
symmetryS S

Article

Nuclear Structure Evolution Reflected from Local Relations

Man Bao * and Qian Wei

����������
�������

Citation: Bao, M.; Wei, Q. Nuclear

Structure Evolution Reflected from

Local Relations. Symmetry 2021, 13,

2253. https://doi.org/10.3390/

sym13122253

Academic Editors: Jorge Segovia,

Yu-Gang Ma, De-Qing Fang and

Fu-Rong Xu

Received: 1 October 2021

Accepted: 18 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics, University of Shanghai for Science and Technology, Shanghai 200093, China;
192262028@st.usst.edu.cn
* Correspondence: mbao@usst.edu.cn

Abstract: The structure evolution of nuclei which are in connection with symmetry breaking is one of
the important problems not only for nuclear structures, but also for astrophysics and the spectroscopy
of exotic nuclei. Many physical quantities can provide useful information of a shell structure, such as
nuclear masses and nuclear charge radii. This paper introduces three kinds of local relations, i.e., the
NpNn scheme respectively for the quadrupole deformation parameter and the excitation energy of
the first 2+, 4+, 6+ states, the (αN′n + N′p) relation for nuclear charge radii and α decay energies,
and the so-called “nonpairing” relation for binding energies and nuclear charge radii. All these
relations reflect the evolution of nuclear structures, involving shells, subshells, shape coexistence,
phase transition and the Wigner effect. Some results from different models can be verified with
each other.

Keywords: nuclear structure evolution; local relations; quadrupole deformation parameter; the
excitation energy; nuclear charge radius; α decay energy; binding energy

1. Introduction

The shell structure is found in many physical systems, such as atoms and nuclei. In
the early 1930s, Bartlett discovered certain regularities in the composition of atomic nuclei
and speculated that nucleons within nuclei might have their own shell structure [1–3].
Subsequently, more systematic studies were conducted by Elsasser, and it was found
experimentally that some properties of the nucleus present obvious periodic changes as
the number of protons or neutrons increase, and nuclei with several special proton or
neutron numbers are particularly stable [4–6]. These special numbers are called “magic
numbers”, and were explained successfully by Mayer [7–9] and Jensen et al. [10–14]
through introducing spin-orbit coupling in the mean field. The nuclear shell model,
which represents magic numbers as well as experimental phenomena, such as spin, parity,
magnetic moment and beta decay, was successfully developed through this line [15], and
was proved to be very useful in studying the low-lying states of nuclei [16–18].

Nuclear mass (or binding energy) is a fundamental quantity of an atomic nucleus, and
its measurement played an important role in the building of the nuclear shell model [7–15].
The shell structure of a neutron (proton) can be determined effectively by the double-
neutron (-proton) separation energies, for their sudden decrease at magic numbers. For
the nuclei away from the stability line, the binding energy decreases, and they become
weak-bounded open systems near the drip line. These unstable nuclei may have different
magic numbers and systematic evolution of their structures, which is in connection with
the symmetry breaking that may arise [19]. In the early years, research was focused on
nuclei with a small mass number, due to the limited experimental conditions. Nowadays,
more than 3000 nuclei are synthesized experimentally [20–22] and more information of the
nuclear structure can be obtained.

The structure evolution of nuclei, which is directly reflected in the ground and low-
lying states, is one of the advanced topics of nuclear structure, and is also involved in
astrophysics and the spectroscopy of exotic nuclei. Recently, many efforts were made
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toward describing and predicting physical quantities, which provide useful information
of shell structure, such as nuclear masses, α-decay energies, nuclear charge radii and so
on. Some of these works that give relations connecting physical quantities of several
neighbor nuclei or reveal certain phenomenon in local regions are called “local” relations,
for example, the Garvey–Kelson mass relations [23,24], relations connected with neutron–
proton interactions [25–30], and the NpNn scheme [31–35]. In this paper, three kinds of
local relations and corresponding information reflecting nuclear structure evolutions are
introduced and discussed.

2. Local Relations

In this section, three kinds of local relations that can reflect nuclear structure evolutions
are introduced, and the corresponding discussions are made.

2.1. The NpNn Scheme of the Quadrupole Deformation Parameter e2 or the Excitation Energy E2+1
,

E4+1
and E6+1

The NpNn scheme was described by Casten, where E2+1
, E4+1

/E2+1
and B(E2, 0+1 → 2+1 )

for even–even nuclei exhibit smooth systematics against the product of valence proton
number Np and valence neutron number Nn [31,36,37]. It works equally well for the
quadrupole deformation parameter e2 (correlated with the intrinsic quadrupole moment)
of all parity types of medium-heavy nuclei in Ref. [34].

In Figure 1, the absolute value of e2 in the Nilsson perturbed–spheroid parameteriza-
tion taken from Ref. [38] is presented versus NpNn for nuclei in three different regions [34].
Here only e2 of nuclei with known experimental binding energies [22] are plotted. As
discussed in Ref. [34], the correlation between e2 and NpNn shown in Figure 1 is very
compact, except for several anomalies which are labeled by the red circles in Figure 1a and
marked by a red circle in Figure 1b,c.
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Figure 1. |e2| in the Nilsson perturbed–spheroid parametrization [38] versus NpNn. (a) For nuclei with 50 < Z < 67 and
82 < N < 105. (b) For nuclei with 66 < Z < 82 and 82 < N < 105. (c) For nuclei with 66 < Z < 82 and 104 < N < 126.
The anomalies are labeled by the red circles in panel (a) and marked by a red circle in panels (b,c).

Affected by the Z = 64 subshell, the red circles in Figure 1a, which correspond to e2
of nuclei with 58 < Z < 67 and 82 < N < 92, deviate from the other black squares [34].
In addition, e2 of N = 84 isotones equals 0 as shown in Figure 1a, which is because these
nuclei are soft and the difference between the equilibrium deformation and the expected
value of the deformation is large [34].

Those anomalies in Figure 1b,c correspond to nuclei with Z = 77 or 78 and
N = 99 ∼ 109, which belong to a complex region where there exists large γ softness,
deformation and transition [34]. In Ref. [35], similar anomalies are pointed out in the NpNn
scheme for the excitation energy of the first 2+ state E2+1

of even–even nuclei with Z = 78
or 80 and 83 < N < 105, based on the experimental data taken from Ref. [39] (see Figure 2a
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with the anomalies labeled by the red circles). However, it is no longer obvious with the
updated experimental data taken from Ref. [40], as shown in Figure 2b.
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Figure 2. E2+1
versus NpNn for even-even nuclei with 67 < Z < 81 and 83 < N < 105. The

experimental data are taken from Ref. [39] for panel (a) [35] and Ref. [40] for panel (b), respectively.
The red circles correspond to the E2+1

of nuclei with Z = 78 or 80 and 83 < N < 105.

In Ref. [41], e2 is further discussed with the P factor, i.e., NpNn/(Np + Nn), in the
same region of Figure 1b,c. |e2| in the Nilsson perturbed–spheroid parametrization [38] is
plotted versus the P factor in Figure 3, where nuclei with 66 < Z < 76 are labeled by black
squares, and isotopes with Z = 76 ∼ 81 are labeled by colored dots. With the increase in
factor P, |e2| grows smoothly and becomes flat around P ∼ 6 [41].
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Figure 3. |e2| in the Nilsson perturbed–spheroid parametrization [38] versus the P factor. Panel (a,b)
corresponds to 82 < N < 105 and 104 < N < 126, respectively. Nuclei with 66 < Z < 76 are labeled
by black squares, and isotopes with Z = 76 ∼ 81 are labeled by red circles, blue up triangles, pink
down triangles, green diamonds, orange stars and violet pentagons, respectively.

It is seen that some colored dots depart from black squares obviously. Most of these
anomalies correspond to nuclei with N = 97 ∼ 104 in Figure 3a and with N = 105 ∼ 109 in
Figure 3b, which near the midshell N = 104. This is explained by Ref. [41] that coexisting
deformed states may descend into the low-lying spectrum for nuclei with Z > 82.

Similarly in Ref. [41], the relationship between E2+1
[40] and the P factor is presented

in Figure 4a for even–even nuclei with 67 < Z < 81 and 83 < N < 105. The black squares
correspond to nuclei with 67 < Z < 75, and isotopes with Z = 76, 78 and 80 are labeled
by colored dots. It is obvious that the deviation between those colored dots and the black
squares becomes larger with the increase in Z. This phenomenon also appears in the
relation between E4+1

, E6+1
[40] and the P factor, as shown in Figure 5a,c.
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Figure 4. E2+1
[40] versus the P factor for even–even nuclei with 83 < N < 105. Panels (a,b) corre-

spond to nuclei with 67 < Z < 81 and 51 < Z < 67, respectively. The colored hollow dots in panel
(a) are isotopes and the colored solid dots in panel (b) are isotones.
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Figure 5. E4+1
and E6+1

[40] versus the P factor for even–even nuclei with 83 < N < 105. Panels (a,c)
correspond to nuclei with 67 < Z < 81, while panels (b,d) correspond to nuclei with 51 < Z < 67.
The colored hollow dots are isotopes and the colored solid dots are isotones.

In addition, by comparing Figure 3 with Figure 1b,c, and Figure 4a with Figure 2b, it
is easy to see that the anomalies for nuclei with Z = 76 ∼ 80 are more conspicuous in the P
factor plot than in the NpNn scheme for both |e2|and E2+1

, and behave in a pattern with the
proton number Z in the P factor plot [41] .

For even–even nuclei with 83 < N < 105 and 51 < Z < 67, E2+1
, E4+1

and E6+1
[40]

are also plotted with the P factor in Figures 4b and 5b,d, respectively. It is seen that
these excitation energies [40] of nuclei with N = 84, 86 and 88 (colored solid dots) are
also deviated from the others (black solid dots) obviously, as well as those N = 84 and
86 isotones with 68 ≤ Z ≤ 74 as shown in Figure 5c.

2.2. (αN′n + N′p) Relation for Nuclear Charge Radii R and α Decay Energies Qα

It is shown in Ref. [42] that nuclear charge radii R have a good linear relationship
with (αN′n + N′p) in a local region. Here, α is a fitting parameter, N′p = Z − Z0 and
N′n = N − N0, where Z0 and N0 are the beginning proton number and neutron number of
a local region, respectively. However, some anomalies exist in several local regions [42].
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Suppose that R(N, Z) = k(αN′n + N′p) + C nuclear charge radii are plotted versus
(αN′n + N′p) in Figures 6 and 7 for several different local regions which are pointed to
have anomalies in Ref. [42]. Here, the experimental value of R is taken from the CR2013
database [43,44], and k, α, C are obtained by χ2-fitting.
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Figure 6. Nuclear charge radii R [43,44] versus (αN′n + N′p) in different regions. The anomalies are labeled by the open
squares, and large experimental uncertainties (>0.15 fm) of R are shown in panel (c). The parameter α respectively equals
0.111, 0.534, −0.102, 0.417, 0.187 and 1.180 for panels (a–f).
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Figure 7. Nuclear charge radii R [43,44] versus (αN′n + N′p). Different symbols are used to label the
chains of isotopes, and the experimental uncertainties of R are given. The parameter α is 0.763.

It is seen that nuclear charge radii of nuclei with 78 ≤ Z ≤ 80 and 101 ≤ N ≤ 107
in Figure 6d and of nuclei in Figure 7 also show abnormalities [42], which are generally
consistent with the anomalies of |e2| and E2+1

, E4+1
, E6+1

in the NpNn scheme and the P factor
plot, as discussed in Section 2.1.

The anomalies given in Figure 6b may correspond to the phase transition at N = 60
and Z ∼ 40 [45], where it is also explained by Ref. [46] that the sudden deformation here is
contrasted with the deformation from a sphere to an ellipsoid.

As shown in Figures 6c and 7, R of nuclei with Z = 65 have very large experimental
uncertainties (about 0.15 fm), which may lead to much lower positions in panels relative to
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the others [42]. For the other anomalies presented in Figures 6a,e,f and 7, the structure of
them should be further studied in the future.

The linear relationship between α decay energies Qα and (αNn + Np) is also pointed
out in Ref. [47]. In Figure 8, Qα taken from Ref. [22] is plotted versus (αN′n + N′p) in four
different regions, and those anomalies which deviate from the others (black dots) obviously
are labeled by colored dots.
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Figure 8. α decay energies Qα[22] versus (αN′n + N′p) in different regions. The anomalies are
labeled by colored dots. The parameter α respectively equals −0.947, −0.442, −0.277 and −1.539 for
panels (a–d).

Blue triangles in Figure 8a correspond to nuclei with Z ∼ 64 and N ∼ 90, which may
be influenced by the Z = 64 subshell [31,36,48–50]. The red circles in Figure 8b denote
nuclei with 66 < Z < 71 and 83 < N < 88, which also exhibit an anomaly as shown
in Figure 5b,d (E4+1

, E6+1
versus the P factor) and Figure 7 (R versus (αN′n + N′p)). The

deviations of Qα between Z = 83 isotopes and the others in Figure 8c,d are also reflected
in Figure 6e,f.

2.3. The So-Called “Nonpairing” Relation of Binding Energies B and Nuclear Charge Radii R

The so-called “nonpairing” interaction between the last two protons δVpp or the last
two neutrons δVnn are defined as follows:

−δVpp(Z− 1, Z; N) =
1
2
[B(N, Z)− B(N, Z− 1)− B(N, Z− 2) + B(N, Z− 3)], (1)

−δVnn(N − 1, N; Z) =
1
2
[B(N, Z)− B(N − 1, Z)− B(N − 2, Z) + B(N − 3, Z)], (2)

respectively [45]. B(N, Z) is the binding energy of nuclei with neutron number N and
proton number Z.

Based on the AME2020 database [22], δVpp and δVnn are calculated by using Equa-
tions (1) and (2), and are plotted versus Z and N, respectively, in Figure 9 [45]. Those blue
circles or green tringles, which correspond to nuclei with Z − N = 1 or 2 for δVpp and
N − Z = 1 or 2 for δVnn, are quite large, as shown in Figure 9a,b. This is mainly caused by
the Wigner effect [45], which results from the neutron–proton correlation and is dependent
on the isospin.
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Figure 9. (a): δVpp versus Z. (b): δVnn versus N. The anomalies are labeled by the red stars. The blue
circles and green triangles correspond to nuclei with Z− N = 1 and Z− N = 2 in panel (a), and
those with N − Z = 1 and N − Z = 2 in panel (b).

The other anomalies that are irrelevant to the Wigner effect are labeled by the red
circles in Figure 9. As pointed in Refs. [45,51,52], these anomalies are “fingerprints” of
nuclear structure involving (sub-)shells and phase transitions.

New magic numbers N, Z = 16 discovered in Refs. [53,54] are represented in Figure 9a,b,
respectively [45]. The Z = 40 subshell (for N < 60) [31,36,48,55,56] and Z = 64 subshell
(for N < 90) [31,36,48–50] correspond to anomalies with Z = 40, N ∼ 56 of δVpp and
Z ∼ 64, N = 90 of δVnn, respectively [45]. In addition, the phase transition at N = 60 and
Z ∼ 40 also behaves abnormally as shown in Figure 9b [45].

Similar to δVnn discussed above, δRnn is defined in Ref. [42], i.e.,

δRnn(N, Z) = R(N, Z)− R(N − 1, Z)− R(N − 2, Z) + R(N − 3, Z). (3)

Here, R(N, Z) is the nuclear charge radii of nuclei with neutron number N and proton
number Z. Based on the CR2013 database [43,44], δRnn is calculated and plotted versus the
neutron number N in Figure 10 [42]. The red dash lines of δRnn = ±0.03 fm are plotted to
guide the eyes.
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Figure 10. δRnn versus N for N > 10. The red dash lines correspond to δRnn = ±0.03 fm. For
N, Z > 30, nuclei (N, Z) with absolute values of δRnn > 0.03 fm are labeled.
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The nuclei (N, Z) with |δRnn| > 0.03 fm are labeled in Figure 10, and these anomalies
can be divided into three regions: (1) Z = 37 ∼ 40 and N = 60 or 62; (2) Z = 63 or 65 and
N = 89 or 91; (3) Z = 79, N = 108 or 110, and Z = 80, N = 107 or 108 [42]. These large
deviations of δRnn are also consistent with the (αN′n + N′p) relation for R, as discussed in
Section 2.2 [42].

The anomalies in region 3 of Figure 10 are the same as those in Figure 6d. For the
other two regions, Figure 11 is plotted to explain those anomalies. Obvious gaps shown in
Figure 11a,b lead to those anomalies of regions 1 and 2 of Figure 10, respectively [42].
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Figure 11. Nuclear charge radii R [43,44] versus (αN′n + N′p). Different symbols are used to label
the chains of isotopes. The parameter α is 0.844 for panel (a) and 1.178 for panel (b).

The sudden increase in R at N = 60 shown in Figure 11a corresponds to the phase
transition at N = 60, Z ∼ 40 (as discussed above in Figure 6b in Section 2.2). The gap in
Figure 11b is influenced by the Z = 64 subshell [45].

3. Conclusions

In this paper, three kinds of local relations that can reflect many nuclear structure
evolutions are introduced, and some results of these models can be verified with each other.

The new magic numbers and Wigner effect can be reflected from δVnn and δVpp. The
phase transition at Z ∼ 40 and N = 60 is shown in the (αN′n + N′p) relation, and δRnn,
δVnn relation. The subshell at Z = 40 and N < 60 causes a part of the anomalies in
δVpp. The NpNn scheme of e2, δVnn, δRnn and the (αN′n + N′p) relation of R and Qα show
abnormalities at the Z = 64 subshell.

The shape coexistence in the region of nuclei with Z = 76 ∼ 81 and N ∼ 104 can be
given by the e2 in both the NpNn scheme and the P factor plot, the E2+1

, E4+1
, E6+1

in the P
factor plot, and the (αN′n + N′p) relation and the δRnn relation for nuclear charge radii R.

In addition, anomalies of nuclei with 66 < Z < 71 and 82 < N < 88 arise in the P
factor plot of E2+1

, E4+1
, E6+1

, as well as the (αN′n + N′p) relation of R and Qα, and anomalies
of Z = 83 isotopes arise in both the (αN′n + N′p) relations of R and Qα. The reason for
these anomalies is still unknown and should be studied further.
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