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Abstract: The modified second Zagreb index, symmetric difference index, inverse symmetric index,
and augmented Zagreb index are among the molecular descriptors which have good correlations
with some physicochemical properties (such as formation heat, total surface area, etc.) of chemical
compounds. By a random cyclooctane chain, we mean a molecular graph of a saturated hydrocarbon
containing at least two rings such that all rings are cyclooctane, every ring is joint with at most two
other rings through a single bond, and exactly two rings are joint with one other ring. In this article,
our main purpose is to determine the expected values of the aforementioned molecular descriptors
of random cyclooctane chains explicitly. We also make comparisons in the form of explicit formulae
and numerical tables consisting of the expected values of the considered descriptors of random
cyclooctane chains. Moreover, we outline the graphical profiles of these comparisons among the
mentioned descriptors.

Keywords: modified Zagreb index; symmetric difference index; inverse symmetric index; augmented
Zagreb index; random cyclooctane chain; cycloalkane; expected values; comparisons; graphical
representation

MSC: 05C09; 05C92; 05C90

1. Introduction

Chemical graph theory is a branch of mathematics which deals with the mathematical
modeling of graphs that is also an essential branch of theoretical chemistry. Initial chemical
research introduced the theory of chemical graphs. Chemists have confirmed that the
physicochemical properties of a compound have been associated with molecular arrange-
ment, with results derived from an enormous number of investigational data. Furthermore,
the researchers considered the same topological index based on various chemical properties
and applied it to QSR/QSPR learning. Generally, the features of a compound derived by
chemical experiments are not very authentic. However, theoretical calculations assume
a vital role in many extraordinary cases. There are numerous topological indices in the
literature of chemical graph theory. The first of its kind is the Wiener index [1]. After that,
the most important topological index is the class of the Zagreb indices and its variants [2].
The family of Adriatic indices was introduced in [3–6]. An especially interesting subclass of
these descriptors consists of 148 discrete Adriatic indices. The so-called inverse sum indeg
index (ISI) was defined in [4] as a significant predictor of the total surface area of octane
isomers. A graph consists of some points (nodes) and lines (edges). Suppose Γ = Γ(V, E)
is a graph of order n with vertex set V(Γ) = {u1, u2, . . . , un} and edge set E. Let ui be the
node of a graph. Then, the degree of a node is the number of edges incident to that vertex
and is denoted by di. If an edge connects a vertex of degree i and a vertex of degree j in Γ,
then we call it an (i, j)-edge. Let xij(Γ) denote the number of (i, j)-edges in the graph Γ.
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AZI(Γ) = ∑
uiuj∈E(Γ)

(
didj

di + dj − 2
)3 (1)

ISI(Γ) = ∑
uiuj∈E(Γ)

didj

di + dj
(2)

SDD(Γ) = ∑
uiuj∈E(Γ)

d2
i + d2

j

didj
(3)

aM2(Γ) = ∑
uiuj∈E(Γ)

1
didj

(4)

Significant efforts have been made to give an explicit formula for the topological
indices for a special family of graphs or chemical graphs; see for example the recent
papers [7,8].

2. Materials and Methods

A cyclooctane chain is when every node of a cyclooctane system is in an octagon. We
obtain a cyclooctane chain by composing an edge joining octagons. Figure 1 shows the
uniqueRCOCm for m = 1, 2, and Figure 2 shows fourRCOCm chains for m = 3. We termed
RCOC1

m+1,RCOC2
m+1,RCOC3

m+1, andRCOC4
m+1 by local adjustment of the cyclooctane

chains (see Figure 3). Therefore,RCOC(m; ρ1, ρ2, ρ3) can be attained by stepwise addition
of a terminal octagon. A random selection (k = 3, 4, . . . , m) is made at each step from one
of the four probable structures:

(i) RCOCk−1 → RCOC1
k with probability ρ1,

(ii) RCOCk−1 → RCOC2
k with probability ρ2,

(iii) RCOCk−1 → RCOC2
k with probability ρ3, or

(iv) RCOCk−1 → RCOC3
k with probability r = 1− ρ1 − ρ2 − ρ3.

Figure 1. The cyclooctane chains for m = 1, 2.

A process is a zeroth-order Markov process if the probabilities ρ1, ρ2, ρ3 are unvarying
in step parameter and steady. Several papers are concentrated about random arrangement
of graphs. For more details, see [9–15]. The comparison and inequalities among some
indices for molecular graphs have been derived in [16,17]. Around one decade before, the
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coindex versions of these Zagreb indices were introduced. First, two extremum Zagreb
indices and coindices of chemical trees were considered in [18]. In degree-based topological
indices, many indices depend on the vertex degree of the molecular graph. Some degree-
based topological indices are described for pentagonal chains [19]. Bond incident degree
(BID) indices for some nanostructures [20,21], tree-like polyphenylene systems, spiro
hexagonal systems and polyphenylene dendrimer nanostars [22] are bounds for the general
sum-connectivity index of composite graphs [23]. Some vertex-degree-based topological
indices are of cacti [24,25]. The Wiener indices of random benzenoid chain was considered
by Gutman et al. [26,27]. In 2012, random polyphenyl chains were studied by Yang and
Zhang [28].

Figure 2. The four types of cyclooctane chains for m = 3.

A number of papers are attentive regarding the random arrangement of topolog-
ical indices [29]. Cyclooctanes are a kind of saturated hydrocarbons. For many years,
chemists have paid a lot of attention to their derivatives [30–33]. These derivatives are
seen and used in drug synthesis, combustion kinetics, organic synthesis, etc. For example,
the osmium-catalysed bis-dihydroxylation of 1,5-cyclooctadiene has utilized cyclooctane
1, 2, 5, 6 tetrol [33]. Alamdari et al. [30] considered the combination of some cyclooctane-
based quinoxaline pyrazines. These molecular-like graphs [34,35] are geometric graphs
(finite two-connected) bounded by a quadrangles of side length one and a regular octagon.

Note that a class of polycyclic conjugated hydrocarbons with tree-like octagonal systems
is represented in [34]. Some mathematicians were attracted by octagonal graphs [36]. The
numbers of isomers in tree-like octagonal graphs were expressed by Brunvoll et al. [34]. Yang
and Zhao [35] studied the relationship among the numbers in a class of Hosoya index of the
caterpillar trees and octagonal graphs.

In this work, we study the expected values of the modified Zagreb, symmetric dif-
ference, inverse symmetric, and augmented Zagreb indices in random cyclooctane chain.
Furthermore, we give analytic proofs for comparison, along with numerical and graphical
profiles of these indices in a random cyclooctane chain.
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Figure 3. The four types of local arrangements in cyclooctane for m > 3.

Here, let us examine the modified Zagreb index, symmetric difference index, inverse
symmetric index, and augmented Zagreb index in the chain RCOCm with m octagons.
Consider RCOCm to be the cyclooctane chain obtained from RCOCm−1, as shown in
Figure 3. It is easy to see from the structure of the chain RCOCm that it contains only
(2, 2), (2, 3), and (3, 3)-types of edges. Therefore, to calculate these indices for the chain
RCOCm, we need to determine only its edges of types x22(RCOCm), x23(RCOCm) and
x33(RCOCm). Hence, from Equations (1)–(4), one can write as:

AZI(RCOCm) = 8x22(RCOCm) + 8x23(RCOCm) +
729
64

x33(RCOCm). (5)

ISI(RCOCm) = x22(RCOCm) +
6
5

x23(RCOCm) +
3
2

x33(RCOCm). (6)

SDD(RCOCm) = 2x22(RCOCm) +
13
6

x23(RCOCm) + 2x33(RCOCm). (7)

aM2(RCOCm) =
1
4

x22(RCOCm) +
1
6

x23(RCOCm) +
1
9

x33(RCOCm). (8)

3. Results

Notice thatRCOCm is a random cyclooctane chain due to its local arrangements. There-
fore, AZI(RCOC(m; ρ1, ρ2, ρ3)), aM2(RCOC(m; ρ1, ρ2, ρ3)), ISI(RCOC(m; ρ1, ρ2, ρ3)) and
SDD(RCOC(m; ρ1, ρ2, ρ3)) are the random variables. Now, we will calculate the expected
values of these indices inRCOCm, and denote these as EAZI

m = E[AZI(RCOC(m; ρ1, ρ2, ρ3))],
EaM2

m = E[aM2(RCOC(m; ρ1, ρ2, ρ3))], EISI
m = E[ISI(RCOC(m; ρ1, ρ2, ρ3))],

ESDD
m = E[SDD(RCOC(m; ρ1, ρ2, ρ3))], respectively.

Theorem 1. Let m ≥ 2 and a random cyclooctane chainRCOC(m; ρ1, ρ2, ρ3). Then

EAZI
m =

m
64

(4825 + 217ρ1)− ρ1
217
32
− 729

64
.

Proof. Since EAZI
2 = 8921

64 is correct, then for m ≥ 3, there are 4 types of probabilities (see
Figure 3).

(a). IfRCOCm−1 → RCOC1
m with probability ρ1

x22(RCOC1
m) = x22(RCOCm−1) + 5, x23(RCOC1

m) = x23(RCOCm−1) + 2 and
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x33(RCOC1
m) = x33(RCOCm−1) + 2, and from (5), we have

AZI(RCOC1
m) = AZI(RCOCm−1) +

2521
32 .

(b). IfRCOCm−1 → RCOC2
m with probability ρ2, then

x22(RCOC2
m) = x22(RCOCm−1) + 4, x23(RCOC2

m) = x23(RCOCm−1) + 4 and
x33(RCOC2

m) = x33(RCOCm−1) + 1, and from (5), we have
AZI(RCOC2

m) = AZI(RCOCm−1) +
4825
64 .

(c). IfRCOCm−1 → RCOC2
m with probability ρ3, then

x22(RCOC3
m) = x22(RCOCm−1) + 4, x23(RCOC3

m) = x23(RCOCm−1) + 4 and
x33(RCOC3

m) = x33(RCOCm−1) + 1, and from (5), we have
AZI(RCOC2

m) = AZI(RCOCm−1) +
4825
64 .

(d). IfRCOCm−1 → RCOC3
m with probability 1− ρ1 − ρ2 − ρ3, then

x22(RCOC4
m) = x22(RCOCm−1) + 4, x23(RCOC4

m) = x23(RCOCm−1) + 4 and
x33(RCOC4

m) = x33(RCOCm−1) + 1, and from (5), we have
AZI(RCOC3

m) = AZI(RCOCm−1) +
4825
64 .

Thus, we obtain

EAZI
m = ρ1 AZI(RCOC1

m) + ρ2 AZI(RCOC2
m) + ρ3 AZI(RCOC3

m)

+ (1− ρ1 − ρ2 − ρ3)AZI(RCOC4
m)

= ρ1[AZI(RCOCm +
2521

32
)] + ρ2[AZI(RCOCm +

4825
64

)]

+ ρ3[AZI(RCOCm +
4825

64
)] + (1− ρ1 − ρ2 − ρ3)[AZI(RCOCm) +

4825
64

]

= AZI(RCOCm−1) + ρ1
217
64

+
4825

64
.

EAZI
m = AZI(RCOCm−1) + ρ1

217
64

+
4825
64

. (9)

However, E[EAZI
m ] = EAZI

m ; thus, applying the operator E on (9), we obtain

EAZI
m = EAZI

m−1 + ρ1
217
64

+
4825
64

, m > 2, (10)

and by the recurrence relation (10) using initial conditions, we get

EAZI
m =

m
64

(4825 + 217ρ1)− ρ1
217
32
− 729

64
.

Theorem 2. Let m ≥ 2 and a random cyclooctane chainRCOC(m; ρ1, ρ2, ρ3). Then

EISI
m =

m
10

(ρ1 + 103)− 23
10
− ρ1

5
.

Proof. Since ER
2 = 183

10 is correct, then for m ≥ 3, there are 4 types of probabilities (see
Figure 3).

(a). IfRCOCm−1 → RCOC1
m with probability ρ1

x22(RCOC1
m) = x22(RCOCm−1) + 5, x23(RCOC1

m) = x23(RCOCm−1) + 2 and
x33(RCOC1

m) = x33(RCOCm−1) + 2, and from (6), we have
ISI(RCOC1

m) = ISI(RCOCm−1) +
52
5 .

(b). IfRCOCm−1 → RCOC2
m with probability ρ2, then

x22(RCOC2
m) = x22(RCOCm−1) + 4, x23(RCOC2

m) = x23(RCOCm−1) + 4 and
x33(RCOC2

m) = x33(RCOCm−1) + 1, and from (6), we have
ISI(RCOC2

m) = ISI(RCOCm−1) +
103
10 .
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(c). IfRCOCm−1 → RCOC2
m with probability ρ3, then

x22(RCOC3
m) = x22(RCOCm−1) + 4, x23(RCOC3

m) = x23(RCOCm−1) + 4 and
x33(RCOC3

m) = x33(RCOCm−1) + 1, and from (6), we have
ISI(RCOC2

m) = ISI(RCOCm−1) +
103
10 .

(d). IfRCOCm−1 → RCOC3
m with probability 1− ρ1 − ρ2 − ρ3, then

x22(RCOC4
m) = x22(RCOCm−1) + 4, x23(RCOC4

m) = x23(RCOCm−1) + 4 and
x33(RCOC4

m) = x33(RCOCm−1) + 1, and from (6), we have
ISI(RCOC3

m) = ISI(RCOCm−1) +
103
10 .

Thus, we get

EISI
m = ρ1 ISI(RCOC1

m) + ρ2 ISI(RCOC2
m) + ρ3 ISI(RCOC3

m)

+ (1− ρ1 − ρ2 − ρ3)ISI(RCOC4
m)

= ρ1[ISI(RCOCm) +
52
5
] + ρ2[ISI(RCOCm)) +

103
10

]

+ ρ3[ISI(RCOCm) +
103
10

] + (1− ρ1 − ρ2 − ρ3)[ISI(RCOCm)) +
103
10

]

EISI
m = ISI(RCOCm−1) + ρ1

1
10

+
103
10

. (11)

However, E[Em]H = EH
m ; thus, applying the operator E on (11), we obtain

EISI
m = EISI

m−1 + ρ1
1

10
+

103
10

. m > 2, (12)

and by the recurrence relation (12) using initial conditions, we get

EISI
m =

m
10

(ρ1 + 103)− 23
10
− ρ1

1
5

.

Theorem 3. Let m ≥ 2 and a random cyclooctane chainRCOC(m; ρ1, ρ2, ρ3). Then

ESDD
m =

1
3
[m(56− ρ1) + 2ρ1 − 8].

Proof. Since ER
2 = 104

3 is correct, then for m ≥ 3, there are 4 types of probabilities (see
Figure 3). Thus, from (7) we get the following:

ESDD
m = ρ1SDD(RCOC1

m) + ρ2SDD(RCOC2
m) + ρ3SDD(RCOC3

m)

+ (1− ρ1 − ρ2 − ρ3)SDD(RCOC4
m)

= ρ1[SDD(RCOCm) +
55
3
] + ρ2[SDD(RCOCm)) +

56
3
]

+ ρ3[SDD(RCOCm) +
56
3
] + (1− ρ1 − ρ2 − ρ3)[SDD(RCOCm)) +

56
3
]

ESDD
m = SDD(RCOCm−1)− ρ1

1
3
+

56
3

. (13)

However, E[Em]SDD = ESDD
m ; thus, applying the operator E on (13), we obtain

ESDD
m = ESDD

m−1 − ρ1
1
3
+

56
3

. m > 2, (14)

and by the recurrence relation (16) using initial conditions, we get

ESDD
m =

1
3
[m(56− ρ1) + 2ρ1 − 8].
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Theorem 4. Let m ≥ 2 and a random cyclooctane chainRCOC(m; ρ1, ρ2, ρ3). Then

EaM2
m = m[

16
9

+
ρ1

36
]− ρ1

18
+

2
9

.

Proof. Since EaM2
2 = 34

9 is correct, then for m ≥ 3, there are 4 types of probabilities (see
Figure 3). Thus, from (8), we get the following:

EaM2
m = ρ1aM2(RCOC1

m) + ρ2aM2(RCOC2
m) + ρ3aM2(RCOC3

m)

+ (1− ρ1 − ρ2 − ρ3)aM2(RCOC4
m)

= ρ1[aM2(RCOCm) +
65
36

] + ρ2[aM2(RCOCm)) +
16
9
]

+ ρ3[aM2(RCOCm) +
16
9
] + (1− ρ1 − ρ2 − ρ3)[aM2(RCOCm)) +

16
9
]

EaM2
m = aM2(RCOCm−1) + ρ1

1
36

+
16
9

. (15)

However, E[Em]aM2 = EaM2
m ; thus, applying the operator E on (15), we obtain

EaM2
m = EaM2

m−1 + ρ1
1

36
+

16
9

. m > 2, (16)

and by the recurrence relation (16) using initial conditions, we get

EaM2
m = m[

16
9

+
ρ1

36
]− ρ1

18
+

2
9

.

We now turn our attention to the special cyclooctane chains COm, CZm, CMm and
CLm, as shown in Figure 4. These chains can also be obtained as COm = RCOC(m; 1, 0, 0),
CMm = RCOC(m; 0, 1, 0), CZm = RCOC(m; 0, 0, 1), and CLm = RCOC(m; 0, 0, 0). Then,
we can easily calculate these indices for these four special chains by using Theorems 1–4.

Figure 4. Four special cyclooctain chains with m octagons.

Corollary 1. For m ≥ 2, we have the following:

1. • AZI(COm) =
2521
32 m− 1163

64 .;
• ISI(COm) =

52
5 m− 5

2 ;
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• SDD(COm) =
1
3 [55m− 6];

• aM2(COm) =
65
36 m + 1

6 .
2. • AZI(CZm) = AZI(CLm) = AZI(CMm) =

1
64 [4825m− 729];

• ISI(CMm) = ISI(CZm) = ISI(CLm) =
103
10 m− 23

10 .;
• SDD(CMm) = SDD(CZm) = SDD(CLm) =

1
3 [56m− 8];

• aM2(CMm) = aM2(CZm) = aM2(CLm) =
1
9 [16m + 2].

4. Discussion and Conclusions

In this section, we are going to provide an expository comparison between the ex-
pected values for the modified Zagreb, symmetric difference, inverse symmetric, and
augmented Zagreb indices for arbitrary cyclooctane chains with the same probabilities. At
that point, the comparison between the expected values of these indices for diverse values
of the probability ρ1 is given in Tables 1–4. The augmented Zagreb index is continuously
more noteworthy than the other three indices, specifically the modified Zagreb, symmetric
difference, and inverse symmetric indices. The graphical profile of the comparison between
two indices is given in Figure 5, which recommends that the augmented Zagreb index
is always greater than the symmetric difference index. From Figure 6, one can see that
the symmetric difference index is continuously greater than the inverse symmetric index,
and Figure 7 proposes that the inverse symmetric index is continuously more prominent
than the modified Zagreb index. The graphical profile of the comparison between all four
indices is given in Figure 8, which suggests that the augmented Zagreb index is always
greater than the other indices.

Table 1. Expected values of indices for p1 = 1.

m EAZI ESDD EISI EaM2

4 296.953125 71.33333333 39.1 7.333333333
5 375.734375 89.66666667 49.5 9.138888889
6 454.515625 108 59.9 10.94444444
7 533.296875 126.3333333 70.3 12.75
8 612.078125 144.6666667 80.7 14.55555556
9 690.859375 163 91.1 16.36111111
10 769.640625 181.3333333 101.5 18.16666667
11 848.421875 199.6666667 111.9 19.97222222
12 927.203125 218 122.3 21.77777778
13 1005.984375 236.3333333 132.7 23.58333333

Table 2. Expected values of indices for p1 = 0.

m EAZI ESDD EISI EaM2

4 290.171875 72 38.9 7.333333333
5 365.5625 90.66666667 49.2 9.111111111
6 440.953125 109.3333333 59.5 10.88888889
7 516.34375 128 69.8 12.66666667
8 591.734375 146.6666667 80.1 14.44444444
9 667.125 165.3333333 90.4 16.22222222
10 742.515625 184 100.7 18
11 817.90625 202.6666667 111 19.77777778
12 893.296875 221.3333333 121.3 21.55555556
13 968.6875 240 131.6 23.33333333
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Table 3. Expected values of indices for p1 = 1/2.

m EAZI ESDD EISI EaM2

4 293.5625 71.66666667 39 7.361111111
5 370.6484375 90.16666667 49.35 9.152777778
6 447.734375 108.6666667 59.7 10.94444444
7 524.8203125 127.1666667 70.05 12.73611111
8 601.90625 145.6666667 80.4 14.52777778
9 678.9921875 164.1666667 90.75 16.31944444
10 756.078125 182.6666667 101.1 18.11111111
11 833.1640625 201.1666667 111.45 19.90277778
12 910.25 219.6666667 121.8 21.69444444
13 987.3359375 238.1666667 132.15 23.48611111

Table 4. Expected values of indices for p1 = 1/4.

m EAZI ESDD EISI EaM2

4 291.8671875 71.83333333 38.95 7.347222222
5 368.1054688 90.41666667 49.275 9.131944444
6 444.34375 109 59.6 10.91666667
7 520.5820313 127.5833333 69.925 12.70138889
8 596.8203125 146.1666667 80.25 14.48611111
9 673.0585938 164.75 90.575 16.27083333
10 749.296875 183.3333333 100.9 18.05555556
11 825.5351563 201.9166667 111.225 19.84027778
12 901.7734375 220.5 121.55 21.625
13 978.0117188 239.0833333 131.875 23.40972222

Theorem 5. If m ≥ 2, then

E[AZI(RCOC(m; ρ1, ρ2, ρ3))] > E[SDD(RCOC(m; ρ1, ρ2, ρ3))].

Proof. It is true for m = 2. Now, let us solve it for m > 2; by using Theorems 1 and 3,
we have

E[AZI(RCOC(m; ρ1, ρ2, ρ3))]− E[SDD(RCOC(m; ρ1, ρ2, ρ3))]

=
m
64

(4825 + 217ρ1)− ρ1
217
32
− 729

64

− 1
3
[m(56− ρ1) + 2ρ1 − 8]

= (m− 2)[
10891

192
+ ρ1

715
192

] +
20107
192

=
(m− 2)

192
[10891 + 715ρ1] +

20107
192

> 0 ∵ m > 2 and 0 ≤ ρ1 ≤ 1.
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Figure 5. Difference between E[AZI] and E[SDD].

Theorem 6. If m ≥ 2, then

E[SDD(RCOC(m; ρ1, ρ2, ρ3))] > E[ISI(RCOC(m; ρ1, ρ2, ρ3))].

Proof. It is true for m = 2. Now, let us solve it for m > 2; by using Theorems 2 and 3,
we have

E[SDD(RCOC(m; ρ1, ρ2, ρ3))]− E[ISI(RCOC(m; ρ1, ρ2, ρ3))]

=
1
3
[m(56− ρ1) + 2ρ1 − 8]

− [
m
10

(ρ1 + 103)− 23
10
− ρ1

5
]

= (m− 2)[
251
30
− ρ1

13
30

] +
491
30

=
(m− 2)

30
[251− 13ρ1] +

491
30

> 0 ∵ 251− 13ρ1 > 0, m > 2 and 0 ≤ ρ1 ≤ 1.

Theorem 7. If m ≥ 2, then

E[ISI(RCOC(m; ρ1, ρ2, ρ3))] > E[aM2(RCOC(m; ρ1, ρ2, ρ3))].

Proof. It is true for m = 2. Now, let us solve it for m > 2; by using Theorems 3 and 4,
we have

E[ISI(RCOC(m; ρ1, ρ2, ρ3))]− E[aM2(RCOC(m; ρ1, ρ2, ρ3))]
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=
m
10

(ρ1 + 103)− 23
10
− ρ1

5

− m[
16
9

+
ρ1

36
] +

ρ1

18
− 2

9

= (m− 2)[
767
90

+ ρ1
13

180
] +

1307
90

=
(m− 2)

180
[1534 + 13ρ1] +

1307
90

> 0 ∵ m > 2 and 0 ≤ ρ1 ≤ 1.

4
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Figure 6. Difference between E[SDD] and E[ISI].
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Figure 7. Difference between E[aM2] and E[ISI].
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Theorem 8. If m ≥ 2, then

E[AZI(RCOC(m; ρ1, ρ2, ρ3))] > E[SDD(RCOC(m; ρ1, ρ2, ρ3))]

> E[ISI(RCOC(m; ρ1, ρ2, ρ3))] > E[aM2(RCOC(m; ρ1, ρ2, ρ3))].

Proof. We may prove this result with the help of Theorems 5–7.

4
6

8
10

5

10

0

200

400

600

E[AZI]

E[SDD]

E[ISI]

E[aM2]

Figure 8. Difference between E[AZI], E[SDD], E[ISI] and, E[aM2].

In this work, we study the expected values of the modified Zagreb, symmetric differ-
ence, inverse symmetric, and augmented Zagreb indices in a random cyclooctane chain.
Furthermore, we give analytic proofs for comparisons, along with numerical and graphical
profiles of these indices in random cyclooctane chains. More precisely, the numerical
tables and graphical profiles suggest that the augmented Zagreb index is continuously
more noteworthy than the other three indices, specifically the modified Zagreb, symmetric
difference, and inverse symmetric indices.
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