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Abstract: Prediction of visual attention is a new and challenging subject, and to the best of our
knowledge, there are not many pieces of research devoted to the anticipation of students’ cognition
when solving tests. The aim of this paper is to propose, implement, and evaluate a machine learning
method that is capable of predicting saliency maps of students who participate in a learning task
in the form of quizzes based on quiz questionnaire images. Our proposal utilizes several deep
encoder–decoder symmetric schemas which are trained on a large set of saliency maps generated
with eye tracking technology. Eye tracking data were acquired from students, who solved various
tasks in the sciences and natural sciences (computer science, mathematics, physics, and biology). The
proposed deep convolutional encoder–decoder network is capable of producing accurate predictions
of students’ visual attention when solving quizzes. Our evaluation showed that predictions are
moderately positively correlated with actual data with a coefficient of 0.547± 0.109. It achieved better
results in terms of correlation with real saliency maps than state-of-the-art methods. Visual analyses
of the saliency maps obtained also correspond with our experience and expectations in this field.
Both source codes and data from our research can be downloaded in order to reproduce our results.

Keywords: cognition; deep learning; convolutional network; encoder–decoder; visual attention;
saliency map; solving quizzes

1. Introduction

The latest advances in machine learning have allowed the creation of data-driven
deep learning models which train on properly preprocessed eye tracking data and can be
applied to simulate and predict a person’s cognition when solving particular tasks.

1.1. State of the Art
Eye Tracking Data as Indicators of Cognitive Processes

Eye tracking tools, which are increasingly common in experimental laboratories, pro-
vide rich and precise data on the mechanisms and time course of cognitive processing. Eye
tracking measurements generate a dataset that provides insights into cognitive processes
that cannot be obtained from other behavioral measurements [1].

Analysis of cognitive processing relies primarily on data from eye movements, which
are, in some simplistic terms, a composite of short pauses called fixations and rapid
eye movements, called saccades, during which suppression of visual information occurs.
Although fixations are moments of increased (effective) exploration of the presented visual
scene (stimuli), saccades are also important for the analysis of cognitive processing. They
provide a measure of information selection important in the process of visual search [2].
Gaze provides the data necessary for a decision-making system, hence the analysis of
fixations and saccades provides information about the mechanism by which humans make
decisions [3,4]. Eye tracking has led to the conclusion that people, when deciding between
different options, are more likely to make their first fixation on the option they will go
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on to choose [5]. Analyzing eye tracking data also provides insight into, for example,
the strategies taken when performing computations. The authors of [6] have shown the
utility of eye movement data to examine the spatial–temporal distribution of attention when
solving arithmetic problems using different strategies and age-related differences in these
strategies and distributions. Eye tracking indices are also proving to be useful in analyses
of cognitive processes such as memorization (e.g., [7]), or those of the highest complexity,
such as problem solving [8], cognitive reasoning [9], and the learning process [10]. Another
issue, of particular interest to us, has been addressed by [11], who used eye movement
trackers to detect where learners’ attention is focused, so that the system is able to provide
prompts when learners’ eye movements suggest that they have encountered difficulties.
It has been hypothesized that individuals who are able to solve a problem successfully
tend to focus their visual attention on the most salient information needed to solve the
problem [12]. This hypothesis was confirmed in the study [13]. Eye tracking scaffolding
in the form of introducing an immediate feedback mechanism has also been shown to
have a significant impact on promoting students’ sense of self-efficacy when learning C
programming [11]. The eye tracking technique thus contributes to the understanding of
cognitive processes and allows attempts to simulate them, providing valuable input from
behavioral measurements for machine learning.

1.2. Eye Tracking-Based Cognition Analysis

Reliable knowledge about cognitive processes can only be gained through a combi-
nation of objective data (as we consider eye tracking indicators to be) and parallel survey
research. Publication limitations did not allow a detailed description of the research proce-
dure that made it possible to obtain the data, but it is the norm that eye tracking research
is accompanied by in-depth interviews and tests (this was also the case in our study). As
eye tracking is an unobtrusive method to gain deeper understanding of cognitive pro-
cesses, such as problem solving and decision making and by measuring eye movements,
researchers gain insight into the ongoing mental processes during tasks, write, among oth-
ers: Bueno et al. [14], Ke et al. [15], Kiefer et al. [16], Semmelmann and Weigelt [17], and
Aslin and McMurray [18]. In summary, it can be said that the view is well established that
knowing where people look at a given point in time can thus provide crucial insights into
perceptual and cognitive development.

There have already been successful attempts at solving various problems related
to eye tracking-based cognition analysis using modern approaches with machine learn-
ing [19]. Many methods of that type are devoted to classification or approximation. In [20],
the authors proposed a machine learning-based method that is capable of automatically
detecting task demand using eye movements. The solution utilizes eye tracking-based
features, linear and kernel-based support vector machine (SVM), and random forests. The
authors of [21] attempt to classify eye tracking data using a convolutional neural network
(CNN). With the aid of carefully designed CNN-based features, the extractor authors were
able to classify two different web interfaces for browsing news data. Then, in a second
experiment, a CNN was used to classify the nationalities of users. Chen et al. [22] propose
a method to recognize strabismus by applying a neural network-based approach on eye
tracking data. That approach utilizes a so-called gaze deviation (GaDe) image which is
then classified by the network pretrained on an ImageNet dataset. Dalrymple et al. [23]
use machine learning to perform infants’ age recognition using age-related variability in
gaze patterns. Lee et al. [24] classify programmer expertise and difficulty of the task using
eye tracking signals. The classification was based on SVM.

There is also research that demonstrates the prognostic and generative abilities of
deep neural networks (DNNs) in the spatial domain. The application on convolutional
neural networks for visual attention prediction has been reported by Louedec et al. [25] and
Wang et al. [26]. In [25], a deep neural network is applied in a chess game, while in [26],
visual attention is predicted on plain photos.
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Among many applications of eye tracking and machine learning, the authors of [27]
propose to use these approaches to enhance motivation and learning. The proposed
method can supply students with gaze-aware feedback by using machine learning for the
prediction of student performance from their behavior. Eye tracking together with machine
learning (ML) provides technical support for learning path research [28,29], analysis of
collaborative problem solving, and cognitive and social–emotional learning skills [30].
In [31,32], the authors show that people can improve their decision and learning skills by
examining eye tracking data that visualize what experts paid attention to when solving a
certain problem. Another important applications of ML and eye tracking is evaluation of
students’ engagement [33,34], performance [35,36], and learning style classification using
eye tracking data [37]. An additional broad survey on the application of ML and eye
tracking in science learning activities can be found in [38,39].

1.3. Motivation of This Paper

As can be seen from the previous section, the prediction of visual attention is a new
and challenging subject, and to the best of our knowledge, it has not yet been successfully
applied to anticipate students’ cognition when solving tests, so our research is among the
first of this type. In contrast to other researchers, we do not focus on using machine learning
methods to classify eye tracking results, however, our goal is to make predictions of visual
attention of students. Due to this fact, the aim of this study is to propose, implement, and
evaluate a machine learning method that is capable of predicting saliency maps of students
who participate in learning tasks in the form of quizzes based on quiz questionnaire images.
Our proposal utilizes several deep encoder–decoder symmetric schemas which are trained
on a large set of saliency maps generated with eye tracking technology. We also compare
our results with state-of-the-art approaches for visual attention prediction, however, in
contrast to previously published methods that are typically trained on eye tracking data
collected from viewing a variety of photographs, our eye tracking data have been acquired
from students who solved various tasks in the sciences and natural sciences (computer
science, mathematics, physics, biology). The basic application of the proposed method is
to enable one to predict the cognition process of students when solving particular quiz-
based tasks, for example, in order to anticipate which parts of the document will focus the
reader’s attention and will generate more fixations. This is an important factor that has to
be taken into account in the process of correct test design.

2. Material and Methods

In this section, we will present the methodology that we have developed in order to
generate a prediction of students’ visual attention and the datasets we have used in the
evaluation of the proposed methodology.

2.1. Network Architectures

Encoder–decoder neural network architectures typically have a topology of two vertex-
connected pyramids with a symmetric number of neurons on corresponding levels of those
pyramids. The first pyramid acts as an encoder whose task is to reduce the dimensionality
of the output image and generate image embedding. The second pyramid has the task
of converting the image embedding to the resultant image. If the resulting image is to
have the same modality as the output image, the network is called an autoencoder. If the
output image is of different modality than the output image, the network is called a hetero-
encoder–decoder. Decoding is most often implemented by the deconvolution layers of the
network, also called transposed deconvolution (Conv2D T) [40].

In the case of an encoder–decoder network modeling a saliency map, we are dealing
with a hetero-encoder–decoder because the input to the network is an RBG image, while the
saliency map is a grayscale image in which the brightness value of a pixel is proportional
to the time spent focusing on a given portion of the image.
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Efficient encoder–decoders that utilized the embedding method have been successfully
implemented using pretrained convolutional networks, for example, VGG16 [41]. The basic
architecture of such a hetero-encoder–decoder using a single deconvolution pyramid
(E-D 1) is shown in Figure 1a. In practice, more sophisticated structures are also used that
utilize several deconvolution pyramids that take embedding from several convolutional
layers and perform deconvolution for each of these embeddings separately. An example of
such a multi-stage encoder–decoder is the network presented in the paper [26] and shown
in Figure 1c.
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Figure 1. Various DNN encoder–decoder architectures that use VGG16 convolutional layers. Num-
bers above the input and output layer indicate the dimensionality of images. Numbers above Conv2D
and Conv2D T indicate the number of filters. Conv2D is a two-dimensional convolutional layer and
Conv2D T is a transposed two-dimensional convolutional layer.

There are some details that are not presented in that paper, however, they were
proposed in its implementation by Wenguan Wang and Jianbing Shen CAFFE and later in
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Suraj Maniyar’s Keras/Tensorflow 1.X implementation of [26], namely thresholding the
grayscale value levels of the original saliency map.
Our proposition of encoder–decoder networks for students’ visual attention prediction
is based on previous work of Wang and Shen [26] which is an efficient and effective
state-of-the-art network. The main idea in [26] was an application of a deep encoder–
decoder network with a VGG16-based encoder to generate prediction of visual attention.
That encoder utilizes VGG16 convolution layers pretrained on the ImageNet dataset [42].
Pretrained layers have a role as multi-scale feature extractors.

The model uses three separate decoders that are basically stacks of transposed convo-
lutional layers that recover the original resolution of the input image. The first encoder
takes data from the last, fifth layer of VGG16, the second from the fourth, and the third
from the third layer of VGG16. After this step, each output of the decoder is concatenated
into a single tensor, which is then filtered by a single convolution layer. The loss function
is defined as the averaged value of binary cross entropy loss between the predicted and
ground truth value:

loss(G, P) =
BCE(G, Pd1) + BCE(G, Pd2) + BCE(G, Pd3) + BCE(G, Pout)

4
(1)

where BCE(G, Pd1) is binary cross entropy calculated between ground truth G and value
Pd1 predicted by decoder d1. d1 is the “deepest” decoder, that is connected to the last
convolutional layer. Pout is a value returned by the output layer of the whole network. The
last layer has a sigmoid activation function that produces a saliency map with the same
size as the input image.

Summarizing, each of three decoders produces a separate prediction of visual atten-
tion using a different number of convolutional filters taken from encoder layers that are
optimized together with the final output of the network.

The main idea behind our research was to examine if various adjustments of archi-
tecture [26] will improve the quality of visual attention prediction of eye tracking-based
saliency maps. We anticipated that an appropriate combination of multi-level image
convolution filtering might result in improvements in image feature selection. Those fea-
tures might be then used by multi-scale deconvolution layers to reconstruct the desired
saliency map.

For our research, we have adjusted the architecture of the network presented in
Figure 1c. Each stack of decoders is composed of three layers instead of only a transposed
convolutional layer; they are: transposed convolutional layer, leaky ReLu layer, and
batch normalization. Application of batch normalization as part of the multi-scale model
allows us to use much higher learning rates and to be less careful about initialization [43].
Application of leaky ReLu should limit the so-called dying ReLU problem [44]:

f (x) =
{

α · x; i f x < 0
x; otherwise

(2)

where f (x) is an activation function; we have set α = 0.2.
Based on the above architecture, we proposed three more encoder–decoder architec-

tures that can be used for generating saliency maps. The key aspect of successful network
training is the proper formulation of the loss function. In case of a complex network
structure, which has several parallel operating structures, it is necessary to ensure that
the parameters of each of them are evenly trained. Therefore, it is advisable to build the
loss function in such a way that it minimizes the error in the output layers of each of
these parallel structures. This is the approach we used in our work: our loss functions
minimize not only the binary cross entropy between ground truth and network output but
also the binary cross entropy between ground truth and the output of each of the parallel
subdecoder networks. The network in Figure 1b is a poorer version of the network in
Figure 1c, which has two decoder pyramids instead of three. The loss function is defined
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as the averaged value of binary cross entropy loss between the predicted and ground
truth value:

loss(G, P) =
BCE(G, Pd1) + BCE(G, Pd2) + BCE(G, Pout)

3
(3)

The network in Figure 1d has an additional decoder pyramid that decodes images
from earlier encoder layers. The loss function is defined as the averaged value of binary
cross entropy loss between the predicted and ground truth value:

loss(G, P) =
BCE(G, Pd1) + BCE(G, Pd2) + BCE(G, Pd3) + BCE(G, Pd4) + BCE(G, Pout)

5
(4)

Our last proposed architecture uses two encoders, one pretrained on the ImageNet
set and the other pretrained on the Places365 [45] set. This architecture uses two single
pyramid decoders analogous to the network presented in Figure 1a. The loss function
is defined as the averaged value of binary cross entropy loss between the predicted and
ground truth value:

loss(G, P) =
BCE(G, Pd1) + BCE(G, Pd1places) + BCE(G, Pout)

3
(5)

where value Pd1places is predicted by decoder d1 from VGG16 pretrained on the Places365 dataset.
We set VGG parameters to be fixed (not optimized during training). We summarize

the architectures of all the networks described in this section in Table 1.

Table 1. Summary of the architectures of all the networks described in Section 2.1.

E-D 1 E-D 2 E-D 3 E-D 4 2xE-D 1

Number of encoders 1 1 1 1 2 × 1
Number of decoders 1 2 3 4 2 × 1

Total params 20,989,519 24,902,489 25,863,779 26,086,509 41,979,033
Trainable params 6,271,885 10,182,935 11,143,329 11,365,675 12,543,767

Non-trainable params 14,717,634 14,719,554 14,720,450 14,720,834 29,435,266
Loss function BCE(G, Pout) (3) (1) (4) (5)

2.2. Dataset

In this research, we have used two datasets:

• our (primary) dataset, that contains stimuli and saliency maps acquired from students
that were solving quizzes. Our goal in this research was to maximize the effectiveness
of our method on this dataset.

• a second, third-party SALICON dataset [46] that was used in order to extend the train-
ing dataset and to improve the final method’s performance. Stimuli from the second
dataset, and the saliency maps that correspond to them, are not directly connected
to education and no data from second dataset were used during the validation step
(only during training).

The primary dataset we used in this research consisted of 487 saliency maps generated
from eye tracking data. An eye tracker from SensoMotoric Instruments, iViewX™ Hi-
Rate500/1250, which recorded a data stream at a 500 Hz time resolution, was used in
the investigation. A comfortable interface construction in this system holds the subject’s
head stable and motionless without limiting the field of vision of the subject. During the
experiment, the images were presented on a diagonal LCD screen with full HD resolution
of 1920 × 1080. Before each test, a 9-point calibration with validation was performed. All
individuals were subjected to similar ambient conditions such as temperature, lighting, and
acoustic insulation. The experiment was performed with the SMI Experiment Suite™ 360
software. The raw eye tracking data were generated using SMI BeGaze™ 2.4.
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The data were acquired from 52 students. The group was composed of 25 girls and
27 boys. The mean age of the participants was 16 years. Because of technical issues,
data of 3 persons were removed and further analysis was performed on the remaining 49.
Tasks that were solved by participants were from the field of natural sciences: mathematics,
computer science, biology, and physics. Each test was performed individually and consisted
of 14 tasks (stimuli). Each task required an analysis of the content of the instruction and an
appropriate illustration. The time for task solving was not limited. The students evaluated
the level of difficulty of the task being solved by answering a questionnaire, in which
they gave an answer to the following question: Evaluate on a scale from 0 to 10 (where
0—very easy, 10—very difficult) to what extent the tasks you solved were easy/difficult.
The task’s difficulty level was measured using Likert’s scale. The correlation between
the mean evaluation of the difficulty level of the whole task set and the percentage of
the correct answers provided by the students was moderately strong, r = −0.40, and
statistically significant (p < 0.05). The lowest percentage of correct answers was provided
for the task in mathematics, 25%, and a very close value was provided for the algorithmic
task, 27%. In the group of difficult tasks, there was also a second mathematical task, 38%.
The highest percentage of correct answers was found for the biology task, 76%, and the
second algorithmic task, 63%. Saliency maps have been grouped by stimulus.

Due to output data quality issues and the quiz procedure (some stimuli were presented
to only half of the participants), the number of maps for each stimulus differs.

The third-party SALICON dataset was composed of 10,000 images. In this dataset,
eye fixation annotations were simulated by the mouse movements. It has been showed
by Jiang et al. [46] that this type of simulation strongly correlates with actual eye tracker
evaluation. The same dataset has been also used by Wenguan and Shen in paper [26]. We
used the SALICON dataset to augment our primary dataset with additional examples of
saliency maps to increase the stability of the weight optimization process during network
training. The SALICON dataset was used only during training. Each time, we mixed it
with subsets of our primary dataset that were used in training. Elements of the SALICON
dataset were not involved in the validation process.

We created a training dataset that contained all but one of the stimuli and the saliency
maps and validation dataset corresponding to those from the remaining data. We enlarged
the training dataset by 10,000 stimuli and the saliency maps take data from the SALICON
dataset. Then, we performed a 14-fold cross validation in which each validation was
performed on a different stimulus from our primary dataset.

3. Results

The goal of our experiment was to test which of the network architectures pre-
sented in Section 2.1 can be trained to effectively predict saliency maps on the primary
dataset from Section 2.2. We also performed a comparison of the results obtained from each
network to select the best architecture to predict students’ visual attention. Our implemen-
tation and dataset can be downloaded from GitHub (https://github.com/browarsoftware/
DeepVisualAttentionPrediction/ accessed on 10 October 2021) and our results can be reproduced.

We implemented all networks described in Section 2.1 in Python 3.6. Among the most
important libraries, we used Keras 2.4.3 with Tensorflow 2.3.0 for deep neural network
modeling and calculation and opencv-python 4.2.0.32 for general purpose image process-
ing. A pretrained model of VGG16 was downloaded with the Keras-Applications 1.0.8
package. Network training and evaluation was carried out on a PC equipped with Intel
i7-9700 3 GHz, 64 GB RAM, and an NVIDIA GeForce RTX 2060 GPU on Windows 10 OS.
For the optimization of network weights, we used the stochastic gradient descent Adam
optimizer [47]. The learning rate was set to 0.01. Plots of train loss and validation loss for a
single evaluation are presented in Figure 2a,b.

In Tables 2 and 3, we present detailed values of train loss (MSE) and validation loss
(MSE) obtained after 10 epochs of DNN training.

https://github.com/browarsoftware/DeepVisualAttentionPrediction/
https://github.com/browarsoftware/DeepVisualAttentionPrediction/
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Figure 2. Plots of the train loss and validation loss for each evaluated encoder–decoder.

Table 2. Values of train loss (MSE) obtained after 10 epochs of DNN training. The last row contains
averaged values of all subvalidations.

Stimulus E-D 1 E-D 2 E-D 3 [26] E-D 4 2xE-D 1

S1 0.242 0.24 0.245 0.252 0.379
S2 0.243 0.239 0.246 0.253 0.379
S3 0.242 0.239 0.245 0.252 0.379
S4 0.32 0.24 0.246 0.252 0.379
S5 0.32 0.24 0.246 0.252 0.379
S6 0.242 0.239 0.245 0.252 0.379
S7 0.248 0.238 0.246 0.251 0.379
S8 0.243 0.242 0.245 0.252 0.378
S9 0.245 0.238 0.245 0.252 0.379

S10 0.242 0.239 0.245 0.253 0.378
S11 0.32 0.24 0.246 0.253 0.379
S12 0.32 0.239 0.246 0.252 0.378
S13 0.243 0.24 0.244 0.253 0.379
S14 0.243 0.239 0.245 0.252 0.379

Average 0.265 ± 0.036 0.239 ± 0.001 0.245 ± 0.001 0.252 ± 0.001 0.379 ± 0.000

Table 3. Values of validation loss (MSE) obtained after 10 epochs of DNN training. The last row
contains averaged values of all subvalidations.

Stimulus E-D 1 E-D 2 E-D 3 [26] E-D 4 2xE-D 1

S1 0.292 0.268 0.263 0.274 0.402
S2 0.255 0.224 0.235 0.231 0.38
S3 0.323 0.3 0.3 0.298 0.42
S4 0.426 0.314 0.305 0.318 0.435
S5 0.464 0.328 0.328 0.328 0.443
S6 0.325 0.297 0.307 0.302 0.423
S7 0.359 0.337 0.341 0.362 0.464
S8 0.203 0.213 0.212 0.22 0.358
S9 0.271 0.232 0.246 0.237 0.375

S10 0.13 0.148 0.147 0.156 0.322
S11 0.386 0.292 0.291 0.306 0.416
S12 0.316 0.253 0.25 0.255 0.41
S13 0.277 0.275 0.246 0.241 0.397
S14 0.344 0.32 0.315 0.316 0.454

Average 0.312 ± 0.086 0.272 ± 0.053 0.270 ± 0.053 0.275 ± 0.054 0.407 ± 0.039

Figure 2a,b present train loss and validation loss for a single evaluation of 14-fold cross
validation. In Tables 2 and 3, we present detailed values of train loss (MSE) and validation
loss (MSE) obtained after 10 epochs of DNN training for each 14-fold cross validation. We
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use graphs to show how values of train and validation loss change during the training
while the tables are used to show our final result.

After the training of each of the five DNN encoder–decoders, a stimulus from the
validation dataset was used to generate a prediction of the saliency map. This map was
compared with data on the real saliency maps from our dataset using the correlation coeffi-
cient. The average value plus/minus standard deviation for each stimulus is presented
in Table 4. The exact numbers of saliency maps for each stimulus are presented in the
#Validation column.

Table 4. Values of correlation coefficients between network predictions and real salicency maps
obtained after 10 epochs of DNN training. The last row contains averaged values of all subvalidations.

Stimulus E-D 1 E-D 2 E-D 3 [26] E-D 4 2xE-D 1 #Validation

S1 0.569 ± 0.067 0.663 ± 0.072 0.656 ± 0.075 0.688 ± 0.072 0.601 ± 0.071 24
S2 0.556 ± 0.109 0.661 ± 0.118 0.637 ± 0.123 0.664 ± 0.116 0.592 ± 0.104 26
S3 0.497 ± 0.072 0.596 ± 0.079 0.609 ± 0.084 0.61 ± 0.081 0.571 ± 0.076 24
S4 −0.051 ± 0.01 0.115 ± 0.032 0.601 ± 0.073 0.608 ± 0.071 0.528 ± 0.059 25
S5 −0.047 ± 0.011 0.152 ± 0.046 0.565 ± 0.136 0.571 ± 0.136 0.537 ± 0.086 47
S6 0.382 ± 0.103 0.107 ± 0.046 0.472 ± 0.137 0.502 ± 0.142 0.394 ± 0.12 49
S7 0.246 ± 0.087 0.498 ± 0.121 0.427 ± 0.111 0.432 ± 0.112 0.315 ± 0.091 49
S8 0.653 ± 0.124 0.662 ± 0.116 0.663 ± 0.125 0.653 ± 0.117 0.66 ± 0.123 18
S9 −0.03 ± 0.032 0.684 ± 0.126 0.652 ± 0.129 0.66 ± 0.12 0.682 ± 0.131 24
S10 0.233 ± 0.153 0.181 ± 0.141 0.234 ± 0.131 0.325 ± 0.146 0.305 ± 0.117 13
S11 −0.047 ± 0.012 0.54 ± 0.112 0.53 ± 0.107 0.529 ± 0.11 0.476 ± 0.101 49
S12 −0.034 ± 0.013 0.538 ± 0.088 0.537 ± 0.086 0.546 ± 0.091 0.467 ± 0.076 49
S13 0.387 ± 0.067 0.483 ± 0.085 0.481 ± 0.082 0.49 ± 0.08 0.372 ± 0.071 41
S14 0.244 ± 0.107 0.355 ± 0.129 0.37 ± 0.131 0.372 ± 0.133 0.305 ± 0.117 49

Average 0.254 ± 0.251 0.445 ± 0.212 0.531 ± 0.120 0.547 ± 0.109 0.486 ± 0.126 NA

In order to perform additional quantitative analysis of the eye tracking data between
real and artificial gaze results, we calculated the structural similar index measure (SSIM)
between them. This measure compares local patterns of pixel intensities that have been
normalized for luminance and contrast [48]. The SSIM value varies from −1 to 1, where
1 means a perfect structural similarity. The SSIM is designed to measure image quality
degradation that might be caused, for example, by compression or data transmission
losses. The average value of the SSIM plus/minus standard deviation for each stimulus is
presented in Table 5.

Table 5. Values of structural similarity index (SSIM) between network predictions and real salicency
maps obtained after 10 epochs of DNN training.

Stimulus E-D 1 E-D 2 E-D 3 [26] E-D 4 2xE-D 1

S1 0.337 ± 0.015 0.396 ± 0.019 0.376 ± 0.018 0.368 ± 0.017 0.372 ± 0.015
S2 0.130 ± 0.018 0.324 ± 0.026 0.199 ± 0.024 0.266 ± 0.028 0.191 ± 0.015
S3 0.148 ± 0.010 0.164 ± 0.015 0.369 ± 0.024 0.239 ± 0.015 0.107 ± 0.011
S4 0.041 ± 0.005 0.278 ± 0.019 0.267 ± 0.019 0.310 ± 0.01 0.293 ± 0.012
S5 0.041 ± 0.006 0.183 ± 0.025 0.290 ± 0.024 0.231 ± 0.025 0.257 ± 0.018
S6 0.197 ± 0.013 0.290 ± 0.026 0.192 ± 0.021 0.200 ± 0.016 0.215 ± 0.014
S7 0.127 ± 0.009 0.231 ± 0.017 0.266 ± 0.016 0.334 ± 0.018 0.274 ± 0.011
S8 0.310 ± 0.016 0.346 ± 0.022 0.150 ± 0.016 0.220 ± 0.018 0.429 ± 0.025
S9 0.089 ± 0.014 0.301 ± 0.025 0.256 ± 0.021 0.442 ± 0.034 0.380 ± 0.026

S10 0.396 ± 0.008 0.579 ± 0.008 0.612 ± 0.007 0.415 ± 0.006 0.249 ± 0.007
S11 0.034 ± 0.005 0.311 ± 0.016 0.287 ± 0.014 0.323 ± 0.010 0.250 ± 0.010
S12 0.038 ± 0.008 0.154 ± 0.018 0.410 ± 0.022 0.457 ± 0.019 0.093 ± 0.011
S13 0.224 ± 0.009 0.303 ± 0.017 0.289 ± 0.013 0.351 ± 0.014 0.226 ± 0.009
S14 0.053 ± 0.011 0.224 ± 0.017 0.267 ± 0.019 0.284 ± 0.019 0.241 ± 0.014

Average 0.155 ± 0.117 0.292 ± 0.105 0.302 ± 0.110 0.313 ± 0.082 0.256 ± 0.091
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Figure 3 presents a comparison of predictions generated by all networks from Section 2.1
on an example input image compared with an example real data saliency map. Figure 4
presents a stimulus (in a blue frame), four examples of real data saliency maps, and a
saliency map predicted by our approach (in a green frame).

Figure 3. Predictions from (A) E-D 1; (B) E-D 2; (C) E-D 3; (D) E-D 4; (E) 2xE-D 1; (F) examples of
real data saliency map.

Figure 4. (A) a stimulus, (B–E) examples of real data saliency maps, (F) saliency map predicted
by E-D 4.
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4. Discussion

As can be seen in Figure 2a, neural networks that use a single encoder minimize the
loss function to a similar level in the range [0.23, 0.25]. In the case of the 2xE-D 1 network,
which has significantly more parameters than the other architectures (see Table 1), the train
loss most often reaches 0.379.

In the case of the validation loss (see Table 3), the average results achieved by the
E-D 2, E-D 3 [26], and E-D 4 networks are similar and are 0.272 ± 0.053, 0.270 ± 0.053,
and 0.275 ± 0.054, respectively. The E − D1 network achieves an average validation loss of
0.312 ± 0.086, which is probably due to the fact that the single encoder–decoder pyramid
has too little generalization ability to correctly model data on which it has not been trained.

In the case of the 2xE-D 1 network, the average loss is even larger at 0.407 ± 0.039.
This could be both an effect of too little generalization power of the decoder, which works
by taking embeddings at only one scale (from the last layer of the encoder), but it could
also be an effect of overfitting the network, whose numerous parameters fit the training
data too closely, losing the generalization ability.

We also made a comparison of the predictions made by each network with the saliency
maps (see Figure 3). In this figure, we can observe that the predictions of the E-D 1 and
2xE-D 1 networks contain inaccuracies visible to the naked eye when it comes to gaze
fixations on areas containing text. Encoder–decoders E-D 2, E-D 3 [26], and E-D 4 return
similar results, with E-D 4 having the highest pixel intensity in areas that correlate with
real saliency maps. This observation is also true for the other stimuli in the primary dataset.
This observation is confirmed by results presented in Table 4, in which the averaged
correlation coefficient between the prediction and the images from the primary dataset is
the largest and equals 0.547 ± 0.109. That is higher than in state-of-the-art architecture [26]
where the correlation coefficient equals 0.531 ± 0.120. As can be seen, predictions of all but
E-D 1 DNNs are moderately positively correlated with validation data.

The structural similarity analysis presented in Table 5 also assures us that E-D 4 seems
to be the best of all considered methods. For this network architecture, the averaged SSIM
between the prediction and the images from the primary dataset is the largest and equals
0.313± 0.082. That is higher than in state-of-the-art architecture [26] where the SSIM equals
0.302 ± 0.110.

Figure 4 shows a comparison of the prediction results of the E-D 4 network (subplot (F))
with the actual saliency maps. As can be seen in Figure 4, visualizations of the predictions
obtained are reasonable and in most important aspects they correlate with real-world data.
For example, as in real-world data, the network does not pay a lot of attention to the start
symbol of the block algorithm that does not bring much information. In addition, a network
is not a simple edged detector: it rather predicts that most time is spent reading text and
information inside the diagram blocks and does not pay attention to lines that indicate
program flow. Additionally, distribution of the predicted fixations inside the text is uneven,
as in real data: the largest fixations are generated at the beginning of the lines and in
places that contain enhanced text regions where a decision is made while solving the quiz.
In Figure 4, we can clearly see that there is a high variance within the real-world saliency
maps in the training dataset. That fact makes the generation of accurate predictions of
visual attention a very challenging task.

5. Conclusions

Summarizing, as we discussed in the previous section, the deep convolutional encoder–
decoder networks E-D 2 and E-D 4 proposed by us are capable of producing accurate
predictions of students’ visual attention when solving quizzes. Our evaluation showed
that predictions are moderately positively correlated with actual data. Our proposed
E-D 4 architecture achieved better results in terms of correlation and the SSIM with real
saliency maps from our primary dataset than the state-of-the-art E-D 3 architecture [26].
Visual analyses of the obtained saliency maps also correspond with our experience in the
field of eye tracking data analysis. We can conclude that the proposed DNNs might be
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useful tools in the task of predicting the visual cognition of students while solving various
types of technical quizzes, tests, and questionnaires and this application is worth further
in-depth research. The main limitation of the proposed algorithm is the resolution of the
pretrained VGG16 network, which is 224 × 244. This means that for high-resolution stimuli,
some detail will be lost when scaled to the input resolution of the network. The reason
for the good results obtained by the E-D 4 architecture is the use of multi-level decoder
pyramids that allow the extraction and generation of maps at multiple levels of detail. The
source code and data of our implementation might be a valuable state-of-the-art point and
reference for other researchers. It is equally important that the proposed DNNs can not only
be applied to the prediction of visual attention, they are a general purpose methods which
can be used in all scenarios where a multi-scaled encoder–decoder can be applied [49–51].
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