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Abstract: Previous studies on the synchronization behaviors of neuronal networks were constructed
by integer-order neuronal models. In contrast, this paper proposes that the above topics of symmet-
rical neuronal networks are constructed by fractional-order Hindmarsh–Rose (HR) models under
electromagnetic radiation. They are then investigated numerically. From the research results, several
novel phenomena and conclusions can be drawn. First, for the two symmetrical coupled neuronal
models, the synchronization degree is influenced by the fractional-order q and the feedback gain
parameter k1. In addition, the fractional-order or the parameter k1 can induce the synchronization
transitions of bursting synchronization, perfect synchronization and phase synchronization. For
perfect synchronization, the synchronization transitions of chaotic synchronization and periodic syn-
chronization induced by q or parameter k1 are also observed. In particular, when the fractional-order
is small, such as 0.6, the synchronization transitions are more complex. Then, for a symmetrical ring
neuronal network under electromagnetic radiation, with the change in the memory-conductance
parameter β of the electromagnetic radiation, k1 and q, compared with the fractional-order HR
model’s ring neuronal network without electromagnetic radiation, the synchronization behaviors are
more complex. According to the simulation results, the influence of k1 and q can be summarized into
three cases: β > 0.02, −0.06 < β < 0.02 and β < −0.06. The influence rules and some interesting
phenomena are investigated.

Keywords: fractional-order neuronal model; synchronization transition; neuronal network; electro-
magnetic radiation

1. Introduction

The firing behavior of neurons is a nonlinear process, and the neurons are a complex,
nonlinear dynamic system. In 1952, Hodgkin and Huxley used equivalent circuits and
large amounts of data from experiments to model and analyze the data, and then they
constructed the Hodgkin–Huxley (HH) neuron model through theoretical derivation [1].
Then, FItzHugh, Morris and Lecar, Hindmarsh and Rose proposed the FItzHugh–Nagumo
(FHN) model [2], Morris–Lecar (ML) model [3], and Hindmarsh–Rose (HR) model [4],
respectively. Synchronization is an important phenomenon in the neuronal system and is
one of the operational mechanisms of the brain. A number of researchers have used coupled
neuronal models to try to explain some of the synchronization phenomena observed in
experiments. Because the synchronization is related to neurological diseases in the brain,
such as Parkinson’s disease [5] and epilepsy [6], investigating the synchronization behaviors
of neuronal systems by theoretical methods or experiments is helpful to understand the
mechanisms of related phenomena.

1.1. Literature Review

For the synchronization behaviors of two coupled neuronal models and neuronal
networks, many studies have been performed by relevant scholars [7–28]. For the syn-
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chronization behaviors of two coupled neurons, the synchronization transition [7,8] and
the influence of different coupling methods [9–11] are investigated. The synchronization
transition of two coupled ML neurons was studied in [7], and bursting synchronization
occurred before phase synchronization. The effects of memristive synapse coupling were
investigated in [9]. When multiple neurons are coupled into a larger network, there are
more emergence phenomena. Many researchers have investigated the factors influencing
network synchronization [12–24], such as the network topology [12–15], the time delay
and partial time delay [16,18], the coupled methods and initial value [18–21], and the
layers of networks [22]. In previous studies, most neuron models were integer-order
models. In [29], after analyzing the dynamics of the firing rate with a range of stimulus
dynamics, the results showed that the multiple time scale adaptation is consistent with
fractional-order differentiation. Fractional-order can give a more complete picture of nature
than integer-order differentiation. In the past, scholars have performed much research
on fraction-order dynamical systems and applied them in many fields, such as financial
systems [30], biomedical systems [31,32], and the spread of infectious diseases [33], and
related studied have shown the advantages of fractional-order models. The dynamic char-
acteristics of the fractional-order Hindmarsh–Rose (HR) neuronal model were investigated
in [25], and it was found that different fractional orders can induce different dynamic
behaviors. For coupled fractional-order neuronal models and neuronal networks, there
are few studies. For fractional-order coupled neuronal models, the two neurons reach
perfect synchronization through the design of the controller in most of the literature [26–28].
In [34], it was found that a change in the fractional order can change the synchronization
mode. However, the synchronization behaviors of fractional-order neuronal networks have
not been investigated.

Recently, the dynamic behaviors of neurons under electromagnetic radiation have
received wide attention from scholars [27,35–37]. In fact, neurons are usually exposed
to electromagnetic radiation. From the experimental works [38–42], the effects of electro-
magnetic radiation on the neurons are being understood more clearly. Refs. [43,44] found
that the distinct spike-frequency adaption will happen when the neuron is modulated
by extracellular electric fields. In [36,37], the external stimulus current and external elec-
tromagnetic radiation were omitted, respectively, and the corresponding models were
proposed. According to [36], the single fractional-order neuron model under electromag-
netic radiation was proposed, and the dynamic behaviors were investigated in [27]. The
effects of electromagnetic radiation on the dynamic characteristics and synchronization
behaviors of coupled integer-order neuronal networks were investigated in [37,45–47].
The synchronization behavior of one main network coupled with some subnetworks was
investigated in [45]. In [46], it was found that rhythm synchronization happens under
appropriate coupling strength and electromagnetic radiation. In [27,28], the two coupled
neurons with and without time-delays were in perfect synchronization by designing an
appropriate controller, but the authors did not investigate the effects of parameters and the
synchronization transitions.

From the above analysis, the synchronization behaviors and synchronization transi-
tions of coupled fractional-order neuronal models and neuronal networks constructed by
fractional-order HR neuronal models under electromagnetic radiation have not been inves-
tigated in previous studies. Compared with the integer-order model under electromagnetic
radiation and the fractional-order models without electromagnetic radiation, the more
diverse synchronization behaviors may be induced by the change in fractional-order and
electromagnetic radiation. To observe more synchronization behaviors and synchronization
transition modes, this paper investigated the above problems. In the studies mentioned
above, the predict-corrector method [48] is used to study the fractional-order systems. The
predict-corrector method has a high accuracy, but the calculation demand is large. The
Adomian decomposition method (ADM) [49] used in this paper has a higher accuracy, and
the calculation amount is smaller than that of the predict-corrector method [50].
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1.2. Description of Each Section

From this perspective, this paper investigates the synchronization transition of cou-
pled fractional-order neuronal networks under electromagnetic radiation. In Section 2,
the models of coupled fractional-order neuronal networks are proposed. In Section 3,
differently to [24–26], the synchronization transitions of two coupled neuronal models
under electromagnetic radiation induced by the fractional-order, coupling strength and
parameter of electromagnetic radiation are studied. In Section 4, to determine the influence
of electromagnetic radiation, a ring network constructed by fractional-order HR models
without electromagnetic radiation is constructed firstly, and the synchronization transition
induced by fractional-orders is investigated. Additionally, then, this section investigates
the synchronization behaviors of the fractional-order ring neuronal network constructed
by fractional-order HR models under electromagnetic radiation under three conditions.

2. Model Description

There are three definitions which are the most frequently used: the Grunwald–
Letnikov, Riemann–Liouville and Caputo derivatives. The Caputo is simpler to solve
the fractional-order derivative. This paper adopted the Caputo derivative to investigate
the fractional-order systems.

Definition 1. The Caputo derivative of the function f (x) is defined as

C
0 Dq

t f (x) =
1

Γ(n− q)

∫ t

0

f (n)(τ)

(t− τ)q−n+1 dτ

where n− 1 < q < n and Γ(•) is the gamma function, which is defined as

Γ(z) =
∫ ∞

0
tz−1e−1dt

In particular, when 0 < q < 1,

C
0 Dq

t f (x) =
1

Γ(1− q)

∫ t

0

f ′(τ)
(t− τ)q dτ

In this paper, to analyze the dynamic behaviors of the fractional-order neuronal
network, the HR model is adopted for a single neuronal model. The HR model is described
as follows [25]: 

Dq
t x = y− ax3 + bx2 − z + Iexc

Dq
t y = c− dx2 − y

Dq
t z = r[s(x− x)− z]

(1)

where x is the membrane action potential, y is a recovery variable, z is a slow adaption
current, Dq

t is the differential operator defined by Caputo, and q is the fractional-order.
Iexc is the external stimulus current. In this paper, parameters except for the fractional-
order and external stimulus current are fixed as a = 1, b = 3, c = 1, d = 5,
r = 0.006, x = −1.56, s = 4 [32].

The two coupled fractional-order neuronal models under electromagnetic radiation
can be described as follows [35]:

Dq
t x1,2 = y1,2 − ax1,2

3 + bx1,2
2 − z1,2 + Iexc + k1W(ϕ1,2)x1,2 + C(x2,1 − x1,2)

Dq
t y1,2 = c− dx1,2

2 − y1,2
Dq

t z1,2 = r[s(x1,2 − x)− z1,2]
Dq

t ϕ1,2 = x1,2 − k2 ϕ1,2 + ϕ0

(2)

ϕ denotes the magnetic flux across the cell membrane. ϕ0 is the external magnetic flux. k1 is the
feedback gain. The cubic flux-controlled memristor model W(ϕ) = dq(ϕ)/dϕ = α + 3βϕ2

is introduced in this model, and it is used to estimate the effect of feedback regulation on
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membrane potential when the magnetic flux is changed. The two parameters, α and β,
describe the memory conductance, and they vary with the environment and their own
conditions. In this paper, α = 0.2, k2 = 0.4, ϕ0 = 1.

The fractional-order neuronal ring network without electromagnetic radiation can be
described as follows:

Dqxi = yi − axi
3 + bxi

2 − zi + Iexc +
C
2P

i+1
∑

j = i−1
aij
(

xj − xi
)

Dqyi = c− dxi
2 − yi

Dqzi = r[s(xi − x)− zi]

(3)

where i = 1, 2, . . . , N and C is the coupling strength of the network. If node i and node
j are connected, aij = aji = 1. Each neuronal model is symmetrically coupled to its 2P
nearest neighbors. It is important to note that j = −m, (m = 1, 2, . . .) implies that node j
is coupled with node (101−m). The network structure is shown in Figure 1.
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Figure 1. Structure of the neuronal network.

Then, the fractional-order neuronal ring network under electromagnetic radiation can
be described as follows:

Dq
t xi = yi − axi

3 + bxi
2 − zi + Iexc + k1W(ϕi)x1 +

C
2P

i+1
∑

j = i−1
aij
(
xj − xi

)
Dq

t yi = c− dxi
2 − yi

Dq
t zi = r[s(xi − x)− zi]

Dq
t ϕi = xi − k2 ϕi + ϕ0

(4)

3. Synchronization Behavior of Two Fractional-Order Coupled Neuronal Models
under Electromagnetic Radiation

As the simplest neuronal network, the synchronization behaviors of two coupled
fractional-order neuronal models under electromagnetic radiation are researched first.

To prove that the two coupled fractional-order neuronal models can come into perfect
synchronization, some lemmas and definitions are introduced as follows. The Mittag–
Leffler function is defined by

Eα,β(z) : =
∞

∑
i = 0

zi

Γ(αi + β)

Lemma 1. [51] Let x(t) ∈ Cm be a real continuous and differentiable vector function. Then, for all
t ≥ t0 and 0 < q < 1, the following inequality holds:

Dq
(

xH(t)Px(t)
)
≤ xH(t)P(Dqx(t)) +

(
DqxH(t)

)
Px(t)

Lemma 2. [52] Let V(t) be a continuous function on [t0,+∞) that satisfies
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DqV(t) ≤ θV(t)

where 0 < q < 1 and θ are constants, then

V(t) ≤ V(t0)Eα

(
θ(t− t0)

α)
Lemma 3. [53] For 0 < q < 1, t ∈ R, t > 0, we have

lim
t→∞

Eq(t) ≤ lim
t→∞

1
q

et
1
q

Let X = (x1, y1, z1, ϕ1), Y = (x2, y2, z2, ϕ2), C = (C, 0, 0, 0). The error system is
e = X−Y. According to (2), the error system can be described as

e = f (X)− f (Y)− 2C(X−Y)

where

f (X) =


y1 − ax1

3 + bx1
2 − z1 + Iexc + k1W(ϕ1)x1

c− dx1
2 − y1

r[s(x1 − x)− z1]
x1 − k2 ϕ1 + ϕ0



f (Y) =


y2 − ax2

3 + bx2
2 − z2 + Iexc + k1W(ϕ2)x2

c− dx2
2 − y2

r[s(x2 − x)− z2]
x2 − k2 ϕ2 + ϕ0


Theorem 1. f (•) satisfyiesthe Lipschitz condition ‖ f (X)− f (Y)‖ ≤ L‖X−Y‖ [54] if

L− 2C < 0

Then, the two neuronal models can undergo global exponential synchronization.

Proof of Theorem 1. Construct the Lyapunov function as V = eTe. From Lemma 1, the
Lyapunov function can be reduced to

DqV(t) ≤ eT Dqe +
(

DqeT)e
= eT( f (X)− f (Y)− 2C(X−Y)) + ( f (X)− f (Y)− 2C(X−Y))Te
= eT( f (X)− f (Y))− 2eTC(X−Y) + ( f (X)− f (Y))Te− 2(C(X−Y))Te
≤ eT(L‖X−Y‖)− 2CeTe + (L‖X−Y‖)Te− 2CeTe
≤ 2L‖e‖2 − 4C‖e‖2

= (2L− 4C)V(t)

From Lemma 2, V(t) ≤ V(t0)Eq
(
(2L− 4C)(t− t0)

q), according to Lemma 3,

limt→∞Eq
(
(2L− 4C)(t− t0)

q) ≤ limt→∞
1
q

e(t−t0)(2L−4C)
1
q

Therefore, V(t) ≤ V(t0)
1
q e(t−t0)(2L−4C)

1
q as t→ ∞ . When L− 2C < 0, we can con-

clude that the two neuronal modes can be in global exponential synchronization when
under the appropriate coupling strength. �

The above condition is just sufficient, so it is necessary to investigate the details of the
system’s synchronization behaviors and synchronization transition.
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Fractional-order HR neuronal models under electromagnetic radiation were investi-
gated in [27], and two neuronal models reached perfect synchronization through adaptive
control. However, the synchronization behavior and synchronization transition induced
by the fractional-order and other parameters are not reported in [27]. In this section, the
synchronization behaviors and synchronization transitions induced by the fractional-order
and the parameter k1 are studied.

In this section, the similarity function is introduced to measure the synchronization of
the system [7]. The model of the similarity function can be described as follows:

S =


〈
(x1(t)− x2(t))

2
〉

(〈
x2

1(t)
〉〈

x2
2(t)

〉) 1
2


1
2

(5)

where 〈•〉 stands for the time average.
Obviously, perfect synchronization can be observed when S is equal to 0, and the

larger S is, the worse the synchronization.
The phase synchronization is introduced, and its synchronization degree is weaker

than perfect synchronization. From the time of sampled time series (t1, t2, . . . , tn) across
the Poincare section, the phase of the neuronal model can be calculated. The phase is
calculated by [55]

ϕ = 2π
t− ti

ti+1 − ti
+ 2πi, ti < t < ti+1 (6)

The phase difference between two neuronal models is defined by

∆ϕ = |ϕ1 − ϕ2|

when the system is not in perfect and phase synchronization, it may be in bursting synchro-
nization. Bursting synchronization means rhythm synchronization of slow variables, so
bursting synchronization can be measured by the slow variable’s similarity function [55].
The model of the similarity function can be described as follows:

Sz =


〈
(z1(t)− z2(t))

2
〉

(〈
z2

1(t)
〉〈

z2
2(t)

〉) 1
2


1
2

(7)

when Sz is close to 0, the system reaches bursting synchronization.

3.1. Effect of Fractional-Order and Coupling Strength on the Synchronization under
Electromagnetic Radiation

When k1 = 0.2, the fractional-order q and parameter C are varied in the regions
[0.55, 1] and [0.1, 0.5], the similarity function is shown in Figure 2, where the blue region
with S equal to 0 denotes that the system is in perfect synchronization. As shown in Figure 2,
when 0.55 < q < 0.67 and the coupling strength is approximately 0.367, the similarity
function undergoes a complex change, which means that the synchronous threshold of the
coupling strength changes greatly. When 0.67 < q < 1, the synchronous threshold of the
coupling strength decreases with increasing fractional order. When 0.366 < C < 0.378, the
S ∼ q curves are shown in Figure 3. In [34], the threshold of the coupling strength only
increases first and then decreases with increasing fractional-order.
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As shown in Figure 2, the similarity function has striking changes when 0.366 < C < 0.378,
so the synchronization transition can be observed when 0.366 < C < 0.378. The synchro-
nization transition when C = 0.372 is taken as an example to observe the change in
the synchronization mode. When q = 0.56, Figure 4a is the phase diagram of (x1, x2),
and Figure 4b is the corresponding time series of x1 and x2, so the system is in imperfect
synchronization. As shown in Figure 4c,f, the system is in perfect synchronization when
q = 0.61 and q = 0.9 because the phase plane is located on a three quadrant angular bi-
sector. The system is in imperfect synchronization when q = 0.7, as shown in Figure 4d,e,
and the neuronal models display spiking.
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From Figure 4, when the two neuronal models are in imperfect synchronization, the
phase difference is calculated as follows. As shown in Figure 5a, when q = 0.56 the phase
differences are always approximately 0 or 2π, so the system achieves phase synchronization.
From Figure 5b, the phase difference is approximately 0, so the system is also in phase
synchronization when q = 0.7.
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As mentioned above, the synchronization transition mode induced by fractional order
is phase synchronization→ perfect synchronization→ phase synchronization→ perfect
synchronization. In [34], the synchronization transition near the threshold of coupling
strength is perfect synchronization→ phase synchronization→ perfect synchronization.
The transition mode in this paper is more complex than the coupled fractional-order
neuronal models without electromagnetic radiation [34].
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As shown in Figure 2, the two neuronal models are in perfect synchronization when
C = 0.5 and 0.55 < q < 1. Now, the ISI bifurcation of the first neuronal model for
C = 0.5 is shown in Figure 6. Double-period bifurcation exists when q = 0.66 and
q = 0.61 with decreasing fractional-order. The system is in chaotic perfect synchronization
when 0.57 < q < 0.59, but the system is in periodic perfect synchronization at other
fractional orders. Figure 7 shows the phase diagram of (z1, x1)(z2, x2) when q = 0.56,
q = 0.58, q = 0.6, q = 0.65, and q = 0.9 for C = 0.5. The neuronal models
display periodic-3 bursting, chaotic bursting, periodic-4 bursting, periodic-2 bursting, and
spiking. The synchronization transition, which is perfect periodic-3 synchronization→
perfect chaotic synchronization→ perfect periodic-4 synchronization→ perfect periodic-2
synchronization→ perfect spiking synchronization, is observed. When the system is in
perfect synchronization, the transition mode is also more complex than coupled neuronal
models without electromagnetic radiation [34], because the synchronization transition is
only perfect periodic-4 synchronization → perfect chaotic synchronization in [34]. The
results show that when the system is in perfect synchronization, the fractional-order and
electromagnetic radiation can also change the synchronization mode.
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3.2. Effect of the Parameter k1 and the Coupling Strength on the Synchronization under Different
Fractional Order

In this section, the influence of parameter k1 and coupling strength on the synchro-
nization behaviors and the synchronization transition induced by k1 is investigated. The
similarity function, phase difference, and slow variable similarity function are also used to
measure the synchronization degree of the system. From the analysis mentioned above,
different fractional orders induce different dynamic behaviors. The influence of parameter
k1 and coupling strength on synchronization are studied under different fractional-orders.

Therefore, the value of the similarity function in the (C, k1) plane for several fractional-
order values is calculated, as shown in Figure 8. In this figure, the blue region where S
equals 0 denotes a system in perfect synchronization. Generally, the conclusion that a large
parameter k1 and coupling strength can bring the system into perfect synchronization can
be drawn. However, there is an exception: when q = 0.8 and q = 0.95, a smaller k1 can
cause the system to be in perfect synchronization, but a larger k1 cannot. As shown in
Figure 9a, when q = 0.8, C = 0.34, 0.1 < k1 < 0.27, the value of the similarity function
decreases with increasing k1, and then S = 0 when 0.27 < k1 < 0.35. However, with the
sequential increase in k1, S > 0 when 0.35 < k1 < 0.39. Then, S = 0 when k1 > 0.39. To
observe the above process more visually, the phase diagram and the corresponding time
series are shown in Figure 9b–f when q = 0.8, C = 0.34. As shown in Figure 9b,c, the
phase diagram of (x1, x2) and the corresponding time series of x1 and x2 show that the
system is in imperfect synchronization when k1 = 0.2. From Figure 9d,f, the system is in
perfect synchronization when k1 = 0.3 and k1 = 0.4. The system is asynchronized when
k1 = 0.37, as shown in Figure 9e.
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Figure 9. (a) Curve of S ∼ k1 for C = 0.34, q = 0.8. The phase diagram of (x1, x2) for (b) k1 = 0.2,
(d) k1 = 0.3, (e) k1 = 0.37, and (f) k1 = 0.4. (c) Corresponding time series of x for k1 = 0.37.

The phase differences of x1 and x2 when k1 = 0.2 and k1 = 0.37 are plotted in
Figure 10. We can conclude that the two neuronal models are in phase synchronization
when k1 = 0.37, because the phase difference is small at approximately 0. The two
neuronal models are not in phase synchronization when k1 = 0.2, but the phase is locked
in some time periods, and the slow variable’s similarity function is calculated as Sz = 0.05,
so the two neuronal models are in bursting synchronization. The synchronization transition
induced by parameter k1, that is, bursting synchronization→ perfect synchronization→
phase synchronization→ perfect synchronization, can be observed.

Figure 8 also shows that the range of synchronization when q = 0.6 is the largest
of the three values of q. As shown in Figure 11, C = 0.26, k1 = 0.38, the system is
asynchronized when q = 0.8 and q = 0.95, but the system is perfectly synchronized
when q = 0.6.
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If we change the parameter k1 when the system is in perfect synchronization (C = 0.5)
for several values of q, the synchronization mode also changes. The ISI bifurcation of the
first neuronal model is plotted in Figure 12. As shown in Figure 12a, when 0.1 < k1 < 0.14
and 0.25 < k1 < 0.33, the neuronal models display chaotic firing, but when 0.14 < k1 < 0.24
and k1 > 0.33, the neuronal models display periodic firing. When q = 0.6, C = 0.5, the
parameter k1 induces the transition of chaotic perfect synchronization and periodic perfect
synchronization. As shown in Figure 12b, when q = 0.8, C = 0.5, there is a double-period
bifurcation when k1 = 0.38. k1 can also induce the synchronization transition. Thus,
the other kind of synchronization transition, in which the firing modes of the two perfect
synchronization neuronal models are different, induced by k1 is also observed.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 25 
 

 

  
(a) (b) 

Figure 10. Phase difference varied with time (a) 1 0.2k = , (b) 1 0.37k = . 

Figure 8 also shows that the range of synchronization when 0.6q =  is the largest of the 
three values of q . As shown in Figure 11, 10.26, 0.38C k= = , the system is asynchronized 
when 0.8q =  and 0.95q = , but the system is perfectly synchronized when 0.6q = . 

(a) (b)  (c) 

Figure 11. Phase diagram of ( )1 2,x x  for (a) 0.6q = , (b) 0.8q = , and (c) 0.95q = . 

If we change the parameter 1k  when the system is in perfect synchronization (
0.5C = ) for several values of q , the synchronization mode also changes. The ISI bifurca-

tion of the first neuronal model is plotted in Figure 12. As shown in Figure 12a, when 
10.1 0.14k< <  and 10.25 0.33k< < , the neuronal models display chaotic firing, but when 

10.14 0.24k< <  and 1 0.33k > , the neuronal models display periodic firing. When 
0.6, 0.5q C= = , the parameter 1k  induces the transition of chaotic perfect synchroniza-

tion and periodic perfect synchronization. As shown in Figure 12b, when 0.8, 0.5q C= =
, there is a double-period bifurcation when 1 0.38k = . 1k  can also induce the synchroni-
zation transition. Thus, the other kind of synchronization transition, in which the firing 
modes of the two perfect synchronization neuronal models are different, induced by 1k  
is also observed. 

  
(a)  (b) 

x2 x2 x2

Figure 12. ISI bifurcation of the first neuronal model for C = 0.5 (a) q = 0.6, (b) q = 0.8.

The phase diagrams of (z1, x1)(z2, x2) are shown in Figure 13 when C = 0.5. The
synchronization transition induced by the parameter k1 can be explained. Figure 13a,c show
that the neuronal models display chaotic firing, so the system is in chaotic synchronization
when q = 0.6, k1 = 0.12 and q = 0.6, k1 = 0.3. From Figure 13b,d, the neuronal
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models display periodic-4 bursting and periodic-3 bursting, so the system is in periodic
synchronization when q = 0.6, k1 = 0.16 and q = 0.6, k1 = 0.35. The system is
in periodic synchronization at all values of k1 when q = 0.8, but the neuronal models
display spiking firing and periodic-2 bursting when k1 = 0.15 and k1 = 0.4, as shown in
Figure 13e,f.

In [27], the effect of parameter k1 on the synchronization was not investigated. In [46],
when the neuronal model is an integer-order model, the synchronization mode is perfect
spiking synchronization for all k1 when C = 0.5. The conclusion can be summarized
that parameter k1 can induce the synchronization transition and that the synchronization
behaviors are different when the fractional order varies. As shown in Figures 12 and 13,
a small fractional order, such as 0.6, can induce a more complex synchronization tran-
sition because when q = 0.6, the system has diverse synchronization modes such as
chaotic synchronization and different kinds of periodic synchronization, but only periodic
synchronization occurs when q = 0.8.
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Figure 13. The phase diagram of (x1, z1) and (x2, z2) for C = 0.5 (a) q = 0.6, k1 = 0.12, (b) q = 0.6, k1 = 0.16,
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4. Synchronization Behavior of Fractional-Order Neuronal Ring Networks under
Electromagnetic Radiation

In this paper, the synchronization factor R is adopted to describe the synchronization
of network. R is given by [47]

R =

〈
F2〉− 〈F〉2

1
N

N
∑

i = 1

(〈
x2

i
〉
− 〈xi〉2

) , F =
1
N

N

∑
i = 1

xi (8)

where 〈•〉 denotes the time averaging. The value of R is between 0 and 1, and it increases
with decreasing average membrane potential errors. More precisely, perfect synchroniza-
tion is expected when R is close to 1, and a nonsynchronization state may appear when R
is close to 0.
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The bursting synchronization of the neuronal network can be described by the slow
variable’s synchronization factor Rz. Rz is given by

Rz =

〈
Fz

2〉− 〈Fz〉2

1
N

N
∑

i = 1

(〈
z2

i
〉
− 〈zi〉2

) , Fz =
1
N

N

∑
i = 1

zi (9)

where 〈•〉 denotes the time averaging. When Rz is close to 1, the system reaches bursting
synchronization.

4.1. Fractional-Order Neuronal Ring Network without Electromagnetic Radiation

To illustrate the diverse synchronization behaviors and synchronization transition
modes, a fractional-order neuronal ring network without electromagnetic radiation is
studied first.

The ring network consists of 100 nodes. Numerical simulation is provided for model (2)
by utilizing the ADM method. As shown in Figure 14, the synchronous threshold of the
coupling strength varies with the fractional-order. The change trend of the threshold first
increases and then decreases, as shown in Figure 14b. In previous studies, for integer-
order neuronal networks, the threshold of the coupling strength can change with other
influencing factors [12,16], such as the structure of the network and time delay. In this
paper, the fractional order is proven to be an influencing factor.
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Figure 14. (a) Curves of R ∼ C for different fractional-orders. (b) The curve of Cr ∼ q.

As shown in previous studies, for the integer-order neuronal network, a time-delay
can induce the synchronization transition of the neuronal network [16,17]. In this paper,
the results show that fractional-order not only makes the synchronous system become
asynchronous, but it also changes the synchronization mode. When the neuronal network is
in perfect synchronization, Figure 15 shows the phase diagram of (zi, xi)(i = 1, 2, . . . , N)
when the fractional order is 0.65, 0.75, 0.85, and 0.95. The neurons display periodic-6
bursting, periodic-10 bursting, and periodic-5 bursting when q = 0.65, q = 0.75, and
q = 0.85, as shown in Figure 15a–c, respectively. The network is in perfect periodic-6,
perfect periodic-10 and perfect periodic-5 synchronization. When q = 0.95, as shown
in Figure 15d, the neurons display chaotic bursting, so the network is in perfect chaotic
synchronization. The fractional-order q can induce the synchronization transition, which
is perfect periodic-6 synchronization → perfect periodic-10 synchronization → perfect
periodic-5 synchronization→ perfect chaotic synchronization.



Symmetry 2021, 13, 2204 15 of 24Symmetry 2021, 13, x FOR PEER REVIEW 15 of 25 
 

 

  
(a)  (b) 

  
(c)  (d) 

Figure 15. Phase diagrams of ( )( ), 1, 2,...,i iz x i N=  for (a) 0.65q = , (b) 0.75q = , (c) 0.85q = , 

and (d) 0.95q = . 

4.2. Fractional-Order Neuronal Network under Electromagnetic Radiation 
In this section, the effect of some parameters on the synchronization behaviors of ring 

neuronal networks under electromagnetic radiation is investigated. In [37], the integer-
order neuron’s firing activity is influenced by the parameter 1k . In this paper, the firing 
activity is also influenced by the parameter β  apart from 1k . In addition, in this paper, 
the results show that the fractional order cannot influence the neuronal models’ firing 
mode in the ring neuronal network under electromagnetic radiation. It is obviously dif-
ferent from the two coupled fractional-order neuronal models under electromagnetic ra-
diation, single neuron and the ring neuronal network without electromagnetic radiation. 
Although the fractional-order cannot influence the neuronal firing mode, the fractional-
order can influence the synchronization degree of the ring neuronal network under elec-
tromagnetic radiation under different conditions. For example, the ring neuronal network 
constructed by integer-order neuronal models is in perfect synchronization, but the per-
fect synchronization may be destroyed in the same conditions when the integer-order 
neuronal models are instead fractional-order neuronal models, or vice versa. Therefore, 
this paper focuses on the effects of parameters β , 1k  and q  on the synchronization be-
haviors and synchronization transition of ring neuronal networks constructed by frac-
tional-order neuronal models. 

The firing mode with different parameter β  when 1 0.4, 10k C= =  is plotted in Fig-
ure 16, and the other parameters are set as mentioned in Section 1. Figure 16 shows the 
firing mode of the first neuron when the parameter β  is different. From the numerical 
simulations, we can find that the neuronal models display chaotic bursting, spiking firing, 
and periodic bursting when 0.06 0.02β− < < , 0.06β < − , and 0.02β > . In this section, 
the synchronization behaviors in the three regions of β  are studied numerically. 

Figure 15. Phase diagrams of (zi, xi)(i = 1, 2, . . . , N) for (a) q = 0.65, (b) q = 0.75, (c) q = 0.85,
and (d) q = 0.95.

4.2. Fractional-Order Neuronal Network under Electromagnetic Radiation

In this section, the effect of some parameters on the synchronization behaviors of ring
neuronal networks under electromagnetic radiation is investigated. In [37], the integer-
order neuron’s firing activity is influenced by the parameter k1. In this paper, the firing
activity is also influenced by the parameter β apart from k1. In addition, in this paper, the
results show that the fractional order cannot influence the neuronal models’ firing mode
in the ring neuronal network under electromagnetic radiation. It is obviously different
from the two coupled fractional-order neuronal models under electromagnetic radiation,
single neuron and the ring neuronal network without electromagnetic radiation. Although
the fractional-order cannot influence the neuronal firing mode, the fractional-order can
influence the synchronization degree of the ring neuronal network under electromagnetic
radiation under different conditions. For example, the ring neuronal network constructed
by integer-order neuronal models is in perfect synchronization, but the perfect synchroniza-
tion may be destroyed in the same conditions when the integer-order neuronal models are
instead fractional-order neuronal models, or vice versa. Therefore, this paper focuses on
the effects of parameters β, k1 and q on the synchronization behaviors and synchronization
transition of ring neuronal networks constructed by fractional-order neuronal models.

The firing mode with different parameter β when k1 = 0.4, C = 10 is plotted in
Figure 16, and the other parameters are set as mentioned in Section 1. Figure 16 shows
the firing mode of the first neuron when the parameter β is different. From the numerical
simulations, we can find that the neuronal models display chaotic bursting, spiking firing,
and periodic bursting when −0.06 < β < 0.02, β < −0.06, and β > 0.02. In this section,
the synchronization behaviors in the three regions of β are studied numerically.
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Figure 16. Corresponding time series of x1 for q = 0.8 (a) β = −0.02, (b) β = −0.08, and
(c) β = 0.04.

4.2.1. Synchronization Behavior of the Neuronal Network When β > 0.02

In this part, the parameter β = 0.04 is set as an example. The curves of R ∼ C when
q = 0.8 for different k1 are shown in Figure 17. From Figure 17, we find the effects of
parameter k1 and coupling strength on synchronization behaviors. The synchronization
factor increases with increasing coupling strength and k1. When β = 0.04, k1 plays a
dominant role in the network synchronization, because the network cannot reach perfect
synchronization when k1 = 0.15, 0.2, 0.25, 0.3 and the coupling strength ranges from
1 to 16. The state of the network can be transformed from asynchronization to perfect
synchronization with a minor change in k1 when k1 > 0.35.
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To observe the effect of fractional order, k1 is set as 0.35. Fractional order cannot
influence the neuronal models’ firing mode, but it can change the synchronization degree.
Figure 18 shows the R ∼ q curves for different coupling strengths. We can conclude that
the increase in fractional order weakens the synchronization of the neuronal network. The
synchronization is robust against alterations of coupling strength when fractional order is
small. When the fractional order is 0.7, the difference in the synchronization factor between
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coupling strengths 1 and 5.5 is only 0.05, but when the fractional-order is 1, the difference
becomes 0.2.
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Figure 19 shows the neuronal network’s spatiotemporal patterns and corresponding
snapshots when C = 4.5, k1 = 0.4. It is concluded that the strength of synchronization
is higher when the fractional order is 0.7 than when the fractional order is 0.98. When
q = 0.7, C = 4.5, the x1i are uniformly distributed values, so the network is in nearly per-
fect synchronization. When q = 0.98, C = 4.5, the x1i are disorderly. However, the slow
variable’s synchronization factor Rz is calculated as 0.99, so the network is in bursting syn-
chronization. The fractional-order can also induce the transition of perfect synchronization
and bursting synchronization when the ring network is under electromagnetic radiation.
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Figure 19. Neuronal network spatiotemporal patterns for (a) q = 0.7, and (b) q = 0.98. The corresponding snapshots for
(c) q = 0.7, and (d) q = 0.98.
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In addition, k1 can also induce synchronization transition; that is, the firing mode of
neuronal models changes for different k1 when the network is in perfect synchronization.
The parameters are set as q = 0.8, C = 10 and the neuronal network is in perfect
synchronization. Figure 20 shows the phase diagram of (zi, xi) when k1 = 0.4, 0.5, 0.6, 0.7.
As shown in Figure 20, a neuronal model in the network displays periodic-10 bursting,
periodic-7 bursting, periodic-5 bursting, and periodic-4 bursting when k1 = 0.4, 0.5, 0.6, 0.7.
The number of spikes in one bursting decreases with increasing k1, so the synchronization
mode varies with k1. The synchronization transition induced by k1, which is perfect
periodic-10 synchronization→ perfect periodic-7 synchronization→ perfect periodic-5
synchronization→ perfect periodic-4 synchronization, is observed.
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Figure 20. Phase diagram of (zi, xi) for (a) k1 = 0.4, (b) k1 = 0.5, (c) k1 = 0.6, and (d) k1 = 0.7.

4.2.2. Synchronization Behavior of the Neuronal Network When −0.06 < β < 0.02

In this part, the parameter β = −0.02 is set as an example. The synchronization
is different from the above analysis. As shown in Figure 21, the synchronization factor
also increases with increasing coupling strength and k1, but we can conclude that it is
difficult to reach perfect synchronization. The coupling strength ranges from 1 to 16, and
the synchronization factor just reaches approximately 0.3.

The neuronal network’s spatiotemporal patterns and corresponding snapshots at
t = 2500s when k1 = 0.4 are shown in Figure 22. It is found that the x1i are disorderly
when the coupling strength is 1 and 16. The degree of synchronization is higher when the
coupling strength is 16 than when the coupling strength is 1, but they are not synchronized.
After calculating the slow variable’s synchronization factor, the network is not in bursting
synchronization. This part of the view is different from the case of the network without
electromagnetic radiation, as shown in Figure 15d. Under the same fractional-order and
coupling strength, the network can be in perfect synchronization.
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Figure 22. Neuronal network spatiotemporal patterns for k1 = 0.4 (a) C = 1, and (b) C = 16. The corresponding
snapshots at t = 2500s for k1 = 0.4 (c) C = 1, and (d) C = 16.

4.2.3. Synchronization Behavior of the Neuronal Network When β < −0.06

In this section, the parameter β = −0.08 is set as an example. Some novel phenomena
are observed. The R ∼ C curves when k1 = 0.4 for different fractional-orders are plotted
in Figure 23. We find that the network is in perfect synchronization when C > 7, but the
neuronal models’ dynamic behaviors are different when 6.4 < C < 7 for different fractional
orders. In addition, the transition of synchronization and asynchronization is abrupt when
the fractional-order and coupling strength change slightly. The synchronization factor
changes from 0.1 to 1 directly. This phenomenon is not found in previous studies.
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Figure 23. Curves of R ∼ C when k1 = 0.4 for different q.

Figure 24 shows the neuronal network spatiotemporal patterns at different fractional
orders and coupling strengths. As shown in Figure 24, for each fractional order, the network
undergoes several sudden transitions of asynchronization and perfect synchronization
with the variation in coupling strength. The dynamic behavior of neuronal models in the
network is different at different fractional-orders and coupling strengths. When C = 6.7,
the network is asynchronized at q = 0.7 and q = 0.8, but the network is perfectly
synchronized at q = 0.9. When C = 6.48, the network is in perfect synchronization at
q = 0.7, but the network is in asynchronization at q = 0.9 and q = 0.8. When β < −0.06,
fractional-order can also induce a synchronization transition. We can find that the larger the
fractional-order is, the larger the range of asynchronization, as shown in Figure 23. From
the value of the slow variable’s synchronization factor when the network is not in perfect
synchronization, the network cannot obtain bursting synchronization. In the neuronal
network without electromagnetic radiation, we could not find the abrupt changes in the
synchronization factor and synchronization behaviors.
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For the influence of 1k , as shown in Figure 25, the synchronization degree increases 
when 1k  increases, but the network has difficulty obtaining perfect synchronization. The 
parameters are set as 0.8q = , 6.7C = . 
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Figure 24. Neuronal network spatiotemporal patterns and corresponding snapshots for different
fractional-orders and coupling strengths. (a) q = 0.7, C = 6.43, (b) q = 0.7, C = 6.48,
(c) q = 0.7, C = 6.7, (d) q = 0.7, C = 7.1; (e) q = 0.8, C = 6.48, (f) q = 0.8, C = 6.6,
(g) q = 0.8, C = 6.7, (h) q = 0.8, C = 7.1; (i) q = 0.9, C = 6.48, (j) q = 0.9, C = 6.7,
(k) q = 0.9, C = 6.9, (l) q = 0.9, C = 7.1.
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For the influence of k1, as shown in Figure 25, the synchronization degree increases
when k1 increases, but the network has difficulty obtaining perfect synchronization. The
parameters are set as q = 0.8, C = 6.7.
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5. Conclusions

This paper investigates the synchronization behaviors and synchronization transitions
of fractional-order neuronal networks under electromagnetic radiation.

(1) For the two coupled neuronal models under electromagnetic radiation:

(a) With increasing fractional-order, the synchronous threshold of the coupling
strength fluctuates first, then increases and finally decreases (in [34] (without
electromagnetic radiation), the threshold of coupling strength only increases
first and then decreases with increasing fractional-order).

(b) The synchronization transitions of the coupled fractional-order neuronal mod-
els, which contain bursting synchronization, perfect synchronization, and
phase synchronization, are observed when the fractional-order or parameter
k1 changes.

(c) In addition, when the two coupled neuronal models are in perfect synchro-
nization, the transition of perfect chaotic synchronization and perfect periodic
synchronization is observed when changing the fractional order or parameter
k1. From the ISI bifurcation diagram in Figure 12, when q = 0.6, the system has
more diverse synchronization modes, which are perfect chaotic synchroniza-
tion, perfect periodic-6 synchronization, perfect periodic-4 synchronization,
perfect periodic-3 synchronization, and perfect periodic-2 synchronization
when the value of k1 is different. However, when q = 0.8, only perfect
periodic-2→ spiking synchronization occurs with increasing k1. Compared
with [28], more diverse synchronization behaviors and synchronization tran-
sition induced by fractional order and other parameters were found, like the
synchronization transition of phase synchronization, perfect synchronization
and bursting synchronization, and our work shows more details of the syn-
chronization behaviors of coupled fractional-order neuronal networks under
electromagnetic radiation.

(2) For the ring network constructed by fractional-order HR models without electromag-
netic radiation:
The fractional-order can also change the degree of synchronization, similar to the other
influencing factors reported in [22–34], and the transition of periodic synchronization
and chaotic synchronization induced by the fractional-order is observed.

(3) For the same ring network under electromagnetic radiation.
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Different from the results of [37] in which only the parameter k1 changes the firing
activities of neuronal models in the network, this paper focuses on the influence
of the parameters β, k1 and fractional-order q on the synchronization behaviors
and synchronization transitions. Obviously different from the integer-order neuronal
network and the fractional-order neuronal network without electromagnetic radiation,
the fractional orders cannot change the firing activity of a single neuronal model in
the fractional-order neuronal network with electromagnetic radiation. However, q
can influence the synchronization degree of ring fractional-order neuronal networks.

(a) When β > 0.02, the synchronization degree decreases with increasing fractional-
order. The parameter k1 can induce the synchronization transition of per-
fect periodic-10 synchronization, perfect periodic-7 synchronization, perfect
periodic-5 synchronization, and perfect periodic-4 synchronization.

(b) When−0.06 < β < 0.02, it is difficult for the network to reach synchronization,
and the fractional order has difficulty changing the synchronization degree.

(c) In particular, when β < −0.06, the network has a sudden transition of asyn-
chronization and perfect synchronization. The synchronization factor goes
suddenly from 0.1 to 1. The larger the fractional order is, the larger the range of
asynchronization is. The synchronization degree increases with increasing k1.
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