has been very successful. Notably, general relativity continues to engage philosophers,
physicists and mathematicians alike for the way it encodes the imagery of how space, time
and gravity might interact in a smooth world [1].

Wheeler’s famous aphorism:

“Spacetime tells matter how to move, matter tells spacetime how to curve.” [2]

provides a clear visualization that, encoded mathematically with strong smoothness as-
sumptions, yields modern relativity. The clarity of the image that Wheeler’s statement
in natural language invokes and the closeness to the resulting mathematical models is so
evident that, by comparison, quantum mechanics looks like a deliberate cypher. (This is
not to impugn the importance or effectiveness of quantum theory. It is arguably the most
accurate and useful theory we have, and the mathematical framework is no less elegant
than relativity. However, the interpretations of the theory are many and varied and there
is no sensible statement in natural language that illustrates what quantum propagation
physically represents.)

Since relativity, and in particular Minkowski space, is so clear in its ‘encoding’ of
features of spacetime, the intent of this paper is to use that clarity to view the emergence of
quantum propagation from within the restrictions of Minkowski space, both literally and
metaphorically. With reference to the first half of Wheeler’s quote we address the question:

“What are the spacetime instructions that tell an electron how to move?”

An answer to this question may be found from the perspective of applied mathematics
when we digitally encode simple features of spacetime diagrams. The digital aspect of the

Symmetry 2021, 13, 2283. https://doi.org/10.3390/sym13122283 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8792-6396
https://doi.org/10.3390/sym13122283
https://doi.org/10.3390/sym13122283
https://doi.org/10.3390/sym13122283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13122283
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13122283?type=check_update&version=1


Symmetry 2021, 13, 2283 2 of 17

encoding allows us to reach underneath the smoothness assumptions of relativity and ask
questions about how spacetime, that is not intrinsically smooth in the presence of discrete
events, could implement instructions in such a way that a smooth continuum limit results.

In the process of finding appropriate instruction sets, we shall see quantum propa-
gation emerge [3] as a direct consequence of the fixed speed of light. While this does not
remove the peculiarities of quantum propagation, it does point directly to the light-speed
postulate as the source of both quantum mechanics and special relativity. It also refers both
theories back to older philosophical problems of differentiating ’rest’ and ‘motion’. Lastly,
the origin of the formal analytic continuation that distinguishes quantum mechanics from
‘classical’ theories becomes evident in this picture. Roughly speaking, in a discrete context,
Minkowski’s original invocation of spacetime in terms of (x, y, z, ict), so that boosts look
like rotations, turns the analog of worldlines into signals on the scale of the Compton
length. Classical relativity is obtained by ignoring the signal and retaining only the rotation
and stretch of the Lorentz transformation; while the Dirac equation is obtained by keeping the
lowest frequencies of the signal. Once this is discovered, it changes the perspective on the
relationship between relativity and quantum mechanics. If you start with discrete events
under the restrictions of special relativity, classical physics arises only if you deliberately
ignore the fact that a discrete spacetime forces the existence of a non-trivial signal in place
of the worldline.

This does become evident when you start in the discrete world and take a continuum
limit. However, it is hidden if you start in the continuum and try to work backwards to the
discrete. (This is arguably what happened with quantum mechanics historically. In the
transition from old quantum theory to modern quantum theory, Schrödinger’s use of his
partial differential equation, essentially to extract discrete eigenvalues, was preferred to
Heisenberg’s matrix mechanics because of the ubiquitous presence of differential equations
in physics.) In that case ‘quantum propagation’ has to be added as an overlay . . . , a
prescription where dynamical variables are replaced by operators. While the latter is
conventional and elegant, the former allows you to see that quantum propagation, whether
‘relativistic’ or not, has its origin in the Lorentz transformation and the fixed speed of light.

2. Introduction

In this paper we discuss specific instructions by which spacetime tells an electron (or
a particle identified by a fixed mass) how to move in a two dimensional spacetime. We
investigate a variant of special relativity that associates a characteristic length (The Compton
length) with an electron’s ‘worldline’ so that the microscopic structure of the worldline
identifies the particle mass. We examine the instructions for movement of such a particle in
a discrete spacetime, considering the problem in such a way that a smooth continuum limit
becomes available as the partition of spacetime is refined. We find that maintenance of the
fixed characteristic length in a continuum limit ultimately leads to the Dirac equation, but
in a context where the antecedents in the classical theory are clear.

It is notable that while this transition from ‘classical’ to ‘quantum’ appears in the
continuum limit, it does so where we can examine the approach along with the limit itself.
This allows us to see that the origin of ‘wave-particle duality’ and the resulting non-locality
arises from within special relativity itself. By viewing the continuum limit this way we see the
transition from the discrete to the continuous, thus avoiding an initial prejudice that space
and time should be independently continuous.

In practical terms, the view provides a reminder that the common use of differentials
like ds in physical situations where we are contemplating a limit ds → 0, often has an
attached caveat like ds > 1/M where M is some fixed large number. If we ignore the caveat
and take the limit, we are liable to get a model that describes behaviour in a regime where
ds >> 1/M. A familiar statistical example of this is the diffusion equation. We can extract
the diffusion equation from the theory of random walks on lattices by invoking a continuum
limit where we let space scales go to zero while assuming that such scales stay above the
physical length of the mean free path of the fluid being modelled. The resulting partial
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differential equation then works well as a model on macroscopic scales but is unreliable
otherwise, as it does not recognize behaviour changes on the scale of inter-particle distance,
and incorrectly predicts infinite signal velocity [4].

We shall see that classical special relativity is similar in that ‘telling matter how to
move’ without building a specific mass into the kinematics, presupposes a continuum limit
at the start; it is specifically this presupposition that precludes quantum propagation. By failing to
recognize the Compton scale of a particle, the usual formulations of special relativity miss
‘quantum’ behaviour that results from the existence of a characteristic inner scale [5,6].

In the next section, we sketch the primary argument specifically through digital images
of spacetime diagrams, where the the simplicity of the arguments is easily seen. In this
section we specify what the instruction set that encodes an electron’s persistence in time
must entail in terms of producing the digital images of simple spacetime diagrams. We see
that, contrary to Newtonian physics, rest in Minkowski space is a derived concept, although
one that is easily visualized. Uniform motion is more subtle, but is also easily accomodated
through the Lorentz transformation. Subsequent sections sketch the mathematical encoding
of the imaging of particles at rest and in inertial motion.

In Section 6 we discuss the calculation and the implications.

3. Imaging a Particle at Rest

In order for spacetime to specifically tell an ‘electron’ how to move, it has to recognize
the particle’s mass. Conventionally in special relativity, mass and associated momen-
tum/energy are deduced through dynamics, but if spacetime is telling an electron how
to move, it is reasonable to assume that spacetime itself does not have to ‘learn’ the mass
through interactions with other objects, so we are looking for identifying geometric features
that could be associated with mass.

When working with special relativity it is often useful to consider spacetime diagrams
to illustrate features of boosts, worldlines and clocks. A first notable feature of spacetime
using such diagrams is that if we choose an origin for a spacetime frame we find that the
origin partitions spacetime into four distinct regions Figure 1.

Figure 1. Light-like lines through the origin partition spacetime into four distinct regions. The
partition exists on all scales. Throughout this article all diagrams assume natural units in which
c = 1.

If we imagine discrete events at positions (x, t) ∈ {(0, 0), (0, 1), (0, 2) . . ., the inter-
sections of the forward and backward lightcones from these points yield a sequence of
causal areas that include all points time-like connected to the events in the sequence. The
four different combinations of past, future, left and right suggest we colour edges in four
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different colours, giving rise to a sequences of what we shall call timestamps. (Alternatively,
if we think of the boundaries of the causal areas as photons, there are two distinguishable
photons and two directions giving rise to a four-state ’clock’. So for example in Figure 2 the
red and green lines, though parallel, correspond to the two different photons.) Figure 2.

From Figure 2 we can see that successive causal areas are geometrically similar, but
are not simple translations of each other. The first square, between (0, 0) and (0, 2) requires
a rotation of π in the plane, as well as a translation to be fully congruent to the successive
rectangle. As a result, two successive squares forming a timestamp between the events
at (0, 0) and (0, 4) form a unit that is congruent to the next timestamp between (0, 4) and
(0, 8). The alternation of the two types of squares in the sequence of squares can be thought
of as a ‘photon clock’ [7–10] or a sequence of oriented squares [11].

Figure 2. Periodic events on a stationary worldline give rise to sequences of causal areas. We call a
succession of two of these a timestamp. The period here is 4. The ‘worldline’ here is assumed to lie
on the t-axis.

The objective of this section is to build a digital instruction set to draw the 4-colour
timestamp Figure 2 from the bottom up. We shall do this first at a very coarse resolution,
subsequently increasing the resolution, adapting the image to a reduction of pixel size. We
shall then see how to map a sequence of timestamps onto an analog of a worldline in such a way
that the mapping generalizes to arbitrarily high resolution.

While the timestamp has some appeal in terms of suggesting a target for ‘spacetime
telling an electron how to move’ there are two questions that need clarification to make
further progress.

1. What, if anything, does the timestamp have to do with quantum propagation?
2. Is there a mapping of the timestamp image onto a domain that admits a smooth

continuum limit?

The first question requests some indication that timestamps, as examples of spacetime
instructions, are linked to quantum propagation. One visual argument would be to show
how timestamp replacements of worldlines respond to Lorentz boosts. Figure 3 shows
the effect of a Lorentz boost on a timestamp chain. As the relative speed of the observer
with respect to the rest frame increases, the chain axis rotates and the chain itself stretches,
pulling earlier links out along the direction of the chain; an example of ‘the moving clock
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runs slow’ of special relativity. As the velocity v increases, the intersection of the chain
with a line at fixed t occurs at earlier portions of the timestamp sequence. Throughout all
boosts the edges of the causal areas remain fixed in orientation due to the fixed speed c.

Figure 3. A sequence of timestamps stretched and rotated by Lorentz boosts. Time is vertical and
space horizontal. Clockwise from the top. (A) a Red portion of the timestamp intersects the line
t = 9. In (B,C) the relative speed of the observer increases but the Red portion still intersects t = 9.
In (D) velocity is high enough that the earlier Green segment intersects t = 9. As the relative speed
of the observer increases, the earlier the ‘history’ recorded on the space axis.

Notice that the ensemble of these intersections provides a ‘History Map’ [4] of the
chain along the x-axis, running from the current value of t back to the origin as x runs from
0 to ct. That is, the ensemble of images over all inertial frames maps the history of the
timestamp ‘at rest’ onto the spatial axis.

Figure 4 shows the History Map of a far-field record of the intersection of the boosted
images of the right side of the chains, along the x-axis [4,12].This is shown at fixed t for
particle speeds v << c. Plotted with this far-field record is the real part of the Feynman
non-relativistic propagator for an electron. We can see visually the synchronization of the
two. Only one parameter, the mass in appropriate units, fixes the synchronization that
persists for many, many cycles. This suggests that a smoothed version of a timestamp might
produce the propagator in detail, thus providing a connection between timestamps and
quantum propagation.

To answer the second question, we shall build timestamps digitally using just two
operations. We shall see that there exists a natural smoothing feature that ultimately admits
a continuum formulation. We do this in the next section.
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Figure 4. The History-Map of a binary clock is the variable frequency square wave in this figure. The
smooth curve is the real part of the Feynman propagator [13]. A single number mass in natural units,
registers the two patterns. While the path integral assembles the propagator from an infinite number
of Feynman paths, the History-Map is a mapping of a single sequence of timestamps via the Lorentz
boosts. The smooth curve is standard quantum mechanics. The History Map is Special Relativity
with Timestamps replacing worldlines.

4. Building a Transfer Matrix

In the previous section we visually established a structural feature of special relativity
that appears to produce a discrete form of the Dirac propagator. That is, in Figure 4 we
see that the transitions of the four discrete states of the timestamp mark the nodes of the
propagator, encasing a smooth curve in a discontinuous two-valued envelope curve. The
inability of the envelope curve to match the smooth features of the propagator stem from
the fact that the boundaries of the timestamp are null lines, along which proper time does
not change. Only at corners and crossing points on the timestamp does the proper time
change, and that discontinuously. Like the tick-tock of a mechanical clock, the timestamp
counts time discretely with four intrinsic states. It is these discontinuities that map onto the
nodes of the Feynman propagator.

However, if spacetime is responsible for maintaining fixed time intervals based on a
counting process, and we wish to end up with a smooth description, the counting frequency
must be much higher than the corner frequency of the electron timestamp. To end up with
a differential equation, we do not need to have infinite frequencies in spacetime, but we do
need to consider frequencies much higher than the Compton frequency. We can then set up
a counting process for spacetime with the caveat that if we are able to take a continuum
limit to extract the Dirac propagator, the result itself is an approximation, not to be taken
too seriously below the Compton wavelength, but descriptive above the Compton length.
(The point here is that the assumption that Nature operates in a mathematical domain
containing analytic functions is a leap of faith that can never be verified on a practical level,
and would in any case be inconsistent with a finite universe from a quantum mechanical
perspective. In this article, limits are explicitly regarded as mathematical conveniences, so
when we speak of a limit like limε→0 where ε is a time interval, we mean that ε is small
compared to the Compton time, but still larger than some other characteristic length like
the Planck length.)

To develop an encoding for spacetime we simply encode as digital images the space-
time diagrams that give rise to Figures 1–4. Since digital images are just arrays of numbers,
the linear algebra involved in the encoding process represents the generation of the images
of the spacetime diagrams that we visually interpret as features of spacetime. The algebraic
manipulations we go through to map the timestamp onto an image that smoothly handles
increasing resolution, gives an analogy of how spacetime might accomplish the same thing.

We first encode the timestamp as the representation of a ‘stationary’ particle. The
encoding will involve number and a single fixed magnitude. The number aspect will just
count frequencies of operations, there being two operations; Persist (P) and Switch (S) for
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persistence along a light cone and direction reversal, respectively. Thus we shall be looking
at periodic sequences like

. . . PS

n︷ ︸︸ ︷
PPP . . . PS

n︷ ︸︸ ︷
PPP . . . PS SPPP . . . (1)

where the number of P’s between S’s is fixed in a sequence and each symbol represents a
fixed small magnitude. The continuum limit will increase the number of P’s between S’s
without bound but will fix the magnitude of the sum of the small magnitudes between
S’s. That is, in Equation (1) n increases without bound but the ‘time’ interval between
S’s remains fixed. While Equation (1) builds the timestamp out of small time intervals
with a discontinuous velocity structure, spacetime itself needs structure on the small time
scales of the individual steps to do the encoding. (That is, spacetime has to have a way of
counting steps between corners on the timestamp, since the null edges themselves do not
carry the information corresponding to the number of steps to the next switch.) To model
that encoding we replace the half cycle in Equation (1) by:

n︷ ︸︸ ︷
PPP . . . PS→ Qn (2)

This process leads to a smooth analog of the timestamp Equation (1) and provides a
mapping from the visual features of timestamps to a discrete precursor of a smooth process.
The S that is a corner in the timestamp is distributed over the entire length of the half
period. The replacement allows us to see that provided spacetime has a bandwidth that can
encode frequencies much higher than the Compton frequency, then between the discrete
envelope of the timestamp and the smooth evolution of the Dirac propagator, there are
intermediate piecewise linear progressions to indicate where the propagator comes from
and why it is there.

As an example, we create a very low resolution digital image of the timestamp of
Figure 2. Specifically, we shall create a digital image in which the width of the image is
6 pixels and its height is greater than the timestamp height of 24 pixels. Since the image
involves just 4 colours on a uniform background, we can associate a 2-component intensity
with each pixel as follows:

Red→
(

1
0

)
, Yellow→

(
0
1

)
, Green→

(
−1
0

)
, Blue→

(
0
−1

)
, (3)

the background being represented as
(

0
0

)
.

To generate the digital image in the same way that spacetime might evolve a pattern
along the x-axis, we construct a discrete process that will take the initial pattern on the
x-axis at t = 0 and evolve the initial condition to create the timestamp image. From Figure 2
we see that the initial condition at the origin is a combination of Red and Yellow. After
the first step the Red has moved one unit to the right and the Yellow one to the left. This
movement is repeated in the next step. For an image that is only 6 pixels wide, at the third
step Red switches to Blue and Yellow switches to Green. This persists for 6 steps and then
the colours and directions reverse. In the persist or switch representation of Equation (1)
the sequence is ︷ ︸︸ ︷

PPPSPPPPPPS . . . (4)

In terms of pixel intensities with the coding of Equation (3) the initial configuration is:

{
(

0
0

)
,
(

0
0

)
,
(

0
1

)
,
(

1
0

)
,
(

0
0

)
,
(

0
0

)
} (5)
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Which we flatten to the ‘state’:

{
(

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
)
} (6)

This can be evolved by a ‘transfer matrix’ T6 to produce a succession of states that represents
the coding of a timestamp. Below is an explicit representation of the transfer matrix on the
left, and the resulting timestamp, grown from the bottom, on the right. That is, the array
on the right is obtained by operating on the initial condition Equation (6) with the transfer
matrix on the left. Each row of the array on the right is obtained through multiplication of
the previous row by the transfer matrix.

T6 =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0



⇒



0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1
0 −1 0 0 0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 −1 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0 0 −1 0 0
−1 0 0 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0



(7)

Interpreted as an unrendered digital image with the assigned colours of Figure 2 we see
the timestamp pattern in the data matrix on the right in Equation (7). The data matrix
itself, rendered as an image, would be pixelated and give a coarse representation of lines
compared to the sketch in Figure 2. The pixelation may be reduced by increasing the pixel
density, but staying at this resolution we can examine the transfer matrix T6 that operates
on the initial state Equation (6), and see how we would increase the resolution.

Looking at the structure we can see that the two bands parallel to the main diagonal
correspond to the ‘P’ instruction to persist along the null lines in the image, maintaining
the colour state (±1) and direction (left, right). The (2, 12) element and the (11, 1) elements
constitute the ‘S’ instruction that changes the direction and colour of the null lines at
the outer corners (This is accomplished by switching states and sides of the spatial ‘box’.
We could have chosen reflective boundary conditions to the same effect, but this choice
is simpler.). Visually we can look at the matrix and see that to increase the number of
pixels along the edges we just keep the corner elements and increase rows and columns
maintaining the banded structure. We shall do this shortly, but first we address the question of
mapping the timestamp onto a formulation that smooths out the switch S in time evolution.
That is we want to implement Equation (2) to determine Q. In this case the transfer matrix
has been specifically constructed to implement persistence three times followed by a switch,
i.e., the initial path to the first corner is PPP. So from the given initial condition, matrix
multiplication three times by the transfer matrix constructs the edges to the first corner
and a second three applications brings the edges back to the centre and the result is the
negative of the initial condition (row 7 in the array in Equation (7)). Thus we have:

T6
6 = Q6 = −I12 (8)

where I12 is the negative of the 12× 12 identity matrix. While we may be tempted to write:

Q→ [−I12]
1/6 (9)

there are several possibilities for Q because there are several sixth roots of −1. However a
relevant choice can be made by noting that Q has just two distinct eigenvalues, (−1)1/6
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and (−1)−1/6 that step through the entire sequence of sixth roots. Each of these two belong
to one of the two edge directions. (These are also the two lowest frequency eigenvalues of
the transfer matrix in the sense of transitions around the unit circle.) We can construct a
suitable representation of a diagonal form of Q so that the pairs of eigenvalues alternate.
With Q in this diagonal form:

Q6 = I3 ⊗
(

(−1)1/6 0
0 (−1)−1/6

)
(10)

where ⊗ denotes the Kronecker product. In this representation, individual pixels in the
image do not pass their intensity along null edges. Instead they pass varying intensity to
the same pixel at the next time step. The image of the smoothed timestamp using Q6 is, in
this representation:

0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 6

√
−1 −(−1)5/6 0 0 0 0 0

0 0 0 0 0 3
√
−1 −(−1)2/3 0 0 0 0 0

0 0 0 0 0
√
−1 −

√
−1 0 0 0 0 0

0 0 0 0 0 (−1)2/3 − 3
√
−1 0 0 0 0 0

0 0 0 0 0 (−1)5/6 − 6
√
−1 0 0 0 0 0

0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 − 6

√
−1 (−1)5/6 0 0 0 0 0

0 0 0 0 0 − 3
√
−1 (−1)2/3 0 0 0 0 0

0 0 0 0 0 −i i 0 0 0 0 0
0 0 0 0 0 −(−1)2/3 3

√
−1 0 0 0 0 0

0 0 0 0 0 −(−1)5/6 6
√
−1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0



(11)

The central columns of the data matrix Equation (11) are plotted in Figure 5.
There are a number of interesting features of this ‘digital image’:

1. The edges of timestamps that enclose causal areas in spacetime have been mapped
onto the two pixels corresponding to the initial conditions, introducing a form of
spatial stationarity. (This is a qualitatively different approach from pre-relativistic
physics where the ‘rest frame’ is special and movement is constructed assuming space
and time are independent. Here the rest frame is constructed from the light cones.)

2. The pixel intensities of the timestamp that were binary (±1) and could be stored in a
single bit, now require a bigger ‘word’ to store the varying intensity values.

3. In this diagonal formulation of instruction, the ‘intensities’ are actually complex
numbers; not a data type usually used for images in the spatial domain, however the
appearance in this context is welcome and instructive.

The first point indicates that the mapping, Equation (2), that was specifically chosen
to smooth out the timestamp corners by distributing the effect of the switch over many
steps, did so by wrapping the timestamp onto two approximate cylinders centred on the
two states associated with t = 0. This has the effect of encoding the information describing
the causal area boundary onto static positions in space. That is, the evolution of the causal
area has been mapped onto what could be considered the analog of the worldline of a
stationary particle. This mapping is an encoding of the geometry of the timestamp.

The second point indicates a compromise we have to accept in order to keep the local
stationary worldline concept in this discrete version of special relativity. If you start in a
continuum formulation of special relativity then the worldline of a stationary particle could
be represented as x(t) = δ(x), this being a distribution approximation for a particle at rest at
the origin. This is clearly insufficient to represent the colour/intensity in our representation of
our stationary particle. The delta function alone cannot encode the timestamp, the geometry
associated with mass. As we increase the resolution of our image, our analog of the Dirac
delta function is actually two Kronecker delta functions with complex intensities that vary
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periodically in time. (Mapping the geometry of the timestamp onto the analog of a worldline
converts the worldline to a signal. As a result, the Fourier uncertainty principle becomes
involved and will turn up in the image model. The principle’s sensational appearance
in physics was due to Heisenberg and retains his name as a result. The absence of the
principle with conventional worldlines in special relativity arises from the fact that the
delta function as a distribution is an adaptation of the on-off function of a single bit of
information, and itself does not carry a signal unless a signal is invoked as an overlay, as it
is in the path integral formulation of quantum mechanics.) As a result, ‘telling an electron
how to stay in one place’ immediately invokes elements of signal processing, bringing
those elements into the physical domain.
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Figure 5. The two pixel ‘intensities’ in the digital array image Equation (11). Proceeding from the
initial intensity of 1 in the central two pixels, the pixel intensities plotted in the complex plane evolve
through discrete spirals traversed in opposite directions.

The third point suggests why complex numbers are so convenient in quantum me-
chanics and why Minkowski’s original formulation of special relativity invoked the ‘time’
coordinate x4 = ict. Looking at Figure 2 or Figure 3, the colour designations are all period 4.
At any spatial location, each colour returns after four switches and the colours stay in
sequence. As a clock, the timestamp completes its cycle in four steps along the time axis.
However, in terms of spatial displacement, the spatial ‘clock’ returns to the spatial origin
every two steps. At each return the colours have switched to their complement giving the
encoding Equation (8). Note that the initial colours in this discrete representation switch
via the real matrix

σ =

(
0 −1
1 0

)
. (12)

and the initial colours have components that are just ±1. However, as we refine the lattice
and consider time steps shorter than the Compton time, as in the coarse resolution given
by T6, the mapping of the timestamp geometry onto single pixel intensities cannot be done
in a single component over the reals. For example, if instead of three steps between switches,
as in T6, we have n steps between switches, we then have:

Q2n = In ⊗
(

(−1)1/2n 0
0 (−1)−1/2n

)
(13)

= In ⊗
(

Exp(−iπ
2n ) 0

0 Exp( iπ
2n )

)
(14)

For large n we can write ε = 1/n so that the smoothed second term of the Kronecker
product becomes:

T′(ε) =
(

Exp(−iπε/2) 0
0 Exp(iπε/2)

)
(15)
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and we can think of ε as a measure of distance along the t-axis. Notice that T ‘registers’
with the time stamp at the even integers where the null lines cross in the centre of the
timestamp. Here T′(2k) = ±I2 for integer k. For odd k, where the null lines from the origin
reach their farthest extent and change colour on direction reversal, T′ is imaginary. For real
ε in general, T′ maps the initial condition, the double Kronecker delta at the origin onto
unimodular complex numbers. Visually, the timestamp boundaries are mapped onto two
osculating spirals as in Figure 6.

Revisiting the idea of smoothness in this process, the idea has been to encode the infor-
mation contained in the timestamp in such a way that the encoding, on lattice refinement,
converges to a form that is expressible in terms of differential equations.

When we look at the 4-state timestamp of Figure 2, the figure itself is piecewise
differentiable. The edges are smooth except at the corners. The transfer matrix image
generator T evolves the edges smoothly via the P operation and produces the corner with
the S. The effect of replacing T with Q in Equation (2) distributes the effect of S over a half
cycle of the timestamp. When this is done, we can see for example in Equation (10), the
transition from T to Q removes the eigenvalues and projectors from T that distribute the
timestamp along the null lines, and condenses the information into the intensity of just
two pixels. To do this the intensities are forced into the complex domain and the result
is Equation (11). To see the ’smoothing’ aspect of this Figure 5 shows that the complex
numbers are evenly distributed on the unit circle. In the limit as the step size gets small the
graph of the ‘smoothed timestamp image’ is sketched in Figure 6.

It is worth noting that the smoothing operation is really that of a low pass filter. To
relate this to the objective of finding the smooth propagator underneath the discontinuous
History-Map in Figure 4, note that if you compare the propagator with the history map,
it is essentially the History-Map with all but the lowest frequency removed in a Fourier
expansion. This frequency filtering takes place in the transition from T to Q.

Figure 6. A visual representation of the timestamp made smooth. The result of the filtering process
is to map the two halves of the timestamp onto two cylinders that are side by side. The curves touch
periodically and mimic the planar figure of the timestamp. The colours here have been retained to
compare to the original planar version Figure 2.

If we ‘undo’ the diagonalization involved in obtaining Equation (15) in order to restore
the analogs of operations P and S, the similarity transformation produces T′(ε) in the form:

T(ε) = cos(πε/2)I2 + sin(πε/2)σ (16)

We see here that the digital clock that initially ticked between the four colours encoded via
Equation (3) using the switch matrix σ, has been interpolated by mapping intermediate
states onto the unit circle in the complex plane. Instead of there being a single step that is
itself a switch (i.e., σ), the refinement below the Compton scale replaces the switch with
successively smaller rotations.
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Note that if we take the limit of Equation (16) as ε→ 0 with t fixed we find:

dT(t)
dt

=
π

2
σT(t). (17)

giving the time dependence of a stationary Dirac particle of mass (π/2) in a 2D spacetime.
(For convenience we have chosen units so that the time between crossings is 1 and the
Compton time is 4, giving timestamps with corners at the integers.)

5. A Particle in a Box

In the above we found instructions that smoothed the timestamp, providing instruc-
tions for a particle to stay stationary in a fixed reference frame. We did this by placing the
particle at the centre of a box that is the same spatial width as the timestamp, and requiring
the crossing points of the causal boundaries to stay fixed in that box.

It is important to note that the previous section was simply about digitizing space-
time diagrams. There was no formal analytic continuation to mimic either Minkowski space
or quantum propagation. Complex numbers did emerge through the insistence that the
pattern of causal boundaries be mapped onto digital intensities. However the emergence
was by construction. It did not force us to leave the domain of applied mathematics where
we understand the mathematics as an encoding of images. We know why refinement of the
lattice required an expansion of an essentially planar figure (the timestamp) into another
dimension that is conveniently wrapped on a circle.

Specifically, the emergence of complex numbers was a result of the need to describe
the causal areas via the timestamp that has a natural period of 4, corresponding to the
4 directions of a two-dimensional spacetime. The need to do this smoothly lifted intensities
from real numbers to complex numbers.

In the implementation, the colour/state switch σ, while a Real matrix, has eigenvalues
±i. The smoothing operation that allows the analog of stationary worldlines then mapped
the colour/intensity of the image onto the unit circle in the complex plane. The point here
is that we know why complex numbers, or more generally the Pauli matrices, arise in this
context. They arise because of the persistent structure of the null lines in Minkowski space.

To allow particles to move (as opposed to stay stationary) within a fixed frame, we
are going to encase our images of timestamps in a box that is much larger than the width
of the timestamp. To place this in a context where the ’particle in a box’ description is an
electron in a box in more familiar surroundings, we shall change two aspects of notation
from the previous section. Referring to Equation (17) the timestamp ‘mass’ of π/2 will be
replaced by the electron mass m in units where h̄ and c are both 1. We shall also change
representations and replace the switch matrix σ with iσx where σx is the Pauli matrix.

To allow for particles that move in a fixed frame, we place the particle in a box of width
that is much larger than the width of the original timestamp, and ask whether the restriction
allows stationary states. To build the transfer matrix we retain the Persist instruction and
replace the Switch instruction with the ‘smoothed’ version from Equation (16) to first order
in ε. For a box of spatial width M, the transfer matrix is:

TM =



0 iεm 1 0 . . . 0 0
iεm 0 0 0 . . . 0 1

0 0 0 iεm . . . 0 0
0 1 iεm 0 . . . 0 0

...

...
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 0
1 0 0 0 . . . 0 0 iεm
0 0 0 0 . . . 1 iεm 0



(18)



Symmetry 2021, 13, 2283 13 of 17

or

TM = IM ⊗ A + P1 ⊗ B + P−1 ⊗ C (19)

where IM is the M×M identity, P1 is the permuted identity with all rows cyclically shifted
up one row. P−1 is the identity with the rows cyclically shifted down one. The 2× 2
matrices are:

A =

(
0 iεm

iεm 0

)
, B =

(
1 0
0 0

)
, C =

(
0 0
0 1

)
(20)

and we can see that the Transfer matrix simply embeds the timestamp in a box, assumed
here to be much wider than the Compton wavelength specified by m.

The matrix Equation (19) is a transfer matrix for Feynman’s Chessboard model [14–19]
in a box whose solution we sketch here. For complete details see the original reference [20].

Equation (19) expresses TM in terms of 2× 2 blocks and since we are looking for
eigenvalues and eigenvectors, we can partition an eigenvector X = (X0, X1, . . . , XM)T into
a column vector of 2× 1 matrices Xi, i = 1 . . . M. Now suppose that the Xk themselves
are slowly varying for large M and in fact may be written as Xn = δnX0 for some δ and
some two component vector X0. The eigenvalue equation TMX = λX can then be written
in terms of X0:

(Aδ + Bδ2 + CδM)X0 = λδX0

...

(Aδn + Bδn+1 + Cδn−1)X0 = λδnX0 (21)
...

(Bδ + CδM−1 + AδM)X0 = λδMX0

Provided δM = 1 these all reduce to the same relation. Now if the length of the box is
L = Mε, write p0 = 2π/L then the n’th root is δn = einp0ε and the eigenvalue
equation becomes:

(Cδ−1
n + A + Bδn)X0 = λX0 (22)

where

(Cδ−1
n + A + Bδn) =

(
e−inp0ε iεm

iεm einp0ε

)
(23)

To first order in ε the eigenvalues are:

λn = 1± iεEn, n = 1, 2, . . . M (24)

with

En =
√

m2 + n2 p2
0, n = 1, 2, . . . M (25)

We would like to find the behaviour of TM in the continuum limit lim
ε→0

Tt/ε
M through integer

values of ε. To do this we write:

TN
M =

2M

∑
i=1

λN
i P(i) (26)

where P(i) is the projector for the i’th eigenvalue. In the limit the eigenvalues approach:
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lim
ε→0

λt/ε
n = exp±iEnt (27)

The projectors P(n) in this limit are constructed from the right eigenvectors of the matrices
in Equation (21). The normalized right eigenvector of Equation (23) is :

X±1 (n) =
1√
2En

( ±m√
En±pn√

En ± pn

)
(28)

where pn = np0. The corresponding normalized right eigenvector of the full matrix is then:

X±(n) =
1

2MEn

(
±mδn√
En ± pn

, δn
√

En ± pn,
±mδ2

n√
En ± pn

, δ2
n
√

En ± pn, . . .

)T

(29)

with the left eigenvector being the conjugate transpose of this. The effect of the sequential
powers of δn in the eigenvectors is that the projectors also have a similar pattern, so for
example, the first column for the projector for the n’th (+) eigenvalue is

P+
1 (n) =

1
2MEn

(
m2

En + pn
, m,

m2δn

En + pn
, mδn, . . . , mδM−1

n

)T

. (30)

The presence of the phase factor δn suggests we consider the discrete Fourier transform
of the spatial amplitudes. Consider:

F(k) =
M−1

∑
n=0

f (n)e−inkp0 =
M−1

∑
n=0

f (n)δ−n
k (31)

If, for example, we take the discrete transform of the odd component of Equation (30)
we get

M

∑
l=1

P+
2l−1,1 =

m2

2En(En + pn)M

M−1

∑
l=0

δl
nδ−l

k =
m2

2En(En + pn)
δnk (32)

So the projectors in Equation (30), when their columns are transformed via Equation (31),
yield non-zero results only at the appropriate eigenvalue λn. Thus if we take the dis-
crete transform of the first two columns of the eigenvalue expansion Equation (30) as in
Equation (32) we get a 2× 2 matrix, to lowest order in ε of

K(p1, t) =

(
cos(E1t)− ip1 sin(E1t)

E1

im sin(E1t)
E1

im sin(E1t)
E1

cos(E1t) + ip1 sin(E1t)
E1

)

= cos(E1t)I2 +
i sin(E1t)

E1
(mσx − p1σx) (33)

Similarly, this occurs for all the pn. In ‘momentum space’, the structure of the timestamp
is such that for fine partitions of spacetime, below the Compton wavelength, the Fourier
components of the propagator simplify and satisfy the same equation. Note that

K(p, t) = cos(Et)I2 +
i sin(Et)

E
(mσx − pσx)

Satisfies

i
∂K(p, t)

∂t
= (pσz −mσx)K(p, t) (34)
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a form of the Dirac equation in a 2D spacetime. By placing the timestamp in a box with a
lattice spacing that is small compared to the Compton wavelength; we see that the Dirac
propagator with a finite momentum spectrum, appropriate for the box, is generated. In the
continuum limit the discrete series approaches the free particle propagator.

6. Conclusions

The purpose of this article was to find instructions that spacetime could use to tell an
electron how to move. The model used was to take the timestamp image Figure 2 and ask
the questions:

1. How do we create a digital image of the timestamp?
2. How do we map the digital image onto one that becomes smooth on finer resolution?

The reason for doing this is that digital image processing is an aspect of applied
mathematics that we can dissect and understand without directly confronting interpretive
problems. (This is in contrast to the situation involving quantum mechanics in general,
and the Dirac equation in particular. Since its discovery in the early 20th century, the
interpretation of Equation (34) has evolved to align with quantum field theory. However,
the increased empirical accuracy involved in the reinterpretation has not been accompanied
by a convergence in interpretation.)

Visually, we saw that digital versions of Figure 2 could be created using transfer
matrices like Equation (7) and then refined by increasing the size of the transfer matrix
appropriately. If we wanted to preserve the timestamp structure while making the scaling
smooth, the resulting smoothed ‘image’ looked like Figure 6. That is, the two halves of the
planar timestamp had been mapped onto osculating helices. In the context of images, the
relationships between scale, colour and geometry were easy to see because of the context
of encoding images of spacetime diagrams. That is, the reason for the mathematics was
always known through what it encoded.

However, the appearance of Dirac-like time dependence in Equation (17) was sugges-
tive. The timestamp and the simple switch Equation (12), smoothed to map the edges of
the timestamp to the ’intensities’ of two pixels, suggested that this process could possibly
mediate between the discontinuous timestamp function and Feynman’s propagator in
Figure 4.

On one hand, we discovered exactly what went into the propagator as the encoding
of a digital representation of the timestamp. On the other, the smoothed version of the
timestamp provided a ‘clock’ appropriate to the Dirac equation.

In Section 5 we took the image processing transfer matrix for a discrete precursor
of a smooth image, and modified it to sit inside a box that was much larger than the
width of a timestamp. We then asked the question as to whether the box could support
stationary patterns. This produced a discrete Fourier representation whose continuum
limit reproduced Feynman’s propagator for his Chessboard model [13].

The result of the mathematical exercise was Equation (34) as an embodiment of
spacetime telling an electron how to move or, in the original context, an encoding of
digitally rendering images of a smoothed timestamp.

7. Discussion

Looking over the description of particle motion using timestamps, we can step back
and compare this with classical approaches going back to Zeno. The view up to modern
times is that as we partition time down to smaller and smaller intervals, we should see
physical objects getting closer and closer to being ‘stationary’, where stationarity is the
absence of motion in space. This view of stationarity as a special state is anthropocentric;
it is what we expect from all our senses because none can register any change in objects
moving at terrestrial speeds over time intervals smaller than our own perceptions can
resolve. While we can always imagine moving with inertial objects to make them stationary
over small time intervals, we have no direct experience with Minkowski space’s actual
demarcation of spacetime via null lines that cannot be viewed in this way.
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In Minkowski space, an ‘event’ at the origin (0, 0), associated with an object that
persists in time and is macroscopically ‘stationary’, does not give rise to an event at (0, ε)
for arbitrarily small ε in such a way as to build a continuous worldline of like events.
Instead it builds a ‘timestamp’, an area bounded by null lines that is much larger than the
‘event’ at the origin. This is because the fixed upper bound in velocity c is enforced on all
scales in Minkowski space and the discrete analog of the worldline of a stationary particle
is a sequence of causal areas, not a straight line running parallel to the t-axis.

It is the special velocity c that persists in time, not spatial position. Events as points give
rise to causal areas and these are the objects that our discrete version of Minkowski space
tracks, with a resolution that is band limited by the Compton frequency, the characteristic
length that is the signature of a specific mass.

Minkowski’s claim [21]:

“Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.”

taken down to microscopic scales in spacetime implicates ‘zitterbewegung’, not station-
arity in space for elementary particles. Classical special relativity, by assuming a smooth
worldline, eliminates this feature immediately, having to recapture energy and momentum
relations through dynamics. The Dirac equation, in its usual context, transplants features
found in non-relativistic quantum mechanics into the relativistic domain. However, in its
usual context, it is an overlay of quantum propagation on Minkowski space that is enforced
as a recipe rather than discovered as a consequence of the Lorentz transformation.

The value of the approach in this article is that the interdependence of space and
time dictated by special relativity is maintained through fine scales and gives rise to
a characteristic length that specifies mass. In this view, the peculiarities of quantum
mechanics arise directly from the enforcement of the light-speed postulate through all
scales. When ‘ds’ is taken below the scale of the Compton length, the classical picture of
the approach to spatial stationarity on fine time scales is replaced by the ‘fixed c’ condition
warranted by Minkowski space, and the result engages a form of ‘quantum propagation’
simply as a smooth mapping of the causal areas generated by a discrete process. The ‘phase’
that becomes part of the propagator is a device whereby Spacetime instructions keep the
Compton scale structure of the timestamp intact.

This picture also lends some insight into the peculiarity involved in the superposi-
tion principle in quantum mechanics [12]. The path integral, useful as it is in quantum
mechanics, seems to say that a single particle explores all possible paths in its trip between
two observations, in violation of what it means to be a (localized) classical particle. This
seems and is peculiar when you think of the paths as collections of worldlines. However,
the above analysis is explicit that worldlines in Minkowski space are themselves proxies.
Minkowski space is about areas, not lengths. Lorentz boosts preserve the Euclidean areas
of the causal region between events. Associating a worldline or a path with a particle
then involves a dimensional error. If the error is completely ignored because the Compton
wavelength is much smaller than all other characteristic lengths in the problem, classical
special relativity is appropriate with mass identified by dynamics and a single worldline
associated with a particle.

If there are characteristic lengths that are on the order of the Compton length, then the
dimensional error of paths requires compensation that is mimicked in the above by the
emergence of phase. It is the presence of phase in wavefunctions that allows spacetime to
keep track of the countable causal areas generated by the existence of the Compton scale
and the constancy of c. It is through phase that the inner characteristic length is maintained
and spacetime areas, as opposed to lengths, are treated appropriately. The ‘function’ of the
wavefunction can then be seen as pre-processing the probability density function that arises
from the Born rule [22]. It effectively moulds the sample space to conform to the restrictions
that Minkowski space inflicts on spacetime. This restriction, the rotated ‘causality’ cone of
Minkowski space, means that the encoding process by which spacetime tells an electron
how to move respects causal areas. Probability density functions that we would construct
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to be normalized over all space at fixed t must also respect causal areas but cannot do so by
just adding the effects of Wiener paths. Only by the device of allowing paths to carry the
phase generated by Minkowski space can the ‘dimensional error’ of paths in Minkowski
space be compensated. This is reflected in the superposition principle switching from
probability density functions in classical physics to wavefunctions in quantum mechanics.

All these features are exposed when you look at Minkowski space from a discrete
perspective that allows you to treat mass as a characteristic inner scale. With this as a
starting point, the origin of the Dirac equation become much easier to see. Quantum
mechanics then emerges from special relativity, demonstrating that we should look more
closely at relativity if we wish to examine quantum foundations.
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