
symmetryS S

Article

Completeness of b−Metric Spaces and Best Proximity Points of
Nonself Quasi-Contractions

Arshad Ali Khan and Basit Ali *

����������
�������

Citation: Khan, A.A.; Ali, B.

Completeness of b−Metric Spaces

and Best Proximity Points of Nonself

Quasi-Contractions. Symmetry 2021,

13, 2206. https://doi.org/10.3390/

sym13112206

Academic Editors: Oluwatosin

Mewomo and Qiaoli Dong

Received: 22 October 2021

Accepted: 9 November 2021

Published: 19 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, School of Science, University of Management and Technology, C-II, Johar Town,
Lahore 54770, Pakistan; arshadmph2004@gmail.com
* Correspondence: basit.aa@gmail.com

Abstract: The aims of this article are twofold. One is to prove some results regarding the existence
of best proximity points of multivalued non-self quasi-contractions of b−metric spaces (which are
symmetric spaces) and the other is to obtain a characterization of completeness of b−metric spaces
via the existence of best proximity points of non-self quasi-contractions. Further, we pose some
questions related to the findings in the paper. An example is provided to illustrate the main result.
The results obtained herein improve some well known results in the literature.
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1. Introduction and Preliminaries

In 1922, Banach [1] presented one of the important and basic results known as the
Banach contraction principle (shortly as BCP) in metric fixed point theory. Since then, fixed
point theory has been used frequently to prove the existence of solutions of functional
equations (compare [2–6]). Due to its usefulness and applicability, BCP has been gener-
alized in one too many directions. In 1974, Ciric [7] introduced quasi-contractions and
generalized BCP for self quasi-contractions of orbitally complete metric spaces. On the
other hand, in 1969, Nadler [8] extended BCP from self mappings to multivalued mappings
of complete metric spaces. Amini Harandi [9] introduced multivalued quasi-contractions
and generalized Nadler’s result.

Due to its significance, the concept of distance has been generalized in many directions
(compare [10]). For instance, b−metric space was introduced as a proper generalization
of metric space (see [11,12]). Since then, there have been a lot of developments in the
context of fixed point theory of b−metric spaces; for more details one can see the refer-
ence [13]. Czerwik [12,14,15] obtained BCP in the context of b−metric spaces for single
valued and multivalued mappings and also discussed some results concerning stabil-
ity. Afshari [16] developed some fixed points results in the context of quasi−b−metric
and b−metric−like spaces and also provided the solution of some fractional differential
equations. Aydi et al. [17] obtained results for multivalued quasi-contractions of b−metric
spaces. Ciric et al. [18] obtained Suzuki type fixed point theorems for generalized multi-
valued mappings on a set endowed with two b−metrics. Alo et al. [19] and Ali et al. [20]
obtained the existence of fixed points of multivalued quasi-contractions along with a
completeness characterization of underlying b−metric spaces.

On the other hand, if A and B are two non-empty subsets of a metric space (W , p),
and F : A→ B a non-self mapping then a point x ∈ A such that

p(x,Fx) = p(A, B),
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(if it exists) is called a best proximity point (shortly as BPP) of F in A, where

p(A, B) = inf
a∈A,b∈B

p(a, b).

Note that if A = B, then x becomes the fixed point of F . Fan [21] presented a result
that guarantees the existence of best proximity points (shortly as BPPs) of a continuous
mapping of a non-empty compact convex subset of a Hausdorff locally convex topological
vector space. Hussain et al. [22] obtained Fan type result in ordered Banach spaces. Sehgal
and Singh [23] generalized Fan’s result for multivalued mappings (also compare [24,25]).
Basha and Naseer [26] explored the existence of BPP theorems for generalized proximal
contractions of metric spaces (see also [27]). Mishra et al. [28] developed some best
proximity points results in the context of b−metric spaces. Abkar and Gabeleh [29] and
Hussain et al. [30] obtained BPP results for Suzuki type contractions of metric spaces.
George et al. [31] studied BPP results for cyclic contractions of b−metric spaces. Gabeleh
and Plebaniak [32] obtained BPPs of multivalued contractions of b−metric spaces.

The “Completeness Problem (CP)” is an important problem in mathematics which
is equivalent to the “End Problem (EP)” in behavioral sciences. The end problem is to
determine where and when a human dynamics defined as a succession of positions that
starts from an initial position and follows transitions ends. For details on the completeness
problem and the end problem, we refer to [33,34] and references therein. In 1959, Connel
presented an example ([35], (Example 3)) (also compare [20]) which shows that BCP
does not characterize metric (b−metric) completeness. That is, there exists an incomplete
metric (b−metric) space W such that every Banach contraction on W has a fixed point.
Suzuki [36] presented a fixed point theorem that generalized BCP and characterized metric
completeness as well. Recently, Ali et al. [20] (compare with [19]) obtained completeness
characterizations of b−metric spaces via the fixed point of Suzuki type contractions.

In this paper, first we study the existence of BPPs of generalized multivalued non-
self quasi-contractions of b−metric spaces and then we obtain a characterization of the
completeness of b−metric spaces which are symmetric spaces. For more on the connection
between completeness and symmetry we refer the interested reader to [37,38].

Throughout this article, R+, R, N, and N1, denote the set of nonnegative reals, reals,
positive integers, and nonnegative integers, respectively.

Definition 1 ([11,12]). Let W be a non-empty set. A mapping p : W ×W → [0, ∞) is a
b−metric and (W , p) is called b−metric space if there exists a real number k ≥ 1 such that p
satisfies the following:

(a1) p(x, y) = 0 if and only if x = y for all x, y ∈ W ;
(a2) p(x, y) = p(y, x) for all x, y ∈ W ;
(a3) p(x, y) ≤ k[p(x, z) + p(z, y)] for all x, y, z ∈ W .

Note that, throughout this article, k ≥ 1, will be used as b−metric constant.

Definition 2. A sequence {xn} in a b−metric space (W , p) is:

(i) convergent if there is an x ∈ W , such that, for every ε > 0, there exists n0 ∈ N satisfying
p(xn, x) < ε for all n > n0, that is, limn→∞ xn = x or xn → x as n→ ∞;

(ii) Cauchy if for every ε > 0, there exists n0 ∈ N such that p(xn, xn+p) < ε for all n > n0 and
p ∈ N1, that is, limn→∞ p(xn, xn+p) = 0 for all p ∈ N1.

Remark 1 (compare [39]). A b−metric p is not necessarily continuous but if it is continuous in
one variable then it is continuous in the second variable as well and the subset:

Bε(u0) = {u ∈ W : p(u0, u) < ε},
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of b−metric space (W , p) is not an open set (in general) but if p is continuous in one variable then
Bε(u0) is open inW . Moreover, throughout in this article, assume that the b-metric p is continuous
in one variable.

The following lemma has been used as sufficient condition for a contractive sequence
to be a Cauchy sequence.

Lemma 1 ([40]). If a sequence {xn} in a b−metric space (W , p) satisfies

p(xn+1, xn+2) ≤ rp(xn, xn+1),

for all n ∈ N1 and for some

0 ≤ r <
1
k

,

then it is a Cauchy sequence inW .

Recently, Suzuki [41] improved the previous lemma as follows.

Lemma 2. If a sequence {xn} in a b−metric space (W , p) satisfies

p(xn+1, xn+2) ≤ rp(xn, xn+1),

for all n ∈ N1 and for some r ∈ [0, 1), then it is a Cauchy sequence inW .

Let (W , p) be a b−metric space then C(W), CB(W), P(W) represent the set of non-
empty closed, non-empty closed and bounded subsets, non-empty subsets of W . For
A, B ∈ CB(W), the mapping Hp defined as:

Hp(A, B) = max{δ(A, B), δ(B, A)},

is called Hausdorff metric on CB(W) induced by p, where

δ(A, B) = sup
a∈A

p(a, B) and p(a, B) = inf
b∈B

p(a, b).

The following lemma lists some important properties of b−metric spaces that will be
used in the sequel to prove the main results.

Lemma 3 ([12,15,40]). For a b−metric space (W , p), x, y ∈ W and A, B ∈ CB(W), the follow-
ing assertions hold:

(b1) (CB(W), Hp) is a b−metric space.
(b2) For all a ∈ A, p(a, B) ≤ Hp(A, B).
(b3) For all x, y ∈ W , p(x, A) ≤ kp(x, y) + kp(y, A).
(b4) For t > 1 and a ∈ A, there is a b ∈ B so that p(a, b) ≤ tHp(A, B).
(b5) For t > 0 and a ∈ A, there is a b ∈ B so that p(a, b) ≤ Hp(A, B) + t.
(b6) a ∈ A = A, if and only if p(a, A) = 0, where A is the closure of A in (W , p).
(b7) For any sequence {xn} inW

p(x0, xn) ≤ kp(x0, x1) + k2 p(x1, x2) + ... + kn−1 p(xn−2, xn−1) + kn−1 p(xn−1, xn).

Ciric [7] introduced quasi-contractions of metric space (W , p). A self-mapping f :
W →W is a quasi-contraction ofW if:

p( f u, f y) ≤ r max{p(u, y), p(u, f u), p(y, f y), p(u, f y), p(y, f u)},
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for some 0 ≤ r < 1. Further, they obtained fixed point results for quasi-contractions in
orbitally complete metric spaces. Nadler [8] extended the BCP as follows.

Theorem 1. Let (W , p) be a complete metric space and F :W −→ CB(W) such that

Hp(Fu,Fy) ≤ rp(u, y),

for all u, y ∈ W and some r ∈ [0, 1), then Fix(F ) (set of fixed points of F ) is non-empty.

Amini-Harandi [9] generalized Theorem 1 for multivalued quasi-contractions.

Theorem 2 ([9]). Let (W , p) be a complete metric space and F :W → CB(W). If

Hp(Fu,Fy) ≤ r max{p(u, y), p(u,Fu), p(y,Fy), p(u,Fy), p(y,Fu)},

for all u, y ∈ W and some r ∈
[
0, 1

2

)
. Then Fix(F ) is non-empty.

On the other hand, Aydi et al. [17] obtained a b−metric version of Theorem 2.

Theorem 3 ([17]). Let (W , p) be a complete b−metric space and F :W → CB(W). If F satisfies

Hp(Fu,Fy) ≤ r max{p(u, y), p(u,Fu), p(y,Fy), p(u,Fy), p(y,Fu)},

for all u, y ∈ W and for some r ∈ [0, 1) with r <
1

k2 + k
, then Fix(F ) is non-empty.

Let (W , p) be a b−metric space, and fix A, B ∈ P(W). Define

A0 = {a ∈ A : p(a, b) = p(A, B) for some b ∈ B} and
B0 = {b ∈ B : p(a, b) = p(A, B) for some a ∈ A}.

If A0 is non-empty then the pair (A, B) has the weak P−property if:{
p(x1, y1) = p(A, B)
p(x2, y2) = p(A, B)

implies p(x1, x2) ≤ p(y1, y2),

for all x1, x2 ∈ A and y1, y2 ∈ B. Further, define

H∗p(C, D) = Hp(C, D) + p(A, B) for all C, D ∈ P(W),

p∗(x, y) = p(x, y) + p(A, B) for all x, y ∈ W ,

Θ =
{

ζ : R+ ×R+ → R : ζ(s, t) ≤ s
k
− t
}

, and

ζ∗(s, t) = ζ(s, t)− p(A, B).

Moreover, for a non-self mapping f : A → B and a multivalued non-self mapping
F : A→ CB(B), consider the following notations that we use in the sequel.

LF (x, y) = max

 p(x, y), p(x,Fx), p(y,Fy), p(x,Fy), p(y,Fx),(
p(x,Fx)p(y,Fy)

p(x, y)

) ,

MS(x, y) = max
{

p(x, y), p(x, Sx)− kp(A, B), p(y, Sy)− kp(A, B),
p(x, Sy)− k2 p(A, B), p(y, Sx)− kp(A, B)

}
,
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for S ∈ { f ,F}. Further, we denote the set of BPPs of the mapping S by BPP(S).

Definition 3 ([20]). Let (W , p) be a b−metric space. A mapping F : W → CB(W) is a
generalized multivalued Ciric-Suzuki type (shortly CS−type) quasi-contraction if there exists an

r ∈ [0, 1) with r <
1
2k

such that

ζ(p(x,Fx), p(x, y)) ≤ 0 implies Hp(Fx,Fy) ≤ rLF (x, y),

for all x, y ∈ A, with x 6= y and for some ζ ∈ Θ.

Theorem 4 ([20]). Let (W , p) be a complete b−metric space and F :W → CB(W) a generalized
multivalued CS−type quasi-contraction. Then Fix(F ) is non-empty.

Definition 4. Let (W , p) be a b−metric space and A, B non-empty subsets ofW .

1- A mappingF : A→ CB(B) is a generalized multivalued Ciric Suzuki type (shortly CS−type)

non-self quasi-contraction if there exists an r ∈ [0, 1) with r <
1

k4 + k3 such that

ζ∗(p(x,Fx), p(x, y)) ≤ 0 implies H∗p(Fx,Fy) ≤ rMF (x, y), (1)

for all x, y ∈ A and for some ζ ∈ Θ.
2- A mapping f : A → B is a generalized Ciric Suzuki type (shortly CS−type) non-self

quasi-contraction if there exists an r ∈ [0, 1) with r <
1

k4 + k3 such that

ζ∗(p(x, f x), p(x, y)) ≤ 0, implies p∗( f x, f y) ≤ rM f (x, y), (2)

for all x, y ∈ A and for some ζ ∈ Θ.

In this article, we provide the existence of BPPs for generalized multivalued CS−type
non-self quasi-contractions of b−metric space and establish some results for the complete-
ness of the underlying b−metric space.

2. Existence of BPPs of Generalized Multivalued Nonself Quasi-Contractions

Following is the first main result about the existence of BPPs of generalized multival-
ued CS−type non-self quasi-contractions of b−metric space.

Theorem 5. Let (W , p) be a complete b−metric space, A, B ∈ C(W) and F : A → CB(B) a
generalized multivalued CS−type non-self quasi-contraction. Assume that A0 is non-empty such
that for each x ∈ A0, Fx ⊆ B0 and the pair (A, B) satisfies the weak P−property. Then, BPP(F )
is non-empty.

Proof. Let r1 be a real number such that 0 ≤ r < r1 <
1

k4 + k3 . We can choose a positive

real α such that

r1

2
+ α =

1
2(k4 + k3)

implies r1 + α =
1
2

(
1

k4 + k3 + r1

)
.

If β = r1 + α, then

0 < β <
1

k4 + k3 .

As A0 is non-empty, so we pick an x0 ∈ A0. By the given assumption, Fx0 ⊆ B0.
Choose y1 ∈ Fx0. That is y1 ∈ B0 implies that there is an x1 ∈ A0 such that

p(x1, y1) = p(A, B). (3)
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If y1 ∈ Fx1, then x1 is the BPP. Assume y1 /∈ Fx1. As:

ζ∗(p(x0,Fx0), p(x0, x1)) = ζ(p(x0,Fx0), p(x0, x1))− p(A, B)

≤ 1
k

p(x0,Fx0)− p(x0, x1)− p(A, B)

≤ 1
k

p(x0, y1)− p(x0, x1)− p(A, B)

≤ 0,

so by (1), we have

Hp(Fx0,Fx1) ≤ Hp(Fx0,Fx1) + p(A, B)
= H∗p(Fx0,Fx1) ≤ rMF (x0, x1) ≤ r1MF (x0, x1).

(4)

If h =
β

r1
> 1, then by Lemma 3, there is y2 ∈ Fx1 such that

p(y1, y2) ≤ hHp(Fx0,Fx1) = βr−1
1 Hp(Fx0,Fx1). (5)

As Fx1 ⊆ B0, so there exists x2 ∈ A0 such that

p(x2, y2) = p(A, B). (6)

From (4) and (5), we get

p(y1, y2) ≤ βr−1
1 Hp(Fx0,Fx1) ≤ βMF (x0, x1)

= β max
{

p(x0, x1), p(x0,Fx0)− kp(A, B), p(x1,Fx1)− kp(A, B),
p(x0,Fx1)− k2 p(A, B), p(x1,Fx0)− kp(A, B)

}

≤ β max
{

p(x0, x1), p(x0, y1)− kp(A, B), p(x1, y2)− kp(A, B),
p(x0, y2)− k2 p(A, B), p(x1, y1)− kp(A, B)

}

≤ β max


p(x0, x1), kp(x0, x1) + kp(x1, y1)− kp(A, B),
kp(x1, y1) + kp(y1, y2)− kp(A, B),
kp(x0, y1) + kp(y1, y2)− k2 p(A, B), (1− k)p(A, B)


≤ β max

{
kp(x0, x1), kp(y1, y2), k2(p(x0, x1) + p(y1, y2))

}
.

Hence,
p(y1, y2) ≤ k2β(p(x0, x1) + p(y1, y2)).

That is,

p(y1, y2) ≤
k2β

1− k2β
p(x0, x1). (7)

As the pair (A, B) satisfies the weak P−property, so from (3) and (6), we get

p(x1, x2) ≤ p(y1, y2). (8)

Combining (7) and (8)

p(x1, x2) ≤ p(y1, y2) ≤
k2β

1− k2β
p(x0, x1).
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Continuing like this, we obtain sequences {xn} in A0 and {yn} in B0 such that

yn+1 ∈ Fxn, yn+1 /∈ Fxn+1 and p(xn, yn) = p(A, B),

p(xn, xn+1) ≤ p(yn, yn+1) ≤
k2β

1− k2β
p(xn, xn−1).

Set p(xn, xn+1) = αn, and γ =
k2β

1− k2β
in the above, we obtain

αn ≤ γαn−1.

As k ≥ 1 and r1 <
1

k4 + k3 , so we have

k2β =
k2

2

(
1

k4 + k3 + r1

)
<

1
2

implies γ < 1.

By Lemma 2, {xn} is a Cauchy sequence in A, similarly, we can prove {yn} is a Cauchy
sequence in B. That is, there exist x ∈ A and y ∈ B such that

lim
n→∞

p(xn, x) = 0 (9)

and
lim

n→∞
p(yn, y) = 0. (10)

As
p(xn, yn) = p(A, B),

so on taking limit as n tends to ∞, implies

p(x, y) = p(A, B). (11)

From (9), we can choose an n0 ∈ N so that

p(xn, x) <
1

3k2 p(x, w),

for all n ≥ n0 and x 6= w. Hence,
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ζ∗(p(xn,Fxn), p(xn, w)) = ζ(p(xn,Fxn), p(xn, w))− p(A, B)

≤ 1
k

p(xn,Fxn)− p(xn, w)− p(A, B)

≤ 1
k

p(xn, yn+1)− p(xn, w)− p(A, B)

= p(xn, xn+1)− p(xn, w)

≤ kp(xn, x) + kp(x, xn+1)− p(xn, w)

≤ k
3k2 p(x, w) +

k
3k2 p(x, w)− p(xn, w)

≤ 2
3k

p(x, w)− p(xn, w)

=
1
k

(
p(x, w)− 1

3
p(x, w)

)
− p(xn, w)

≤ 1
k
(p(x, w)− k2 p(xn, x))− p(xn, w)

≤ 1
k
(p(x, w)− kp(xn, x))− p(xn, w)

≤ 1
k
(kp(xn, w))− p(xn, w) = 0.

Consequently by (1), we get

p(xn+1,Fw) ≤ kp(xn+1, yn+1) + kp(yn+1,Fw)
≤ kp(A, B) + kHp(Fxn,Fw)
= kH∗p(Fxn,Fw) ≤ krMF (xn, w)

= kr max


p(xn, w), p(xn,Fxn)− kp(A, B),
p(w,Fw)− kp(A, B),
p(xn,Fw)− k2 p(A, B), p(w,Fxn)− kp(A, B)


≤ kr max


p(xn, w), kp(xn, xn+1) + k(xn+1, yn+1)− kp(A, B),
p(w,Fw)− kp(A, B), p(xn,Fw)− k2 p(A, B),
kp(w, xn+1) + kp(xn+1, yn+1)− kp(A, B)


≤ kr max

{
p(xn, w), kp(xn, xn+1), p(w,Fw)− kp(A, B),
p(xn,Fw)− k2 p(A, B), kp(w, xn+1)

}
.

On taking limit as n tends to infinity in the above inequality, we get

p(x,Fw) ≤ kr max
{

kp(x, w), p(w,Fw)− kp(A, B), p(x,Fw)− k2 p(A, B)
}

, (12)

for all w 6= x. If p(x,Fw) = 0, then

p(x,Fw) ≤ kr max{kp(x, w), p(w,Fw)− kp(A, B)}. (13)

If p(x,Fw) > 0 and

max
{

kp(x, w), p(w,Fw)− p(A, B), p(x,Fw)− k2 p(A, B)
}

= p(x,Fw)− k2 p(A, B),

in (12), then we obtain

p(x,Fw) ≤ krp(x,Fw)− rk3 p(A, B) < p(x,Fw),
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a contradiction. Consequently (13) holds for all w 6= x.
Now, we show that x is the BPP of F . Assume on the contrary that

p(x,Fx)− p(A, B) 6= 0.

That is p(x,Fx)− p(A, B) > 0. As

r <
1

k4 + k3 ,

so choose an s such that r < s <
1

k4 + k3 . That is,

1
s(k4 + k3)

− 1 > 0 and s
(

k4 + k3
)
− 1 < 0.

Hence for

ε =

(
1

s(k4 + k3)
− 1
)
(p(x,Fx)− p(A, B)) > 0,

there exists a ∈ Fx such that

p(x, a) < p(x,Fx) + ε

= p(x,Fx) +
(

1
s(k4+k3)

− 1
)
(p(x,Fx)− p(A, B))

= p(x,Fx) +
(

1
s(k4+k3)

− 1
)

p(x,Fx)−
(

1
s(k4+k3)

− 1
)

p(A, B)

= p(x,Fx) + 1
s(k4+k3)

p(x,Fx)− p(x,Fx)−
(

1
s(k4+k3)

− 1
)

p(A, B)

= 1
s(k4+k3)

p(x,Fx)−
(

1
s(k4+k3)

− 1
)

p(A, B).

Hence

s
(

k4 + k3
)

p(x, a) < p(x,Fx) + s
(

k4 + k3
)

p(A, B)− p(A, B). (14)

As from (11) x ∈ A0, so by given assumption Fx ⊆ B0. Hence a ∈ B0. This implies
that there exists z ∈ A0 such that

p(a, z) = p(A, B).

Since

ζ∗(p(x,Fx), p(x, z)) = ζ(p(x,Fx), p(x, z))− p(A, B)

≤ 1
k

p(x,Fx)− p(x, z)− p(A, B)

≤ 1
k
(p(x, a))− p(x, z)− p(A, B)

≤ 1
k
(kp(x, z) + kp(z, a))− p(x, z)− p(A, B)

= p(x, z) + p(z, a))− p(x, z)− p(A, B) = 0.
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Consequently by (1), we obtain

Hp(Fx,Fz) + p(A, B) = H∗p(Fx,Fz) ≤ rMF (x, z)

= r max
{

p(x, z), p(x,Fx)− kp(A, B), p(z,Fz)− kp(A, B),
p(x,Fz)− k2 p(A, B), p(z,Fx)− kp(A, B)

}

≤ r max
{

p(x, z), p(x, a)− kp(A, B), p(z,Fz)− kp(A, B),
p(x,Fz)− k2 p(A, B), p(z, a)− kp(A, B)

}

≤ r max
{

p(x, z), kp(x, z), p(z,Fz)− kp(A, B),
p(x,Fz)− k2 p(A, B), (1− k)p(A, B)

}
≤ r max

{
kp(x, z), p(z,Fz)− kp(A, B), p(x,Fz)− k2 p(A, B)

}
.

Using (13), we obtain

Hp(Fx,Fz) + p(A, B)
≤ r max

{
kp(x, z), p(z,Fz)− kp(A, B), p(x,Fz)− k2 p(A, B)

}
≤ r max{kp(x, z), p(z,Fz)− kp(A, B), p(x,Fz)}

≤ r max
{

kp(x, z), p(z,Fz)− kp(A, B),
kr max{kp(x, z), p(z,Fz)− kp(A, B)}

}
= r max{kp(x, z), p(z,Fz)− kp(A, B)}.

Further, if

max{p(x, z), p(z,Fz)− p(A, B)} = p(z,Fz)− kp(A, B),

then

Hp(Fx,Fz) ≤ Hp(Fx,Fz) + p(A, B)

≤ r(p(z,Fz)− kp(A, B))

≤ r(kp(z, a) + kp(a,Fz)− kp(A, B))
≤ rkp(a,Fz) ≤ rkHp(Fx,Fz)

< Hp(Fx,Fz),

a contradiction. Consequently we have

Hp(Fx,Fz) ≤ krp(x, z)− p(A, B). (15)

From (13) and (15), we get

p(x,Fz) ≤ kr max{kp(x, z), p(z,Fz)− kp(A, B)}
≤ kr max{kp(x, z), kp(z, a) + kp(a,Fz)− kp(A, B)}
≤ kr max{kp(x, z), kp(a,Fz)}
≤ kr max{kp(x, z), kHp(Fx,Fz)}
≤ kr max{kp(x, z), k2rp(x, z)− kp(A, B)} ≤ k2rp(x, z).

(16)
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Now from (14)–(16), we get

p(x,Fx) ≤ kp(x,Fz) + kHp(Fx,Fz))
≤ k3r(p(x, z)) + k2r(p(x, z))− kp(A, B)
≤
(
k3 + k2)r(p(x, z))− kp(A, B)

≤ r
(
k3 + k2)(kp(x, a) + kp(a, z))− kp(A, B)

< s
(
k3 + k2)(kp(x, a) + kp(A, B))− kp(A, B)

= s
(
k4 + k3)p(x, a) + s

(
k4 + k3)p(A, B)− kp(A, B)

<
p(x,Fx) + s

(
k4 + k3)p(A, B)− p(A, B)

+s
(
k4 + k3)p(A, B)− kp(A, B)

= p(x,Fx) + 2s
(
k4 + k3)p(A, B)− p(A, B)− kp(A, B)

< p(x,Fx) + 2p(A, B)− p(A, B)− kp(A, B) ≤ p(x,Fx),

a contradiction. Hence, x is the BPP of F . This completes the proof.

Remark 2. As best proximity point theory is a natural generalization of fixed point theory, so
Theorem 5 is a natural generalization of Theorems 1–3 (compare corollaries below). Some questions
arise naturally out of this work which have been mentioned in the conclusion.

Now we give an example to explain the above result.

Example 1. LetW = R2,

p(P, Q) = |x1 − x2|2 + |y1 − y2|2,

where P = (x1, y1), Q = (x2, y2) ∈ W . Note that p is the b−metric with k = 2 as p is the square
of usual metric onW (compare [42] ). Let

A = {(1, 9n) : n ∈ N1},

B =

{(
0,

1
9n

)
: n ∈ N1

}
∪ {(0, 0)}.

Note that p(A, B) = 1. Define a mapping F : A→ B as

F (1, 9n) =

{(
0,

1
9a

)
: 0 ≤ a ≤ n

}
.

As
A0 = {(1, 1)} and B0 = {(0, 1)},

so
F (x) ⊆ B0 for all x in A0.

Let
r =

1
25

<
1

k4 + k3 ,

and P1 = (1, 9n1), P2 = (1, 9n2) be any two points in A, where n2 > n1. Now

F (P1) =

{(
0,

1
9n1

)
, ..., (0, 1)

}
and

F (P2) =

{(
0,

1
9n2

)
, ..., (0, 1)

}
.
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It implies

H∗p(F (P1),F (P2)) = Hp(F (P1),F (P2)) + p(A, B)

=

(
1

9n1
− 1

9n2

)2
+ 1

=
(9n2−n1 − 1)2 + (9n2)2

(9n2)2 ,

as n2 − n1 ≤ n2, it implies
(9n2−n1 − 1)2 + (9n2)2

(9n2)2 < 2,

therefore
H∗p(F (P1),F (P2)) < 2. (17)

Now, consider

p(P2,F (P2))− kp(A, B) = p
(
(1, 9n2),

{(
0,

1
9n2

)
, ..., (0, 1)

})
− 2

= (1)2 + (9n2 − 1)2 − 2

= 92n2 − 2(9n2) = 9n2(9n2 − 2).

It implies

r(p(P2,F (P2))− kp(A, B)) =
9n2(9n2 − 2)

25
> 2.

Consequently,
r(p(P2,F (P2))− kp(A, B)) < rMF (P1, P2),

so
rMF (P1, P2) > 2. (18)

From (17) and (18), we get

H∗p(F (P1),F (P2)) < rMF (P1, P2).

Hence,

ζ∗(p(x,Fx), p(x, y)) ≤ 0 implies H∗p(Fx,Fy) ≤ rMF (x, y),

for all x, y ∈ A and for some ζ ∈ Θ, where ζ(s, t) =
s
k
− t. That is, F is a generalized multivalued

CS−type non-self quasi-contraction. All axioms of Theorem 5 are satisfied. There exist (1, 1) ∈ A
which is the BPP of F .

Corollary 1. Let (W , p) be a complete b−metric space and F : A→ CB(B). If

p(x,Fx) ≤ k(p(x, y) + p(A, B)) implies Hp(Fx,Fy) ≤ rMF (x, y)− p(A, B),

for all x, y ∈ A and for some r ∈
[

0,
1

k4 + k3

)
, where A, B ∈ C(W). Assume that A0 is non-

empty such that for each x ∈ A0, Fx ⊆ B0 and the pair (A, B) satisfies the weak P−property.
Then BPP(F ) is non-empty.

Proof. Put ζ(s, t) =
s
k
− t, in Theorem 5.
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Corollary 2. Let (W , p) be a complete b−metric space and F : A→ CB(B). If

Hp(Fx,Fy) ≤ rMF (x, y)− p(A, B),

for all x, y ∈ A and for some r ∈
[

0,
1

k4 + k3

)
, where A, B ∈ C(W). Assume that A0 is non-

empty such that for each x ∈ A0, Fx ⊆ B0 and the pair (A, B) satisfies the weak P−property.
Then BPP(F ) is non-empty.

If we replace multivalued mappings F by a single valued non-self mapping F : A→
B in Theorem 5, we get the following result.

Corollary 3. Let (W , p) be a complete b−metric space, A, B ∈ C(W) and F : A → B a
generalized CS−type non-self quasi-contraction. Assume that A0 is non-empty such that for each
x ∈ A0, Fx ∈ B0 and the pair (A, B) satisfies the weak P−property. Then, BPP(F ) is singleton.

Proof. By Theorem 5, F has a BPP. In order to prove the uniqueness, suppose on the
contrary that u0 and u1 are two BPPs. Then,

p(u0,Fu0) = p(A, B) and p(u1,Fu1) = p(A, B). (19)

Now,

ζ∗(p(u0,Fu0), p(u0, u1)) = ζ(p(u0,Fu0), p(u0, u1))− p(A, B)

≤ p(u0,Fu0)

k
− p(u0, u1)− p(A, B)

=
p(A, B)

k
− p(u0, u1)− p(A, B)

≤ −p(u0, u1) < 0.

Since F satisfies the weak P−property, from (19) and using the fact that F is a
generalized CS−type quasi-contraction, we have

p(u0, u1) ≤ p(Fu0,Fu1) ≤ p∗(Fu0,Fu1) ≤ rMF (u0, u1)

= r max


p(u0, u1), p(u0,Fu0)− kp(A, B),
p(u1,Fu1)− kp(A, B), p(u0,Fu1)− k2 p(A, B),
p(u1,Fu0)− kp(A, B)


= r max


p(u0, u1), (1− k)p(A, B), (1− k)p(A, B),
kp(u0, u1) + kp(u1,Fu1)− k2 p(A, B),
kp(u1, u0) + kp(u0,Fu0)− kp(A, B)


= r max

{
p(u0, u1), (1− k)p(A, B), (1− k)p(A, B),
kp(u0, u1) +

(
k− k2)p(A, B), kp(u1, u0)

}
≤ rkp(u0, u1) <

1
k3 + k2 p(u0, u1) < p(u0, u1),

a contradiction. Hence, F has a unique BPP.

Corollary 4. Let (W , p) be a complete b−metric space, A, B ∈ C(W) and F : A→ B. If

ϑ(r)p(x,Fx) ≤ k(p(x, y) + p(A, B)) implies p(Fx,Fy) ≤ rp(x, y)− p(A, B),

for all x, y ∈ A and for some r ∈
[

0,
1

k4 + k3

)
and ϑ : [0, 1) → (0, 1]. Assume that A0 is

non-empty such that for each x ∈ A0, Fx ∈ B0 and the pair (A, B) satisfies the weak P−property.
Then BPP(F ) is singleton.
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Proof. If

ζ(s, t) =
ϑ(r)

k
s− t,

then
ζ∗(p(x,Fx), p(x, y)) ≤ 0,

implies
ϑ(r)

k
p(x,Fx)− p(x, y)− p(A, B) ≤ 0,

that is
ϑ(r)p(x,Fx) ≤ k(p(x, y) + p(A, B)),

which further implies
p(Fx,Fy) ≤ rp(x, y)− p(A, B).

Consequently the result follows by Corollary 3.

Now we derive some important results in b−metric fixed point theory.

Corollary 5. Let (W , p) be a complete b−metric space and F :W → CB(W). If

ζ(p(x,Fx), p(x, y)) ≤ 0 implies Hp(Fx,Fy) ≤ rMF (x, y),

for all x, y ∈ W and for some r ∈
[

0,
1

k4 + k3

)
, then F has a fixed point.

Proof. Put A = B =W in Theorem 5.

The following result is the generalization of Theorems 1 and 2.

Corollary 6. Let (W , p) be a complete b−metric space and F :W → CB(W). If

Hp(Fx,Fy) ≤ rMF (x, y),

for all x, y ∈ W and for some r ∈
[

0,
1

k4 + k3

)
, then F has a fixed point.

Corollary 7. Let (W , p) be a complete b−metric space and F :W →W . If

ϑ(r)p(x,Fx) ≤ kp(x, y) implies p(Fx,Fy) ≤ rp(x, y),

for all x, y ∈ W and for some r ∈
[

0,
1

k4 + k3

)
and ϑ : [0, 1) → (0, 1]. Then F has a unique

fixed point.

Proof. Put A = B =W in Corollary 4.

Remark 3.

1. Corollary 5 is a generalization of Theorem 3 for 0 ≤ r <
1

k4 + k3 , which is a generalization of

Theorem 2.
2. If in Corollary 6, we set k = 1, we get Theorems 2 which is a partial generalization of

Theorem 1, ([43], (Corollary 3.3)) and ([44], (Theorem 3.3)).

3. Completeness of b−Metric Spaces

In the following theorem, we obtain completeness of b−metric spaces via the BPP theorem.

Theorem 6. Let (W , p) be a b−metric space, ϑ : [0, 1)→ (0, 1] and A, B ∈ C(W). Let Ar,ϑ be a
class of mappings F : A→ B that satisfies (a)–(b)
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(a) for x, y ∈ A,

ϑ(r)p(x,Fx) ≤ k(p(x, y) + p(A, B)) implies p(Fx,Fy) ≤ rp(x, y)− p(A, B), (20)

where r ∈
[

0,
1

k4 + k3

)
.

(b) A0 is non-empty and for each x ∈ A0, Fx ∈ B0 and the pair (A, B) satisfies the weak
P−property.

Let A∗r,ϑ be a class of mappings F :W →W that satisfies:

(c) for x, y ∈ W ,

ϑ(r)p(x,Fx) ≤ kp(x, y) implies p(Fx,Fy) ≤ rp(x, y), (21)

where r ∈
[

0,
1

k4 + k3

)
.

Let Br,ϑ be a class of mappings F that satisfies (d) and

(d) F (W) is denumerable,
(e) every M ⊆ F (W) is closed.

Then the statements (1)–(4) are equivalent:

1. The b−metric space (W , p) is complete.

2. BPP(F ) is non-empty for every mapping F ∈ Ar,ϑ and for all r ∈ [0, 1) with r <
1

k4 + k3 .

3. Fix(F ) is non-empty for every mapping F ∈ A∗r,ϑ and for all r ∈ [0, 1) with r <
1

k4 + k3 .

4. Fix(F ) is non-empty for every mapping F ∈ Br,ϑ and some r ∈ [0, 1) with r <
1

k4 + k3 .

Proof. By Corollary 4, (1) implies (2). For A = B =W , A∗r,ϑ ⊆ Ar,ϑ. Hence (2) implies (3).
Since Br,ϑ ⊆ A∗r,ϑ, therefore, (3) implies (4). For (4) implies (1), assume on the contrary that
(4) holds but (W , p) is incomplete. That is, there is a sequence {un} which is Cauchy but
does not converge. Define g :W → [0, ∞) as:

g(x) = lim sup
n→∞

p(x, un),

for x ∈ W . As {un} is Cauchy, so for ε =
1
k
> 0, we can choose mε ∈ N, so that for all

n ∈ N,

p(umε , umε+n) ≤
1
k

.

Hence for all n ∈ N, we get

p(x, umε+n) ≤ kp(x, umε) + kp(umε , umε+n) ≤ kp(x, umε) + 1,

implies that the sequence {p(x, un)} is bounded in R for every x ∈ W . This further implies
that the function g is well defined. Further, g(x) > 0 for all x inW . For ε > 0, there exists
Kε ∈ N such that for all p ∈ N,

p(un, un+p) < ε,

for all n ≥ Kε. Hence, we get for all k ∈ N,

0 ≤ g(um) = lim sup
n→∞

p(um, um+n) < ε,

for all m ≥ Kε. That is,
lim

m→∞
g(um) = 0. (22)
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From (22), for every x ∈ W , there exists a υ ∈ N such that

g(uυ) ≤
(

rϑ(r)
3k4 + rkϑ(r)

)
g(x). (23)

If F (x) = uυ, then

g(Fx) ≤
(

rϑ(r)
3k4 + rkϑ(r)

)
g(x) and Fx ∈ {un : n ∈ N}, (24)

for all x ∈ W . From (24), we have g(Fx) < g(x), hence Fx 6= x for all x ∈ W . That
is, Fix(F ) is empty. As F (W) ⊂ {un : n ∈ N}, so (e) holds. Note that (f) holds as well.
Further, g satisfies

g(x)− kg(y) ≤ kp(x, y) for all x, y ∈ W ,
g(y)− kg(x) ≤ kp(x, y) for all x, y ∈ W ,
g(x)− kg(Fx) ≤ kp(x,Fx) for all x ∈ W ,
p(Fx,Fy) ≤ kg(Fx) + kg(Fy) for all x, y ∈ W .

Now fix x, y ∈ W such that

ϑ(r)p(x,Fx) ≤ kp(x, y).

We need to show that (21) holds. Observe that
p(x, y) ≥ ϑ(r)

k
p(x,Fx) ≥ ϑ(r)

k2 (g(x)− kg(Fx))

≥ ϑ(r)
k2

(
1− rϑ(r)

3k3 + rϑ(r)

)
g(x) =

3kϑ(r)
3k3 + rϑ(r)

g(x).
(25)

We have two cases. Case (1) Suppose g(y) ≥ 2kg(x), then,

p(Fx,Fy) ≤ kg(Fx) + kg(Fy)

≤ rϑ(r)
3k3 + rϑ(r)

g(x) +
rϑ(r)

3k3 + rϑ(r)
g(y)

≤ r
3k2 (g(x) + g(y)) +

2r
3k2 (g(y)− 2kg(x))

=
r

3k

(
1
k

g(x) +
1
k

g(y) +
2
k

g(y)− 4g(x)
)

≤ r
3k

(
3
k

g(y)− 3g(x)
)

≤ r
k

(
1
k

g(y)− g(x)
)
≤ rp(x, y).

Case (2) whenever g(y) < 2kg(x), from (25)

p(Fx,Fy) ≤ kg(Fx) + kg(Fy)

≤ rϑ(r)
3k3 + rϑ(r)

g(x) +
rϑ(r)

3k3 + rϑ(r)
g(y)

≤ krϑ(r)
3k3 + rϑ(r)

g(x) +
2krϑ(r)

3k3 + rϑ(r)
g(x)

=
3krϑ(r)

3k3 + rϑ(r)
g(x) = r

3kϑ(r)
3k3 + rϑ(r)

g(x) ≤ rp(x, y).

Hence,
ϑ(r)p(x,Fx) ≤ kp(x, y) implies p(Fx,Fy) ≤ rp(x, y),
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for all x, y ∈ W . From (4) Fix(F ) is non-empty, a contradiction. HenceW is complete.

4. Conclusions

Quasi-contractions are of the utmost importance in applications as these contractions
are not necessarily continuous. Such contractions have been discussed and studied in
the context of fixed points but, to the best of our knowledge, these contractions have
not been considered in the context of best proximity points. The best proximity point
results for quasi-contractions we have proved in this article generalize fixed point results
for quasi-contractions of metric and b-metric spaces. To obtain the best proximity point
results for quasi-contractions of b−metric space, we had to employ some restrictions
on the b−metric constant. Based on our findings, we pose some questions for future
considerations as follows:

Question 01: Does the conclusion of Theorem 5 remain true for
1

k4 + k3 ≤ r < 1?

Question 02: Does the conclusion of Theorem 5 remain true if we replace H∗p by Hp?
Question 03: Is it possible to extend Theorem 4 for best proximity points? Note that

in Theorem 4 they used a contraction condition which is more general than the quasi-
contractions used in [7,9,17].
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