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Abstract: Maze-solving by natural phenomena is a symbolic result of the autonomous optimization
induced by a natural system. We present a method for finding the shortest path on a maze consisting
of a bipartite graph using a discrete-time quantum walk, which is a toy model of many kinds of
quantum systems. By evolving the amplitude distribution according to the quantum walk on a kind
of network with sinks, which is the exit of the amplitude, the amplitude distribution remains eternally
on the paths between two self-loops indicating the start and the goal of the maze. We performed a
numerical analysis of some simple cases and found that the shortest paths were detected by the chain
of the maximum trapped densities in most cases of bipartite graphs. The counterintuitive dependence
of the convergence steps on the size of the structure of the network was observed in some cases,
implying that the asymmetry of the network accelerates or decelerates the convergence process. The
relation between the amplitude remaining and distance of the path is also discussed briefly.

Keywords: discrete-time quantum walk; scattering quantum random walk; Grover walk; pathfinding;
network

1. Introduction

Maze-solving methods are important because they have practical applications and
provide insight into the invisible intelligence that underlies them. Maze-solving problems
can be regarded as a subset of the shortest path problem [1], which is a practical problem in
daily life. To solve the maze problem, a maze can be expressed as a network and then solved
by an algorithm, such as the depth-first search or the breadth-first search algorithm [2].
There are also maze-solving methods that exploit natural phenomena.

Such methods have been studied experimentally using the Belousov–Zhabotinsky re-
action mixtures [3], amoeboid organisms [4], gas discharge [5], and photons in a waveguide
array [6]. In these experiments, the result of maze-solving has a symbolic aspect in that
it represents the autonomous optimization of the natural system. In this way, the pursuit
and modeling of the optimization process in maze solving by a natural phenomenon, can
provide a path to a deeper understanding of that phenomenon.

The quantum walk model, which has been studied as a quantum counterpart of
random walk, has been applied to describe various transportation phenomena in nature [7].
It was first studied as the time-evolution of probability distribution, mainly on a one-
dimensional network. In the discrete-time quantum walk (DTQW) model, each node has
a state vector of complex amplitudes whose dimension corresponds to the number of
neighboring nodes. Each evolution is composed of a coin operation and a shift operation;
after multiplying the unitary matrix (coin operation), the complex amplitude is transferred
into an element of the state vector of a neighboring node (shift operation). By considering
time-dependent or site-dependent unitary matrices, the quantum walk can express many
kinds of transport dynamics.
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The study of quantum walks was extended to arbitrarily connected networks from
an early stage [8] because the quantum search on graphs by quantum walks was pro-
posed [9–11] as an alternative to Grover’s search algorithm [12]. When dealing with
discrete-time quantum walks on an arbitrarily connected network, the concept of scattering
quantum walks (SQWs) can simplify the model [13].

In an SQW, the state vectors are placed on the edges rather than the nodes. The
dimension of each state vector is two: this corresponds to the two directions of an edge
between two nodes. Moreover, each node has a scattering matrix that corresponds to the
unitary matrix in the coin operation. The time evolution is composed of an intrusion in
the node, the multiplication of the scattering matrix, and an escape from the node. The
dynamics of an SQW are equivalent to those of a DTQW except for the location of the
state vectors.

Recently, the concepts of consecutive injection and corresponding emission into and
from the system were incorporated into quantum walks on arbitrarily connected net-
works [14,15]. For quantum walks on a network with entrances and/or exits, the steady-
state [14], trapped-state [15], analogy to an electrical circuit [16], and relationship to the
dressed photon phenomenon [17] have been discussed. In particular, the emergence of a
trapped state between two self-loops on a network with an exit sink [15] directly motivated
the present study, which applies this concept to maze-solving.

Maze-solving using quantum walks has been studied by Hillery, Koch, and Reitzner
on an N-tree maze [18] and a chain of stars [19,20]. Their works are the extension of their
studies on quantum search and finding structural anomalies in networks [21–27]. They
characterized the start and goal nodes in the maze by reflection with phase inversion,
which can be regarded as a pair of structural anomalies.

In this paper, we numerically examine a maze-solving method that uses a quantum
walk on a network. The presented method is an application of the emergence of a trapped
eigenstate on a network with sinks, and it provides an alternative to previously reported
methods [18–20]. Although the mathematical foundation of this method was given by
Konno, Segawa, and Štefaňák [28], the results presented here are non-trivial because
the interaction among multiple trapped eigenstates and the initial condition is generally
difficult to characterize as of now.

We show the effectiveness of the method for some examples of the maze with and
without cycles and also show the undesirable cases for which this method does not work.
The dependence of the number of steps for convergence (convergence steps) on the size
of the network structure was also investigated and found to be counterintuitive in certain
cases. We also make a tentative discussion about the amount of amplitude remaining on a
path and its relative amount among the multiple paths from the numerical results.

2. Model and Method

In this study, the maze is composed of nodes and edges that connect pairs of nodes.
The number of nodes is finite, but pairs of nodes can be connected arbitrarily without limit.
The distance between two nodes is given by the smallest number of edges connecting them.
Therefore, only distances expressed in positive integers are considered. The start and goal
can be placed at any node in the network, even at nodes that are not dead ends. To run
the quantum walk, scattering matrices and state vectors are placed on nodes and edges,
respectively, as in previous studies on SQWs [13].

The state vectors consist of two complex amplitudes, which express the two directions
of the quantum walkers on the edges. As in quantum mechanics, the density of the walkers
on an edge is given by the square of the complex amplitude. At each evolution of time,
the vector of the incoming component is multiplied by the scattering matrix, generating
the vector of the outgoing component. The scattering matrix of the d-dimensional unitary
matrix is placed at each node, where d is the number of edges connected to that node.
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Specifically, we use the scattering matrix of the Grover walk, which, in concrete form, is
given by 
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, (1)

where ai is the incoming complex amplitude from the i-th edge, and bi is the outgoing
complex amplitude to the i-th edge. An example with d = 3 is given in Figure 1a.

To implement maze-solving, two self-loops and a sink are introduced, and the con-
ceptual diagram is shown in Figure 1b. Self-loops are the same as edges except that they
are only attached to a single node. As a result, a self-loop has a one-dimensional state
vector, where the outgoing amplitude from the node becomes the next incoming amplitude
without being modified. For this method, one self-loop is attached to the start node, and the
other is attached to the goal node to which a sink node is also attached. The sink node
has only one edge, which is connected to the goal node, and its scattering matrix is a zero
matrix. The sink serves as the exit from the network for complex amplitudes.

0

(a)

1

d = 3

0

2
1

d
-

2

d
2

d

(b)

Start

Self 

loop
Maze

Goal

Self 

loop

Sink

Figure 1. Conceptual schematics of the numerical model. (a) Example of the time-evolution for a
node with three edges injected with the amplitude 1 from one edge. (b) Setup of the start and goal
with self-loops and a sink. The colors of the start (yellow), the goal (green), and the sink (blue) are
unified in all the examples given later.

The initial amplitude “1” is placed at the self-loop of the start node. To discover the
correct path, the initial amplitude should be placed on the path between the start and goal,
and it should be kept at a distance from the sink node. In this method, placing the localized
amplitude at the self-loop of the start node is the best initial condition for solving the maze
correctly without requiring any prior knowledge of the structure of the maze. Finally, note
that all the amplitudes in the system are denoted by the real numbers even though the
quantum walks are defined using complex amplitudes.

Maze solving was studied for simple structures only because of the large amount of
computational time involved by the current code (by the current code on our standard
personal computer, the calculation of 105 steps took several hours because of unoptimized
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function–call overhead). For the maze without a cycle, a tree-like structure and a single line
with branches were investigated. For the maze with a cycle, independent multiple paths
and a ladder-like structure were investigated.

Two undesirable cases, namely, a maze with odd cycles and a maze showing eternal
vibration are also investigated. For each kind of structure, the dependence of convergence
steps on the size of the structure was investigated. The convergence was judged by
the stability of the second decimal place for all the amplitudes in the network, and the
convergence steps were expressed with an accuracy of one (or two) significant digits.

For discussion regarding the amount of amplitude remaining, about five digits after
the decimal point were considered. The numerical error estimated from the squared sum
of the amplitudes was of nearly the same order as the double-precision real number error
computed using code written in Python. The source code is available in the repository [29].

3. Results
3.1. Tree-like Structure

We first examine maze-solving for the tree-like structures. This structure has no cycles,
and there is only one path from the start to the goal. Figure 2a–c show the results of
the amplitude distribution and the number of steps after convergence for the tree-like
structures of 2N leaves for N = 1, 2, and 3. From the results, we observed that only the
shortest path emerges as a chain of the eternally remaining densities, whereas the densities
on the dead ends vanish during the evolution. The number of convergence steps seems
to increase by digits according to the increase of N in these cases. The case of N = 4 was
also examined. However, the distribution did not converge even after 106 steps that took
three days.

Figure 2d shows the time profiles of the densities on selected edges, where the label
0–3, for example, denotes the edge between nodes 0 and 3. The densities fluctuate strongly
at first and then converge to zero or to positive values. The speed of convergence varies
according to the position of the edge; the greater the distance to the sink node is, the slower
the speed of convergence.

To consider the influence of the extra branching at dead ends on the convergence
steps, the cases of decreased and increased extra branching based on Figure 2c were
examined. For the case with decreased branching as shown in Figure 2e, the convergence
steps decreased, which was an intuitive result. However, the decrease in convergence
steps was more for the case with increased extra branching as shown in Figure 2f. This
counterintuitive dependence is difficult to explain for the present. However, it can be
suggested that the extent of asymmetry in the network accelerated the convergence.

For the cases of Figure 2c,e,f, the absolute values of the converged amplitudes on the
correct paths, including self-loops, were all 0.08. That value seems to have been determined
by the distance between the start and the goal nodes for the case of the network without
cycles. Table 1 lists the relation between the distance between the start and the goal and
the absolute value of the amplitude remaining on an edge for each case. Edges indicates
the number of edges on a path including self-loops. (Edges = 2 × Distance + 2).

A rational expression approximating the amount of amplitude was attached for each
case. For these cases, the amplitudes can be expressed by the inverse of the number of
edges included in the path. Namely, the sum of amplitudes along the path is “1.0” for all
the cases. However, note that the “1.0” does not indicate all the amplitudes injected into
the system because that is not the square sum of the amplitudes.
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Figure 2. The results of maze-solving for the tree-like structure with 2N leaves. (a) Amplitude
distribution and the number of steps after convergence for N = 1. (b) Amplitude distribution and the
number of steps after convergence for N = 2. (c) Amplitude distribution and the number of steps
after convergence for N = 3. (d) Time profiles of the densities on selected edges for N = 3. The inset
focuses on the vibrational behavior of each profile. (e) Amplitude distribution and the number of
steps after convergence for the case where the branches were eliminated from the dead ends in (c).
(f) Amplitude distribution and the number of steps after convergence for the case where the branches
were added to the dead ends in (c).

Table 1. The relation between the distance and remaining amplitude for Figure 2 (The distance
between the start and goal on the correct path, the number of edges in the path, the amplitude
remaining on an edge on the path, and an approximate rational expression of the amplitude).

Figure Distance Edges Amplitude Rational Expression

Figure 2a 1 4 0.25000 1/4
Figure 2b 3 8 0.12500 1/8
Figure 2c 5 12 0.08333 1/12
Figure 2e 5 12 0.08333 1/12
Figure 2f 5 12 0.08333 1/12
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3.2. A Line with Branches

To investigate the dependence of the convergence steps on the placement of the
branches, the maze-solving for various patterns of a line with shallow dead ends was
examined. Figure 3a shows the result for a simple line constructed based on the correct
path of Figure 2c. The number of convergence steps decreased by two orders of magnitude
from the case shown in Figure 2c. Figure 3b shows the result for a line with four shallow
dead-ends. Nearly the same result as Figure 2e was obtained, as the difference between
them was only the length of the dead ends.
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Figure 3. The results of maze-solving for a line with various placements of shallow dead ends.
(a) Amplitude distribution and the number of steps after convergence for a single line of five edges.
(b) Amplitude distribution and the number of steps after convergence for a line with four shallow
dead ends. (c) The structures and the numbers of steps of convergence for a line with a single shallow
dead-end at four positions. (d) The structures and the numbers of steps of convergence for a line with
two shallow dead-ends at three patterns. (e) The structures and the numbers of steps of convergence
for a line with three shallow dead-ends at four patterns.

Figure 3c–e shows the results for patterns of placement of one to three dead ends,
respectively. The distribution of the amplitudes is omitted, but ±0.08, which is the same
as Figure 2c,e,f, is on the correct path, and 0.00 is on the dead-end edges in all cases. The
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convergence steps varied not only by the number of dead ends but also by the positions. As
the trend shows, the convergence steps became larger with increasing dead ends; however,
exceptions were observed depending on the positions of the dead ends. The convergence
steps became larger for the case where dead ends were attached closed to the goal node.
This seems counterintuitive considering the quick convergence near the sink, which was
observed in Figure 2d.

The number of convergence steps for the case of Figure 3e was much larger than
for Figure 3b or Figure 2c. For these cases, the asymmetry significantly decelerated the
convergence speed, which is in contrast to the acceleration due to asymmetry observed in
Figure 2e,f. A maze without cycles can be solved by this method; however, the dependence
of the convergence steps on the network structure is difficult to predict intuitively.

3.3. Independent Multiple Paths

Next, we examined maze-solving on multiple independent paths of different lengths.
This structure includes cycles, which makes maze-solving difficult even in classical schemes.
Figure 4a–c,e,f shows the numerical results for the networks with M paths, where the length
of the Mth path is 2M. After convergence, in all the examples shown here, the densities
remain on all the paths between the start and the goal; however, the maximum densities
are only observed on the shortest path, while smaller densities are observed farther from
the shortest path. By regarding the path of the maximum densities as the correct path,
the maze-solving was successful for these examples.

Figure 4d shows the time profiles of the edges on each path. The speed of convergence
was higher than in the case of other structures of a similar scale. The reason for this
is unclear, but a lack of branching on the paths may be responsible for the high speed.
Among the three paths, the speeds of convergence did not differ significantly, and they did
not depend on the distance from the sink unlike in the tree-like structure. In general, the
convergence steps increased by the addition of other paths. However, a counter-intuitive
decrease of the convergence steps was observed in Figure 4e,f.

The absolute values of amplitudes, after convergence, decrease as the length of the
path becomes longer; however, they are not constant for the length of paths because a
slight decrease was observed by additional paths. Table 2 lists the relation between the
distances of paths and amplitude remaining on an edge. For Figure 4a, the amplitude is the
inverse of the number of edges included in the path, which is the same as given in Table 1.
However, the rule looks broken in the case of multiple paths.

Table 2. The relation between the distance and remaining amplitude for Figure 4 (The waypoint
of a path, the distance between the start and goal on the path, the number of edges in the path,
the amplitude remaining on an edge on the path, and an approximate rational expression of the
amplitude. Only the relative ratios are shown for Figure 4f because an appropriate rational number
was not found).

Figure Waypoint Distance Edges Amplitude Rational Expression

Figure 4a Node 1 2 6 0.16667 1/6
Figure 4b Node 2 2 6 0.14286 2/14

Node 3 4 10 0.07143 1/14
Figure 4c Node 4 2 6 0.13043 3/23

Node 5 4 10 0.06522 (3/2) × (1/23)
Node 6 6 14 0.04348 1/23

Figure 4e Node 7 2 6 0.01245 6/49
Node 8 4 10 0.06122 (3/2) × (2/49)
Node 9 6 14 0.04082 2/49
Node 10 8 18 0.03061 (3/4) × (2/49)

Figure 4f Node 11 2 6 0.11673 5 × (F)
Node 12 4 10 0.05837 (5/2) × (F)
Node 13 6 14 0.03891 (5/3) × (F)
Node 14 8 18 0.02918 (5/4) × (F)
Node 15 10 22 0.02335 (F)
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Figure 4. The results of maze-solving for the structures with multiple independent M paths from
the start to the goal. The length of Mth path is 2M. (a) Amplitude distribution and the number
of steps after convergence for M = 1. (b) Amplitude distribution and the number of steps after
convergence for M = 2. (c) Amplitude distribution and the number of steps after convergence for
M = 3. (d) Time profiles of the densities on selected edges for M = 3. (e) Amplitude distribution and
the number of steps after convergence for M = 4. (f) Amplitude distribution and the number of steps
after convergence for M = 5.

Most of the amplitudes were assigned rational expressions; however, the rule deter-
mining the absolute value (or a positive integer of the denominator) is not clear. However,
the relative amounts of amplitudes among paths in each case were found to be in inverse
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proportion to the distance between the start and goal exactly for these cases. The relative
amounts of amplitude were determined not by the number of edges but by the distances.

3.4. Ladder-like Structure

As in other small examples of mazes with cycles, the ladder-like structures with
L paths were examined. The difference from the previous subsection is that the edges
are shared among the different paths. Figure 5a,b,d shows the results of L = 1, 3, and 4,
respectively. For the cases shown here, the shortest paths are indicated by the chain of
maximum densities, while smaller densities are observed farther from the shortest path,
meaning that the maze-solving was successful. The absolute values of amplitude after
convergence seem to correspond to the distance of each path by considering Figure 5b,d.
However, this is not the case in Figure 5a.

For the cases of L = 2 and 5, undesirable eternal vibrations were observed and maze-
solving could not work, which will be discussed in a later subsection. For the case of L = 6,
the convergence was difficult to realize owing to the limitation of the computational times.
However, it was not an eternal vibration judging from the actual calculations.

Figure 5c shows the time profiles of the edges in each path of Figure 5b. For the three
paths, the speeds of convergence did not differ significantly, and they did not depend
on the distance from the sink unlike what was observed in the tree-like structure. The
convergence is faster than for the tree-like structure but slower than for the independent
multiple paths. The number of convergence steps in Figure 5d is smaller than that in
Figure 5b, exhibiting the difficulty faced in predicting the convergence speed from the
structure of the maze.

Table 3 lists the relation between the distances of paths and amplitude remaining
on an edge in Figure 5. The amplitudes can be expressed by rational numbers; however,
the meanings of the denominator numbers are not clear as in Figure 4. The absolute values
of the amplitudes in Figure 5 are generally smaller than those of the same scale case in
Figure 4.

The ratio among the paths seems to have meaning; however, the reason has not
been determined except for the relation between the longest and second-longest paths.
The relative ratio of the longest path and the second-longest path is thought to be in inverse
proportion to the ratio of the length of the non-shared part of each path. This hypothesis is
complemented in the next subsection.

Table 3. The relation between the distance and remaining amplitude for Figure 5 (The waypoint of a
path, the distance between the start and goal on the path, the number of edges in the path, the ampli-
tude remaining on an edge on the path, and an approximate rational expression of the amplitude).

Figure Waypoint Distance Edges Amplitude Rational Expression

Figure 5a Node 2 4 10 0.10000 1/10
Figure 5b Node 4 4 10 0.0735 5/68

Node 5 6 (= 4 + 2) 14 0.0294 2/68
Node 6 8 (= 4 + 4) 18 0.0147 1/68

Figure 5d Node 5 4 10 0.07303 13/178
Node 6 6 14 0.02809 5/178
Node 7 8 (= 6 + 2) 18 0.01124 2/178
Node 8 10 (= 6 + 4) 22 0.00562 1/178
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Figure 5. The results of maze-solving for the ladder-like structures with L paths from the start to the
goal. (a) Amplitude distribution and the number of steps after convergence for L = 1. (b) Amplitude
distribution and the number of steps after convergence for L = 3. (c) Time profiles of the densities on
selected edges for L = 3. (d) Amplitude distribution and the number of steps after convergence for
L = 4.

3.5. Small Maze

To demonstrate slightly complicated cases, solutions of small mazes by the method
are presented. The maze includes some dead ends and two paths to the goal as shown in
Figure 6a. As in the other related cases shown above, the maximum density remains on the
shortest path, and the densities of the dead-end paths vanish. The maze-solving worked
correctly for a small maze with both dead-ends and cycles.

Figure 6b shows the time profiles of the densities on selected edges. The convergence
speeds were not so different from each other, as in the case of ladder-like structures.

The result of another maze that is slightly modified from Figure 6a is shown in
Figure 6c. The convergence step was 22,000 for this example; however, a drastic increase of
convergence steps was often observed by another slight modification of the structure. It
might be in rare cases that the complex maze could be solved in a permissible computa-
tional time.

Table 4 lists the relations between the distances of paths and amplitude remaining
on an edge in Figure 6. The hypothesis that the relative ratio of the longest path and the
second-longest path is in inverse proportion to the ratio of the distances of the non-shared
part of each path was also confirmed for these cases.
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Figure 6. The results of maze-solving for small mazes with dead ends and two paths to the goal.
(a) Amplitude distribution and the number of steps after convergence for a maze. (b) Time profiles
of the densities on selected edges for (a). (c) Amplitude distribution and the number of steps after
convergence for a slightly modified maze.

Table 4. The relation between the distance and remaining amplitude for Figure 6 (The waypoint of a
path, the distance between the start and goal on the path, the amplitude remaining on an edge on the
path, and an approximate rational expression of the amplitude).

Figure Waypoint Distance Amplitude Rational Expression

Figure 6a Node 18 9 + 3 0.0263 1/38
Node 19 9 + 5 0.0158 (3/5) × (1/38)

Figure 6c Node 13 7 + 5 0.027 1/37
Node 14 7 + 7 0.019 (5/7) × (1/37)

3.6. Undesirable Cases 1: Odd Cycle

Here, we show some examples of undesirable cases where maze-solving did not work.
First, this method cannot be applicable for a maze that includes odd cycles. Figure 7a
shows a network with a single odd cycle whose length is 5. The cycle that consists of nodes
1, 2, 5, 6, and 3 is the odd cycle. When the amplitude distribution converged, the absolute
value of the amplitude between the exit of the cycle and the goal (edges between nodes
4 and 5) became small. The correct path was not indicated by the maximum densities,
meaning that the maze-solving went wrong.
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Figure 7. The results of the attempt of maze-solving for a network that includes an odd-cycle.
(a) Amplitude distribution and the number of steps after convergence for a network with one odd
cycle. (b) Amplitude distribution and the number of steps after convergence for of a network with
two sequential odd cycles. The amplitude distribution that is nearly converged but not completely is
shown because of the limitation of the computational time.

Figure 7b shows an attempt of solving for the network with two sequential odd-cycles.
The effects of the two odd-cycles were not canceled out, and only a small amplitude reached
the goal. The solving method presented cannot apply to the network with odd-cycles.

3.7. Undesirable Cases 2: Eternal Vibration

Even though the odd cycle was not involved in the network, undesirable eternal
vibration was observed in some cases. Figure 8a shows the network of the ladder-like
structure for L = 2, which is exhibiting eternal vibration. In this case, only the edges
between nodes 5 and 6, were stabilized. The amplitudes of other edges, from the start to
the cycle, exhibit a constant vibration pattern eternally. Figure 8b shows the time profiles of
the densities of some edges. The constant amplitude vibrations seem to continue eternally
and not converge. The inset shows the details of the vibrational behavior. The same
patterns are seen to be repeating. The eternal vibration was observed only for the ladder-
like structure of L = 2 and 5.

We found that the eternal vibration was suppressed by the addition of an extra dead
end. Figure 8c shows the network in which one dead-end is attached to Figure 8a. The am-
plitude distribution converged, and the shortest path was indicated by the maximum
densities. Figure 8d shows the time profile of the density for some selected edges in
Figure 8c. The reason for the stabilization is unclear at present; however, a small perturba-
tion of the network may have a significant influence on the behavior of quantum walks.
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Figure 8. The results of the attempts of maze-solving for a structure where the eternal vibration was
observed. (a) Amplitude distribution after 20,000 steps for the ladder-like structure of L = 2. (b) Time
profiles of the densities on selected edges in (a). The inset shows the vibrational behavior in detail.
(c) Amplitude distribution and the number of steps after convergence for the network in (a) where a
dead-end is attached. (d) Time profiles of the densities on selected edges in (c).

4. Discussion

In applying the proposed method to mazes without odd cycles, we verified that the
paths between the start and goal emerge as trapped states of the quantum walk, and the
density on the shortest path was maximized autonomously. As the network without odd
cycles is regarded as a bipartite graph, we concluded that the method can be applied to
the bipartite graph except for the case where the eternal vibration emerges. The condition
for the occurrence of the eternal vibration is not clear as of now as only a few examples
were considered.

The key features of the proposed method are the self-loops at the start and the goal
and the sink node attached to the goal. In previous studies, the start and goal were marked
by reflection with phase inversion placed at the dead ends [18–20]. The correct path was
then judged by the transient profile of the probabilities. Our method partially improves
upon past works by incorporating self-loops, which can be placed anywhere in the maze,
and by determining the correct path according to the eternally remaining densities.

We now consider the remaining densities on the correct path in terms of knowledge
that has been proven mathematically. The eigenstate of the time evolution operator of the
quantum walk with sinks was constructed on the path between two-self loops [28]. This
eigenstate is called the trapped state, and it is not absorbed by the sink. In the Grover walk,
the eigenstates are constructed between two self-loops and also around the cycles [28].
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To generate a trapped state, the initial amplitude should be placed on the edge that
is to be included in the trapped state. This was the reason why the initial amplitude was
placed on the self-loop of the start node. If the initial amplitude is placed randomly at the
edge, the trapped state on the correct path does not always emerge because the initial edge
may not be included on the path between the start and the goal. Even if the initial state is
on the correct path, a trapped state may also emerge in the cyclic structure that includes
the initial edge. In this case, the shortest path may not have the maximum density. When
placing the initial amplitude on a self-loop, the initial edge is not included in any cyclic
structure in the network, and only the paths between the start and the goal emerge.

The role of the sink should also be considered. The dynamics of this type of Grover
walk can be separated into an electric current component that propagates rapidly, and a
random-walk component that propagates slowly [16]. The emergence of the trapped
state results from the electric current component; hence, to observe the trapped state,
the random-walk component must be eliminated by the sink.

Even without the mathematical knowledge above, the amplitude distribution after
convergence can be interpreted by the simple rules observed in the numerical results.
The key rule for determining amplitude distribution is that the sum of incoming/outgoing
amplitudes to/from a node must be zero, separately. This rule is mathematically and
numerically exact at all the nodes in the examples that converged. Figure 9a shows an
example of amplitude distribution around a node on the correct path in the maze.

As the sum of incoming and outgoing amplitudes should be zero separately, ampli-
tudes of plus and minus emerge alternately on the line. Figure 9b shows an example of an
amplitude distribution around a dead-end node. As only one amplitude is incoming to the
dead-end node, that should be zero to make the sum of the incoming amplitude zero. This
is why the amplitudes vanish on the path to the dead-end.

Figure 9c shows an example of amplitude distribution around a self-loop. In this case,
the amplitude on the self-loop acts as both incoming and outgoing amplitudes to keep the
sum zero for both. This is the reason why the signs of the amplitudes are the same on the
edges connected to the node involving the self-loop. These facts fit all the nodes included
in the numerical results after convergence.

The sum rule above can be used to also explain the amplitude distribution around
the even cycle and odd cycle. Figure 9d shows an example of the amplitude distribution
around an even cycle. When the large positive amplitude enters the cycle, two small
negative amplitudes are generated at the first branching node. Both amplitudes move on
the cycle by changing the sign alternately and meet again on the join node. If the cycle
is an even cycle, two small negative amplitudes make a large positive amplitude to the
outside of the cycle to keep the sum rule. For the case of an odd cycle (Figure 9e), two
amplitudes meet at the join node with different signs. To maintain the sum rule, only the
smaller amplitude, which is nearly zero, generates the output. This is the reason why the
maze, including the odd cycle, cannot be solved by this method.

The maze-solving speed of this method is clearly considerably slower than that of
other known algorithms. Although the examples were limited, the convergence steps
were difficult to predict by intuition in observing the structure of the network. At present,
the intuitive unified parameter that connects the network structure and convergence speed
has not been determined mathematically. Further analysis, considering some other aspect,
such as the symmetry of the graph, may be required.

The general reason that the maximum densities emerge on the shortest path remains
unclear at present; however, some tentative rules were observed numerically. In many
cases, the absolute values of amplitude that remained could be approximated to a rational
number composed of integers. When there is only one path to the goal, the absolute values
of amplitudes on an edge become the inverse number of the number of edges included
in the path. This is observed in Figures 2, 3, 4a and 5a. The preserved amount is not the
square of the amplitude but the absolute value of amplitude. It is the same as the sum rule
discussed above.
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When there are multiple paths to the goal and they do not share edges mutually,
the ratio of the absolute values of amplitudes is in inverse proportion to the ratio of the
distance of the paths. This is observed in Figure 4b–f. When there are two paths to the
goal and they share some edges, the ratio of the absolute values of amplitudes is in inverse
proportion to the ratio of the distance of the non-shared part of the paths. This is observed
in Figure 6a,c. When there are more than two paths to the goal and they share some edges,
the dependence of the relative amount of amplitudes on the distance is unclear; however,
certain rules clearly exist. This was seen in Figure 5b,d.

To apply the method presented for actual problems of the shortest path finding,
the lengths of all the paths should be expressed by positive integers. The odd-loops must
not be included; however, the odd-loops would be eliminated by a slight modification of
the distance in the process of discretization of the network. The eternal vibration is still the
obstacle of the path-finding problem. This should be analyzed more both mathematically
and numerically. Additionally, this method cannot involve the negative distance that is
considered in some classical algorithms.

Studying this maze-solving method may not appear to be of much use from the view-
point of computational algorithms; however, it may help to understand the mechanisms of
autonomous features that can be observed in a natural system because the quantum walk
is a toy model that can be applied to the energy transportation in quantum fields, such as
dressed photon phenomena [30].

While the emergence of the shortest path or some other optimized structure in a
natural phenomenon may seem mysterious at first glance, they may have an analogy in
maze-solving using the quantum walks. Moreover, the implicit existence of the sink node
may play an important role in such systems.
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Figure 9. Schematic for the interpretation of the amplitude distribution after convergence based on
the sum rule on each node. (a) An example of distribution around a node on the correct path in the
maze. The sums of incoming amplitudes (red arrows) and outgoing amplitudes (blue arrows) should
be zero, respectively. (b) An example of distribution around a node at a dead-end. To make the sums
of incoming/outgoing amplitudes zero, respectively, no amplitude should enter the dead-end. (c) An
example of distribution around a node with a self-loop. Amplitude on the self-loop acts as both
incoming and outgoing amplitudes. (d) An example of distribution around an even-cycle. (e) An
example of distribution around an odd-cycle.
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