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Abstract: Symanzik’s approach to the description of quantum field systems in an inhomogeneous
space-time is used to construct a model for the interaction of neutrino fields with matter. In this way,
the problem of the influence of strong inhomogeneities of the medium on the processes of oscillations
is considered. As a simple example, a model of neutrino scattering on a material plane is investigated.
Within this model, in the collisions of particles with planes, a special filtration mechanism can be
formed. It has a significant impact on the dynamics of subsequent neutrino oscillations which are
analogous to the Mikheev-Smirnov-Wolfenstein effect at propagation of these particles in an adiabatic
medium. Taking into account the possibility of the filtration process in a highly inhomogeneous
environment can be useful in planning and carrying out experimental studies of neutrino physics. It
can also be considered by investigations of the role of neutrino in astrophysical processes by means
of numerical simulations methods.

Keywords: inhomogeneous space time in models of quantum field theory; Dirac equation with
singular potential; 2-dimensional materials; neutrino oscillations; core-collapse supernovae

1. Introduction

Recently, much attention has been paid to research in the field of neutrino physics.
Here, the effects of neutrino oscillations predicted theoretically more than 60 years ago [1–5]
are finding new applications [6–9], and after the experimental confirmation of their ex-
istence, new interest has arisen to such processes [10–13]. It should be noted that the
current stage of theoretical studies of neutrino oscillations is characterized by the desire
to develop for them a quantum-field formalism that is more adequate for their physical
essence instead of the phenomenological approach that has been used so far, based on the
general principles of quantum mechanics [11,14,15].

The features of the interaction of neutrinos with the material environment are also
being intensively investigated [16–21]. In order to describe such phenomena, we propose
in this paper to apply the Symanzik approach for modeling interactions of quantized fields
with space-time inhomogeneities [22]. It was applied to study the effects of interactions of
quantum electrodynamics (QED) fields with two-dimensional materials [23,24]. Employing
basic physical requirements of locality, renormalizability, and gauge invariance, which are
assumed in this approach, we impose significant restrictions on the possible form of the
model [25–43].

The interaction of photon fields with a two-dimensional (2D) object is carried out by
the Chern-Simons potential, including only one dimensionless parameter and concentrated
on a 2D-subspace of full Minkowski space-time [23,24,27–32]. To describe the interaction of
homogeneous and isotropic material plane with spinor field, one needs, in the most general
case, no more than eight dimensionless constants [33–39]. Within the framework of models
constructed in this way, a number of unusual effects have been found. In particular, it is
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shown that the Casimir force between thin plates of an uncharged capacitor can not only be
attractive, but also repulsive [23,24]. Using the Symanzik approach, we constructed models
of interaction of Dirac particles with 2D materials, studied their bound states, scattering on
a material plane [33–41], and calculated the Casimir force generated by vacuum fluctuations
of quantum massless Dirac fields between two parallel thin plates [42].

Taking into account this experience, we apply the Symanzik approach for modeling
the interaction of neutrino fields with strongly inhomogeneous material. As an example of
this situation, we consider the interaction of neutrinos with a material plane and analyse
the influence of collisions with it on the oscillation processes.

2. Neutrino Dynamics in the Free Field Approximation

Over the past 20 years, we have seen an intensive development in the physics of
materials. One of the theoretical problems in this area is the construction of models of the
interaction between 2D objects and fields of QED. In order to find possible methods for
its solution, it was suggested to employ the Symansik approach [22] for construction of
the QED models with space-time inhomogeneities interpreted as a description of material
environments [23,24]. On this basis, modifications of QED were developed for modeling
the interaction between QED fields and 2D materials. Some effects of this interaction were
investigated and are presented in [23–43].

To describe the processes called neutrino oscillations, one uses a model of a system
with three pairs of four-component spinor fields ψ̄λ j(x), ψλ j(x), λ = 1, 2, 3, j = 1, 2, 3, 4
which a free-action functional reads as [6,11,14,15]

S0(Ψ̄, Ψ, M) =
∫

Ψ̄(x)(i ∂̂ + M)Ψ(x)dx =
3

∑
λ,λ′=1

4

∑
j,j′=1

∫
ψ̄λj(x)(i ∂̂jj′ δλλ′ + Mλλ′δjj′)ψλ′ j′(x)dx (1)

where δλλ′ , δjj′ are the Kronecker delta-symbols, M is a Hermitean (3× 3)- matrix with
three eigenvalues mµ and corresponding normalized three-component eigenvectors eµ:

δλλ′ = 0, by λ 6= λ′, δλλ = 1,
3

∑
λ′=1

Mλλ′ eµλ′ = mµeµλ, (e∗µ′ eµ) =
3

∑
λ=1

e∗µ′λeµλ = δµµ′ ,

(e∗λeλ′) =
3

∑
µ=1

e∗µλeµλ′ = δλλ′ , Mλλ′ =
3

∑
µ=1

mµeµλe∗µλ′ , λ, λ′; µ, µ′ = 1, 2, 3.

We assume that 0 ≤ m1 ≤ m2 ≤ m3. In (1), we used the notation Ψ(x) = {ψ1(x), ψ2(x),
ψ3(x)}, Ψ̄(x) = {ψ̄1(x), ψ̄2(x), ψ̄3(x)}, and ∂̂ is a Lorentz invariant scalar product of four-
differential vector with a four-Dirac matrix vector

∂̂ =
3

∑
ν=0

γν∂ν, ∂ν =
∂

∂xν
, γ0 =

(
τ0 0
0 −τ0

)
,

γ1 =

(
0 τ1
−τ1 0

)
, γ2 =

(
0 τ2
−τ2 0

)
, γ3 =

(
0 τ3
−τ3 0

)
,

where τ0 is the unique (2× 2) matrix, and τ1, τ2, τ3 are the Pauli matrices

τ0 =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
.

It is supposed that the spinor fields ψ̄λ(x), ψλ(x) and the matrix Mλλ′ are convenient
for direct description of neutrino physics and its experimentally observed features.
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Using notations

φµ(x) =
3

∑
λ=0

e∗µλψλ(x), φ̄µ(x) =
3

∑
λ=0

eµλψ̄λ(x), Mµµ′ =
3

∑
λ, λ′=1

e∗µλ Mλλ′ eµ′λ′ = mµδµµ′ ,

we can write the free action (1) of the model in terms of the fields Φ̄(x) = {φ̄1(x), φ̄2(x), φ̄3(x)},
Φ(x) = {φ1(x), φ2(x), φ3(x)} as

S0(Ψ̄, Ψ, M) = S0(Φ̄, Φ, M) = Φ̄(i∂̂−M)Φ =
3

∑
µ=1

4

∑
jj′=1

∫
φ̄µj(x)(i ∂̂jj′ −mµδjj′)φµj′(x).

One says that the system is considered in a lepton (also-called flavor) representation,
if fields Ψ̄(x), Ψ(x) and the non-diagonal mass matrix M are used for its description. In the
so-called mass representation, the system states are characterized by the fields Φ̄(x), Φ(x)
and diagonal mass matrix M (i.e., by the masses mµ, µ = 1, 2, 3). For writing indices, we
will use the letter λ in the lepton representation and the letter µ in the mass one.

The considered system of spinor fields can be characterised by the local, independent
from representation, bilinear function G(µ)

Γ (x) = G(λ)
Γ (x) defined by a (4× 4)—matrix Γ

as follows

G(µ)
Γ (x) = Φ̄(x)ΓΦ(x) =

3

∑
µ=1

4

∑
j,j′=1

φ̄µj(x)Γjj′φµj′(x) =
3

∑
λ, λ′ ,µ=1

e∗µλ′ eµλ(ψ̄λ(x)Γψλ′(x))

=
3

∑
λ, λ′=1

δλ λ′(ψ̄λ(x)Γψλ′(x)) =
3

∑
λ

ψ̄λ(x)Γψλ(x) = Ψ̄(x)ΓΨ(x) = G(λ)
Γ (x).

However, properties of the components φ̄µ(x)Γφµ(x), ψ̄λ(x)Γψλ(x) of G(µ)
Γ (x) and

G(λ)
Γ (x) appear to be essentially different.

In the stationarity point of S0(Φ̄, Φ, M) the fields φ̄µ(x), φµ(x) satisfy the Dirac equations

(i ∂̂−mµ)φµ(x) = 0, i ∂νφ̄µ(x)γν + mµφ̄µ(x) = 0, µ = 1, 2, 3.

If one chooses φ̄µ(x), φµ(x) as their plane wave solutions

φµ(x) = e−ipµxχµ(pµ), φ̄µ(x) = eipµxχ̄µ(pµ),

( p̂µ −mµ)χµ(pµ) = 0, χ̄µ(pµ)( p̂µ −mµ) = 0, pµ = {p0
µ, p1

µ, p2
µ, p3

µ},

p2
µ = p0 2

µ − p1 2
µ − p2 2

µ − p3 2
µ = m2

µ,

then φ̄µ(x)Γφµ(x) = χ̄µ(pµ)Γχµ(pµ) does not depend on the spase-time point x. For a
similar quantity of flavor representation, one obtains

ψ̄λ(x)Γψλ(x) =
3

∑
µ, µ′

e∗µ′λeµλφ̄µ(x)Γφµ′(x)

=
3

∑
µ=1

e∗µλeµλχ̄µ(pµ)Γχµ(pµ) +
3

∑
µ 6=µ′=1

e∗µ′λeµλei(pµ−pµ′ )x
χ̄µ(pµ)Γχµ′(pµ′). (2)

The dependence on the point x of this expression is determined by the factors
ei(pµ−pµ′ )x. If space parts ~pµ = {p1

µ, p2
µ, p3

µ} of the four moments pµ = {p0
µ, p1

µ, p2
µ, p3

µ}
coincide by µ = 1, 2, 3: ~p1 = ~p2 = ~p3 = {p1, p2, p3} = ~p, then exp{i(pµ − pµ′)x} =

exp{i(p0
µ − p0

µ′)x0} and ψ̄λ(x)Γψλ(x) do not depend on the space coordinates of x =

{x0,~x} = {x0, x1, x2, x3}. For given ~p, mµ, the moment component p0
µ is defined as
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p0
µ =

√
m2

µ + ~p 2, and exp{i(pµ − pµ′)x} is a periodic function of the time coordinate

x0 with period Tµµ′ = 2π/
∣∣√m2

µ + ~p 2 −
√

m2
µ′ + ~p 2

∣∣. Thus, the function ψ̄λ(x)Γψλ(x)
describes an evolution of the system which is characterized by three periods, T12, T13, T23. It
is an example of a typical process called neutrino oscillations within the flavor description
of the system.

If m1 ≤ m2 ≤ m3, and mµ′ ≤ mµ, then

p0
µ − p0

µ′ =
√

m2
µ + ~p 2 −

√
m2

µ′ + ~p 2 = (mµ −mµ′)

(
1− |~p |2

2mµmµ′

)
+O

(
|~p |4

m2
µm2

µ′

)
,

for small |~p |2/(mµmµ′) and

p0
µ − p0

µ′ =
m2

µ −m2
µ′

2|~p |

(
1−

m2
µ + m2

µ′

4|~p |2

)
+O

(
m2

µm2
µ′

|~p |4

)

for small (mµmµ′)/|~p |2. The free field approximation of the action functional enables to
describe the propagation of neutrino in vacuum.

For processes in which the influence of the material environment is significant, it was
proposed to represent this in the model by an additional potential in the Hamiltonian.
In this way, models with constant and adiabatically varying density of the matter were
constructed and studied by Mikheev, Smirnov, and Wolfenstein [44–51]. It was shown
that the effective masses of neutrino are changed by their interaction with material media.
This can cause resonance effects in the processes of neutrino oscillations (MSW resonance),
which significantly change their characteristics.

The problem of modeling the interaction of neutrinos with external media attracts
the attention of many researchers. It remains actual at the present time. In developing the
methods used in [44–50], many models describing the interactions of neutrino and matter
with constant and adiabatically distributed density have been constructed [14,16–21].

However, little attention has been paid to the study of boundary effects and phenom-
ena generated by the strong inhomogeneous medium, for modeling of which it is necessary
to take into account the interaction of neutrinos with singular density distribution con-
centrated in a d ′ < 4-dimensional subspace of the Minkowski space-time. In this paper,
we will demonstrate the possibility of applying the methods of quantum field theory to
such problems.

3. Interaction of Neutrinos with Matter

The main idea of Symanzik’s approach in constructing renormalizable models of
quantum field theory in a non-uniform space-time is to use the possibility of modifying
the action functional of a usual renormalizable quantum field model which is invariant
in respect to the space-time translations and Lorentz transformations by appending an
additional so-called defect action functional (DAF) obeying some general requirements [22].

The most important of these is that the modified model must remain renormalizable.
It is a formal mathematical requirement that imposes strong restrictions on the possible
form of the DAF. It should naturally also be assumed that the basic physical principles
of interaction laws in the original model also remain non-broken in the modified one. In
the gauge theory models, these could be the basic postulate about locality and local gauge
invariance. In addition to that, some common physical requirements can be taken into
account. For example, the DAF does not break the unitarity of the scattering matrix.

In the framework of Symansik’s approach, one constructed the model describing the
interaction of the QED fields with two-dimensional material, which form is defined by the
solution of equation f (x) = 0. The full action functional of that reads as

S(ψ̄, ψ, A, f ) = S(ψ̄, ψ, A) + Sde f (ψ̄, ψ, A, f ) (3)
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where S(ψ̄, ψ, A) is the usual action functional of QED

S(ψ̄, ψ, A) = −1
4

FµνFµν + ψ̄(i∂̂ + ieÂ−m)ψ, Fµν = ∂µ Aν − ∂ν Aµ,

with an electromagnetic field A and spinor fields ψ̄, ψ, electron charge e, and mass m. The
DAF is the sum of two terms: Sde f (ψ̄, ψ, A, f ) = S f (A, a) + S f (ψ̄, ψ, Q) written as

S f (A, a) =
a
2

∫
εαβµν∂α Aβ∂µ f (x)Aνδ( f (x))dx, S f (ψ̄, ψ, Q) =

∫
ψ̄(x)Qψ(x)δ( f (x))dx.

We used here the notation εαβµν for the totally antisymmetric Levi-Civita tensor
(ε0123 = 1), a and the elements of the matrix Q are dimensionless parameters. The
matrix Q satisfies the condition γ0Qγ0 = Q†. The parameter a is a real number. The
delta-function δ( f (x)) describes a subspace f (x) = 0 of (3 + 1)-space-time filled with 2D
material [23,24,33,34]. Any (4× 4) matrix can be represented as a linear combination of
16 linearly independent matrices with complex coefficients. As such basic elements, we
will use the matrices Γk, 1 ≤ k ≤ 16 of the following form

I, γj, γ5 = i γ0γ1γ2γ3, γjγ5, σjk = i γjγk =
i
2
[γj, γk], j < k, j, k = 0, 1, 2, 3 (4)

where I is the (4× 4) identity matrix. These Γi can be considered as matrices that form
a basis for a linear (reducible) representation of the Lorentz group. The Dirac matrices
γ0, γ1, γ2, γ3 are transformed as components of a Lorentz contravariant vector, I is the
scalar, and γ5 is the pseudoscalar. The matrices γνγ5, σαβ are represented as contravariant
components of the pseudovector and antisymmetric tensor of the second rank, respectively.

Thus, the differential matrix operator ∂̂ = γν∂ν and the QED action functional
S(ψ̄, ψ, A) are invariant in respect to Lorentz transformations, and the Sde f (ψ̄, ψ, A, f )
describing the interaction of the QED fields with the extended object is breaking this sym-
metry. The remaining symmetry properties of the system are defined by the form of the
surface f (x) = 0 and the choice of parameters rk of the matrix Q = ∑16

k=1 rkΓk.
The action functional (3) was proposed in [23–43] as a realization of the opportunity

to construct a model of the interaction of QED fields with two-dimensional materials
within the framework of the Symanzik approach, unless the electron mass, S(ψ̄, ψ, A, f )
does not contain other dimensional parameters. This model is local, gauge-invariant, and
renormalizable. For a material with a given shape (function f (x)) and with given material
properties (parameters rk of matrix Q and a), it is possible to investigate theoretically within
the framework of the model a large class of various problems. For example, it can be used
for calculating the characteristics of scattering processes and bound states of particles. In
this case, using conventional methods of QED and corresponding to their specific problem
modifications, one can obtain quantitative results with a high degree of accuracy that are
suitable for experimental verification and various predictions.

In our work, we propose to generalize this approach to the case of interaction of
neutrino fields with matter whose distribution of density would be a local function concen-
trated in a subspace with dimension d ′ < 4 of the four-dimensional Minkowski space-time.

Since, by definition, the action functionals are dimensionless and the dimension of
the product of two spinor fields is equal to three, for the DAF, it is necessary by d ′ < 3 to
have parameters with negative dimensions. Adding such a DAF to the basic action of the
model will violate the renormalizability of that. Therefore, the only valid value for d ′ < 4
is d ′ = 3. Therefore, a possible generalization of the QED functional Sde f (ψ̄, ψ, A, f ) for a
description of interaction of neutrino fields with a singularly distributed medium could be
proposed for mass representation, as

Sde f (Φ̄, Φ, L, Q, f ) =
∫

Φ̄(x)LQΦ(x)δ( f (x))dx =
3

∑
µ, µ′=1

∫
Lµµ′ φ̄µ(x)Qφµ′(x)δ( f (x))dx (5)
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Here, the elements of a hermitian (3× 3) matrix L and (4× 4) matrix Q are constant
dimensionless parameters. The matrix Q is supposed to be presented as Q = ∑16

j=1 rjΓj with
16 complex numbers rj and linear independent matrices Γj of the form (4). The solution
of equation f (x) = 0 describes a region of Minkowski space filled with the matter that
interact with neutrinos. Its properties are presented by the parameters rk. In this paper,
we consider as the extended material object the plane x3 = 0. It corresponds to choosing
f (x) = x3.

We put on the matrix Q the restriction γ0Qγ0 = Q†, which is necessary for the
scattering matrix unitarity. It follows from γ0γ0 = I, γ0γiγ0 = −γi = γi † by i = 1, 2, 3 that
γ0γ5γ0 = −γ5 = −γ5 †, γ0σjkγ0 = σjk †, γ0γ5γjγ0 = (γ5γj)†. Therefore, the coefficient
ri by the matrix Γi = γ5 in the representation Q = ∑16

j=1 rjΓj is imaginary, and all other
coefficients rj, j 6= i are real.

The matrix Q is simplified if there is a symmetry in the interaction of plane x3 = 0 and
spinor fields. If it is assumed that the material plane is isotropic and homogeneous, that
is, the DAF (5) is invariant with respect to rotation about the x3—axis and to translations
along x1, x2—directions, then Q has the form [34]

Q = r1 I + i r2γ5 + r3γ3 + r4γ5γ3 + r5γ0 + r6γ5γ0 + r7σ03 + r8σ12 (6)

where rk, k = 1, ..., 8, are real numbers.
The free action functional (1) has the form

S0(Φ̄, Φ, M) =
n

∑
k=1

4

∑
j, j′=1

3

∑
µ, µ′=1

∫
φ̄µj(x)Lk

µµ′Q
k
jj′φµ′ j′(x)dx, n = 2.

Here, Lk
µµ′ is the Hermitian (3× 3) matrix and Qk

jj′ is the Dirac (4× 4) operator matrix.
The proposed contribution in DAF of spinor fields Φ̄, Φ (5) is the quadratic form of the
same structure with n = 1. From this point of view, (5) can be considered as a minimal
model of interaction of neutrinos with material planes. We will use it in this paper.

This model contains 17 real parameters: 9 of them define the matrix L, and there are 8
in Q. The unitary flavor transformation of fields Φ̄, Φ enables one to diagonalize the matrix
L in (5). In this presentation, the eigenvalues of L appear to be the coupling constants of
three neutrino mixes with the plane x3 = 0.

In order to obtain an analogue of the Chern-Simons potential describing the coupling
of electromagnetic fields with 2D material for the theory of weak interactions, it is sufficient
to use the fact that the strength tensor of the non-abelian Yang-Mills field Âµ has the form
F̂µν = ∂µ Âν − ∂ν Âµ − ig[Âµ, Âν], and changes as F̂µν(x) → Θ(x)F̂µν(x)Θ(x)−1 under the
local gauge transformation with the matrix Θ(x). It means that

Sde f (Â, f , λ, g) = −λ

4
εµνρσ

∫
Tr (F̂µν(x)F̂ρσ(x))θ( f (x))dx =

−λεµνρσ
∫

θ( f (x))∂µTr
(

Âν(x)∂ρ Âσ(x)− 2ig
3

Âν(x)Âρ(x)Âσ(x)
)

dx,

where θ( f (x)) is the Heaviside step function of f (x) and λ, g are constant parameters, is a
gauge invariant functional.

If the field Âµ(x) disappears at large x, then Sde f (Â, f , λ, g) = S′de f (Â, f , λ, g), where

S′de f (Â, f , λ, g) = λεµνρσ
∫

Tr
(

Âν(x)∂ρ Âσ(x)− 2ig
3

Âν(x)Âρ(x)Âσ(x)
)

∂µ f (x)δ( f (x))dx.

In the framework of the perturbation theory the functional Sde f (Â, f , λ, g) is also
equivalent to S′de f (Â, f , λ, g), and the last one can be used as DAF in modeling the interac-

tion of the Yang-Mills field Âµ(x) with 2D material concentrated on the surface f (x) = 0.
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It can be considered as a possible generalization of the abelian Chern-Simons action func-
tional for the non-abelian gauge vector field. If it disagrees with non-perturbative results
obtained by using Sde f (Â, f , λ, g) as an alternative versions of DAFs, this situation will
impose a special investigation.

It is important to note that in the theory of gauge interactions of bosonic vector
and fermionic spinor fields, their interaction with 2D materials is described within the
framework of the proposed approach by the sum of functionals, each of which contains
only bosonic or fermionic fields. Therefore, the influence of fields of one type on the
effects of interaction of fields of another type with extended 2D objects is, in the main
approximation, insignificant.

We assume that this is also true for the processes of interaction of neutrinos with a
strongly inhomogeneous medium, and to study their features, we will use a model with
DAF (5) which contains only neutrino fields.

The invariant in respect to all not affecting the axis x3 transformations of the Lorentz
group interaction of plane x3 = 0 with a Dirac field was considered in [33]. For symmetry
of such a kind, one needs to put r5 = r6 = r7 = r8 = 0 in (6) and the matrix Q obtain
the form

Q = r1 I + i r2γ5 + r3γ3 + r4γ5γ3. (7)

If one takes into account only the properties of the plane material which are invariant
in respect to all rotations and busts, then one can put r3 = r4 = 0 and obtain

Q = r1 I + i r2γ5. (8)

This matrix depends on two real parameters r1, r2. If the parity symmetry is supposed
to not be broken by the DAF, then r2 = 0 and

Q = r1 I. (9)

Thus, the full action functional describing the interaction of the material plane x3 = 0
with the system of Dirac fields Φ̄, Φ in the mass representation reads as

S(Φ̄, Φ, M, L, Q) = S0(Φ̄, Φ, M) + Sde f (Φ̄, Φ, L, Q) =
∫

Φ̄(x)(i ∂̂ + M + LQδ(x3))Φ(x)dx. (10)

Here, the fields Φ̄(x) , Φ(x) have three mass components φ̄µ(x) , φµ(x), and µ = 1, 2, 3,
and each of them has four spinor components. For notations of spinor and flavor indices,
we will use the Latin and Greek letters, respectively. The matrices M, L, and Q do not
depend on x coordinates. The M one is diagonal on the spinor and mass indices: Mkµ k′µ′ =
mµδkk′δµ µ′ , but for Q it is so only in the special case (9). The matrix L is supposed to be
Hermitian of general form.

The action functional (10) describes three free Dirac particles with masses 0 ≤ m1 ≤
m2 ≤ m3 interacting on the plane x3 = 0. The matrix Q represents the properties that are
material of this plane which are essential for its interaction with spinor fields. The diagonal
part of the matrix L defines, for each particle, its interaction constant with the plane. The
non-diagonal elements of L can be considered as induced by the plane coupling constants
between different µ-components of the fields Φ̄, Φ.

In the flavor representation, the action functional (10) is written as

S(Ψ̄, Ψ, M, L, Q) =
∫

Ψ̄(x)(i ∂̂ + M + LQδ(x3))Ψ(x)dx.

For Q = 0, it is presented in (1) and

Sde f (Ψ̄, Ψ, M, L, Q) =
∫

Ψ̄(x)LQδ(x3)Ψ(x)dx =
3

∑
λ λ′=1

Lλ λ′

∫
ψ̄λ(x)Qψλ′(x)δ(x3)dx.
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The matrix elements of M, L and M, L are connected by relations

Mλλ′ =
3

∑
µ, µ′=1

eµ λMµµ′ e
∗
µ′λ′ =

3

∑
µ=1

eµ λmµe∗µ λ′ , Lλλ′ =
3

∑
µ, µ′=1

eµ λLµµ′ e
∗
µ′λ′ .

Thus, we constructed the model of interaction of neutrino fields with strong inhomo-
geneous matter based on the Symanzik approach in quantum field theory. The DAF (5) is
supposed to be used as the addition term to the action functional of renormalized models
describing neutrino physics. The constructed model is an analog of the model of interaction
of the QED fields with 2D matter, of which the investigation in the Gaussian approximation
enabled one to obtain non-trivial theoretical results about Casimir and Casimir-Polder
effects [23,24,27,31,42], scattering processes [32,40,41], and the bound state of photons and
Dirac particles [37,39,43]. Within the Gaussian approximation of the proposed model, we
consider the scattering of neutrinos on the material plane and analyze the influence of
collisions with it on their oscillations.

4. Statement of the Problem

Although the action functional (10) is Gaussian, the processes, which it describes,
are nontrivial. We will study the scattering on the plane x3 = 0 of particles, which are
presented by the fields Φ̄, Φ, by using the modified Dirac equations

δ

δΦ̄
S(Φ̄, Φ, M, L, Q) = (i ∂̂−M + LQδ(x3))Φ(x) = 0, (11)

δ

δΦ
S(Φ̄, Φ, M, L, Q) = i ∂µΦ̄(x)γµ + Φ̄(M + LQδ(x3)) = 0, (12)

characterizing the point of stationarity of the functional S(Φ̄, Φ, M, L, Q). The ordinary way
to do it is to find the solution of (11) and (12) and applying that to construct the currents of
incident, reflected, and transmitted particles. It enables one to calculate the characteristics
of the scattering process. Such a problem was solved for the interaction of one Dirac field
with the plane x3 = 0 defined by the DAF with matrices Q of the form (6), (7). Our task is
to obtain such results for the model with an action functional (10).

If Φ̄+(x), Φ+(x), and Φ̄−(x), Φ−(x) denote solutions of (11) and (12) by x3 > 0 and
x3 < 0, respectively; then they must satisfy the free Dirac equations

(i ∂̂−M)Φ±(x) = 0, i ∂νΦ̄±(x)γν + MΦ̄±(x) = 0, (13)

and conditions on the plane x3 = 0:

lim
x3→+0

Φ+(x) = ΛS lim
x3→−0

Φ−(x), (14)

with matrix S corresponding to the symmetry of considered interaction defined by the
matrix Q, and a (3× 3) flavor matrix Λ.

We suppose that in the scattering process, the incident and reflected particles are in
the subspace x3 < 0, and the transmitted ones are in the region x3 > 0. The incident
and transmitted particles move in the positive direction of the x3 axes, and we denote
by Φ−↑(x) and Φ+↑(x) the describing them spinors. Reflected particles moving in the
opposite direction will be represented by the spinor Φ−↓(x). Thus, the fields Φ±(x) in (14)
have the form: Φ−(x) = Φ−↑(x) + Φ−↓(x), Φ+(x) = Φ+↑(x).

If the reflection of particles exists, then Φ−↓(x) 6= 0, the functions Φ±(x) are not
continuous by x3 = 0, and ΛS 6= 1 in (14). It seems to be in contradiction with (11), since
(11) is correctly defined if Φ(x) is a continuous by x3 = 0 function.

This problem is solved by an auxiliary regularization of the δ-function in the inter-
action action [33,39]. It enables one to construct a regularized version of the conditions
(14), and it is possible after removing regularization in this expression, to obtain a fi-
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nite limit for S in terms of the coupling constants of the plane with a Dirac field. For
the matrix Q defining this interaction in the model with one spinor field, one received
S = exp{−i γ3Q} = S1 [39]. However, in the framework of other regularization schemes,
it appears to be S = (I + i γ3Q/2)(I − i γ3Q/2)−1 = S2 [33].

Thus, the matrix S which must be expressed in terms of Q and used in such an
approach depends on choosing the regularization, but it is essential that both S = S1 and
S = S2 obey the requirement

S†γ0γ3S = γ0γ3. (15)

If (14) is fulfilled, and Λ†Λ = 1, then the equality (15) ensures that

lim
x3→+0

Φ̄+(x)γ3Φ+(x) = lim
x3→−0

Φ̄−(x)γ3Φ−(x),

that is, no additional current is created on the plane x3 = 0 along the x3 axis.
In constructing a solution to the problem proposed by us, we assume that its determin-

ing parameters are the elements of the matrices S and Λ. In this case, it is supposed that
there is a regularization procedure for the delta function in the action of the model, which
makes it possible to establish a one-to-one relationship between elements of matrices S, Λ
and Q, L. In this respect, S and Λ can be considered to be directly related to the observables
and independent from the choice of the regularization procedure. Calculations based on
the use of boundary condition (14) do not require any additional regularization scheme.
Therefore, values of elements S and Λ can be expressed in terms of experimental data.
Values of the elements of the matrices Q, L may depend on the choice of regularization.
It can be compared with renormalization in models of quantum field theory, where the
observable values are expressed in terms or renormalized parameters which are considered
as independent from bare parameters of Lagrangian and used regularization.

We suppose to calculate the characteristic of the scattering process by using the
boundary condition (14) and to obtain results in terms of matrices S, Λ. The problem here
is that for our model, we are given matrix Q, but we do not know the matrix S independent
of the choice of regularization. In this situation, it is natural to try to construct this matrix
by analyzing the properties of the matrices S1 and S2.

To reveal their structural features, which may also be the same for S, we introduce
convenient notation that was used in [37,39]. If M is a (2× 2) matrix with elements Mij,
i, j = 1, 2, then M(±) are the (4× 4) matrices

M(+) =


M11 0 M12 0

0 0 0 0
M21 0 M22 0

0 0 0 0

, M(−) =


0 0 0 0
0 M11 0 M12
0 0 0 0
0 M21 0 M22

.

We will use the notations τ
(+)
ν , τ

(−)
ν , ν = 0, 1, 2, 3 for the (4× 4) matrices correspond-

ing to the unit (2× 2) matrix τ0 and Pauli matrices τj, j = 1, 2, 3. The matrix Q (6) can be
written as

Q = Q(+)
+ + Q(−)

− , Q± =
3

∑
j=0

qj
±τj, Q(±)

± =
3

∑
j=0

qj
±τ(±)

where q0
± = r18

± , q1
± = i r27

± , q2
± = ± i r36

∓ , q3
± = ∓ r45

∓ , and rij
± = ri ± rj.
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In virtue of γ3 = i τ
(+)
2 − i τ

(−)
2 , we receive

Q ′ = −iγ3Q = τ
(+)
2 Q(+)

+ − τ
(−)
2 Q(−)

− = Q
′ (+)
+ + Q

′ (−)
− , Q′ (±)± =

3

∑
j=0

q′ j±τ
(±)
j ,

Q ′± = ±
3

∑
j=0

qj
±τ2τj =

3

∑
j=0

q′ j±τj, q′ 0± = ±q2
±, q′ 1± = ∓i q3

±, q′ 2± = ±q0
±, q′ 3± = ±i q1

±. (16)

As γ0 = τ
(+)
3 + τ

(−)
3 , the condition γ0Qγ0 = Q† is written for the (2× 2)-matrices

Q± as τ3Q±τ3 = Q†
±. This means that q1

±, q2
± are imaginary and q0

±, q3
± are real numbers,

since τ†
j = τj, and τjτk + τkτj = 2δjkτ0 with j, k = 1, 2, 3. It is fulfilled for real parameters rk,

k = 1, ..., 8 in (6). It follows from (16) that the parameters q′ 0± , q′ 1± are imaginary and q′ 2± , q′ 3±
are real.

If M and N are (2× 2)-matrices, and f (x) is an analytical function at x = 0, then the
following relations are fulfilled for the matrices M(±), N(±)

M(±)N(∓) = 0, M(±)N(±) = (MN)(±), f (M(+) + N(−)) = f (M)(+) + f (N)(−).

The matrix S from the boundary condition (14) can be obtained in the regularised
model. It appears to be dependent on the regularisation scheme function of the matrix Q′.
Examples of such could be S1 = exp{Q′} and S2 = (I + Q′/2)(I −Q′/2)−1.

For the description of neutrino scattering on the plane x3 = 0, we will use the matrix
S of the form

S = S(+)
+ + S(−)

− , (17)

S(±)
± = ei η±

(
ς0±τ

(±)
0 + i ς1±τ

(±)
1 + ς2±τ

(±)
2 + ς3±τ

(±)
3

)
, ς2

0± + ς2
1± − ς2

2± − ς2
3± = 1, (18)

where 0 ≤ η± ≤ π and ςk±, k = 0, 1, 2, 3 are real numbers. Employing this parameterization
does not generate difficulties for constructing a complete solution to the problem posed by
us. On the other hand, there is no reason to expect that the appearance of results obtained
in this way cannot be received within the framework of the approach using regularization
(see the Appendix A). To present formulas in compact form, it is convenient to also use the
following notations

u1+ = ς0+ + ς3+, u2+ = ς0+ − ς3+, u1− = ς0− + ς3−, u2− = ς0− − ς3−, (19)

v1+ = ς1+ + ς2+, v2+ = ς1+ − ς2+, v1− = ς1− + ς2−, v2− = ς1− − ς2−. (20)

The condition ς2
0± + ς2

1± − ς2
2± − ς2

3± = 1 is written for these parameters as u1±u2± +
v1±v2± = 1.

It can also be useful to present ς j±, j = 0, 1, 2, 3 as

ς0± = cosh(r±) cos(α±), ς1± = cosh(r±) sin(α±), ς2± = sinh(r±) cos(β±), ς3± = sinh(r±) sin(β±).

Here, r± ≥ 0, 0 ≤ α± ≤ 2π, 0 ≤ β± ≤ 2π and there are not conditions connecting
r±, α±, β± with each other.

5. Scattering of Plane Waves

The solution of free Dirac equations (13) can be presented in the form

φµ(x) =
∫

e−ipxφµ( p̄)dp̄, µ = 1, 2, 3. (21)

Here, we used the notation p̄ = (p0, p1, p2) and p3 to obey the condition p2 = p2
0 −

p2
1 − p2

2 − p2
3 = m2

µ. If p0 ≥ mµ, then the spinor φµ( p̄, x3) = exp(ip3x3)φµ( p̄) in the
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integrand of (21) describes by p3 > 0 the particle moving in the positive direction of
x3-axes, and p3 < 0 corresponds to movement in the opposite direction. The spinor φµ( p̄)
fulfills the Dirac equation ( p̂−mµ)φµ( p̄) = 0. For the scattering process described by (13)
and (14), the most general plane wave presentation of spinors φµ±( p̄, x3) can be chosen as

φµ+( p̄, x3) = φµ↑+( p̄, x3), for x3 ≥ 0,

φµ−( p̄, x3) = φµ↑−( p̄, x3) + φµ↓−( p̄, x3), for x3 ≤ 0.

Here,

φµ↑+( p̄, x3) = (e−iωµ φµ↑1( p̄)cµ1 + φµ↑2( p̄)cµ2)eiκµx3
,

φµ↑−( p̄, x3) = (e−iωµ φµ↑1( p̄)aµ1 + φµ↑2( p̄)aµ2)eiκµx3
,

φµ↓−( p̄, x3) = (e−iωµ φµ↓1( p̄)bµ1 + φµ↓2( p̄)bµ2)e−iκµx3
,

where κµ =
√

p2
0 − p2

1 − p2
2 −m2

µ ≥ 0,

φµ↑1( p̄) =


1
0
kµ

fµeiωµ

, φµ↑2 =


0
1

fµe−iωµ

−kµ

, φµ↓1( p̄) =


1
0
−kµ

fµeiωµ

, φµ↓2 =


0
1

fµe−iωµ

kµ

,

kµ =
κµ

p0 + mµ
,

p1 + ip2

p0 + mµ
= fµeiωµ , fµ = | fµ|, 0 ≤ ωµ ≤ 2π.

and a1, a2, b1, b2, c1, c2 are arbitrary complex parameters. Functions φ↑±( p̄, x3) describe
the incidend and transmitted particles moving in the positive direction of x3-axes, and
φ↓−( p̄, x3) corresponds to reflected particles moving from the plane x3 = 0 in the negative
direction of x3-axes. The boundary condition (14) is written for φ±( p̄) as

φµ+( p̄µ, 0) =
3

∑
µ′=1

Λµµ′Sφµ′−( p̄µ′ , 0) (22)

with matrix S presented in (17) and (18) and

3

∑
µ′′=1

Λ†
µµ′′Λµ′′µ′ = δµµ′ . (23)

Thus, (22) is a system of 12 linear equations which enables one to express the am-
plitudes b1µ, b2µ, c1µ, c2µ, µ = 1, 2, 3 of reflected and transmitted particles in terms of
amplitudes a1µ, a2µ of incident ones. Substituting the spinors ϕµ±( p̄, 0) in (22) and using
the notations

aµ =

(
a1µ

a2µ

)
, bµ =

(
b1µ

b2µ

)
, cµ =

(
c1µ

c2µ

)
,

mµ+ =

(
1 0
kµ fµ

)
, nµ+ =

(
1 0
−kµ fµ

,
)

, mµ− =

(
0 1
fµ −kµ

)
, nµ− =

(
0 1
fµ kµ

)
for µ = 1, 2, 3, we obtain six equations of the form

mµ±cµ =
3

∑
µ′=1

Λµµ′ s±(mµ′±aµ′ + nµ′±bµ′). (24)

It follows from (24) that
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cµ =
3

∑
µ′=1

Λµµ′mµ±s±(mµ′±aµ′ + nµ′±bµ′),
3

∑
µ′=1

Λ†
µµ′ n̄µ± s̄±mµ′±cµ′ = n̄µ±mµ±aµ + bµ, (25)

where we used the notations s± = eiη±(ς0±τ0 + iς1±τ1 + ς2τ2 + ς3τ3),

mµ± = m−1
µ±, n̄µ± = n−1

µ±, s̄± = s−1
± = e−iη±(ς0±τ0 − iς1±τ1 − ς2τ2 − ς3τ3).

Excluding bµ, cµ in (25), one receives the equations

3

∑
µ′=1

Ωµµ′cµ′ = Θµaµ,
3

∑
µ′=1

Ω′µµ′bµ′ =
3

∑
µ′=1

Ω′′µµ′aµ′

with (2× 2)-matrices

Ωµµ′ = Λ†
µµ′(n̄µ+ s̄+mµ′+ − n̄µ− s̄−mµ′−), Ω′µµ′ = Λµµ′(mµ+s+nµ′+ −mµ−s−nµ′−)

Ω′′µµ′ = Λµµ′(mµ−s−nµ′− −mµ+s+nµ′+), Θµ = n̄µ+mµ+ − n̄µ−mµ−.

The solution for b and c can be written as

cµ =
3

∑
µ′=1

Ω̃µµ′Θµ′aµ′ , bµ =
3

∑
µ′ , µ′′=1

Ω̃
′
µµ′′Ω

′′
µ′′µ′aµ′ , (26)

and the problem is to construct the matrices Ω̃µµ′ , Ω̃
′
µµ′′ in an explicit form.

It can be solved in the more general formulation. Let Kkk′ be (n× n)-matrices, Vk, Uk -
n-component vectors, k, k′ = 1, 2, 3, and

3

∑
k′=1

Kkk′Vk′ = Uk. (27)

One needs to construct the solution of the system of equations (27)

Vk =
3

∑
k′=1

K̃kk′Uk′ (28)

with an explicit form of the (n× n)-matrices K̃kk′ , k, k′ = 1, 2, 3.
Finding the components V1, V2, V3 of the vector V directly from Equation (27), one

obtains them in the form

Vi = H−1
i (Ui − (Kij − KilK−1

ll Kl j)(Kjj − KjlK−1
ll Kl j)

−1Uj −
−(Kil − KijK−1

jj Kjl)(Kll − Kl jK−1
jj Kjl)

−1Ul), (29)

Hi = Kii − Kij(Kjj − KjlK−1
ll Kl j)

−1(Kji − KjlK−1
ll Kli)−

−Kil(Kll − Kl jK−1
jj Kjl)

−1(Kli − Kl jK−1
jj Kji).
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Here, the sets {ijl} of the indexes are assumed to be chosen as {ijl} = {123}, {231}, {312}.
Comparing (28) and (29), we receive the following expressions for the matrices K̃j,j′

K̃11 = H−1
1 , K̃12 = −H−1

1 (K12 − K13K−1
33 K32)(K22 − K23K−1

33 K32)
−1,

K̃13 = −H−1
1 (K13 − K12K−1

22 K23)(K33 − K32K−1
22 K23)

−1,

K̃22 = H−1
2 , K̃21 = −H−1

2 (K21 − K23K−1
33 K31)(K11 − K13K−1

33 K31)
−1,

K̃23 = −H−1
2 (K23 − K31K−1

11 K13)(K33 − K31K−1
11 K13)

−1,

K̃33 = H−1
3 , K̃31 = −H−1

3 (K31 − K32K−1
22 K21)(K11 − K12K−1

22 K21)
−1,

K̃32 = −H−1
3 (K32 − K31K−1

11 K12)(K22 − K21K−1
11 K12)

−1.

Using Ωµµ′ , Ω
′
µµ′ and (26)–(29), one can calculate the matrices Ω̃µµ′ , Ω̃

′
µµ′ and obtain

the right-hand sides in the representations (26) of bµ, cµ in an evident form. However, for
the unitary (3× 3) matrix Λ of general form, they turn out to be rather cumbersome and
inconvenient for analyzing their properties. Therefore, to study the most simple effects
of the neutrino interaction with planes, we restrict ourselves in this paper to the case of a
diagonal matrix, Λ.

6. Explicit Results in a Simplified Model

In virtue of Λ†Λ = 1, a diagonal part of Λ has the form Λ = diag{exp(iρ1), exp(iρ2),
exp(iρ3)}with real parameters ρ1, ρ2, ρ3. For Λ of such a kind, the matrices Ωµµ′ , Ω′µµ′ , Ω′′µµ′

are diagonal, and (26) is written as

bµ = eiρµ(mµ−s−nµ− −mµ+s+nµ+)
−1(mµ+s+mµ+ −mµ−s−mµ−) aµ, (30)

cµ = eiρµ(n̄µ+ s̄+mµ+ − n̄µ− s̄−mµ−)
−1(n̄µ+mµ+ − n̄µ−mµ−) aµ. (31)

Using the notations (19) and (20), one can present (30) and (31) as

bµ = R(µ)aµ, cµ = T(µ)aµ, R(µ) =
eiρµ

dµ

(
r(µ)11 r(µ)12

r(µ)21 r(µ)22

)
, T(µ) =

ei(ρµ+η+)

dµ

(
t(µ)11 t(µ)12

t(µ)21 t(µ)22

)

with

dµ = f 2
µ(2 cos(ξ)− u2+u2− − u1+u1− + v1−v2+ + v1+v2−)−

−((k2
µ + f 2

µ)v2− − ikµ(u2− + u1−) + v1−)((k2
µ + f 2

µ)v2+ + ikµ(u2+ + u1+) + v1+),

r(µ)11 = f 4
µv2+v2− − (k2

µv2+ − ikµ(u1+ − u2+)− v1+)(k2
µv2− − ikµ(u1− + u2−) + v1−) +

+ f 2
µ(u1+u1− + u2+u2− + ikµ((u1+ + u2+)v2− + (u1− − u2−)v2+)− 2 cos(ξ),

r(µ)12 = 2 fµkµ(e−iξ − u2+u2− − ( f 2
µ + k2

µ)v2+v2− − ikµ(u2+v2− − v2+u2−)),

r(µ)21 = 2 fµkµ(u2−u2+ + ( f 2
µ + k2

µ)v2+v2− + ikµ(u2+v2− − v2+u2−)− eiξ),

r(µ)22 = f 4
µv2+v2− − (k2

µv2+ + ikµ(u2+ + u1+) + v1+)(k2
µv2− + ikµ(u1− − u2−)− v1−) +

+ f 2
µ(u1+u1− + u2+u2− − ikµ((u1+ − u2+)v2− + (u1− + u2−)v2+)− 2 cos(ξ)),
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and

t(µ)11 = 2ikµ( f 2
µv2+e−iξ − k2

µv2− + ikµ(u1− + u2−)− v1−),

t(µ)12 = 2 fµkµ((u1+ − ikµv2+)e−iξ − u2− − ikµv2−),

t(µ)21 = 2 fµkµ((u2+ − ikµv2+)e−iξ − u1− − ikµv2−),

t(µ)22 = 2ikµ((k2
µv2+ + ikµ(u1+ + u2+) + v1+)e−iξ − f 2

µv2−)

where ξ = η+ − η−.
The currents Jν

in, Jν
r , Jν

t of incident, reflected, and transmitted particles are of the form

Jν
inµ

= φ̄inµ
γνφinµ

= pν
inµ

2aµa∗µ
mµ + p0

µ
, Jν

rµ
= φ̄rµ γνφrµ = pν

rµ

2bµb∗µ
mµ + p0

µ
, Jν

tµ
= φ̄tµ γνφtµ = pν

tµ

2cµc∗µ
mµ + p0

µ
.

Here, pν
inµ

, pν
rµ

, pν
tµ

are components of the momentum vectors pinµ
= ptµ = {p0

µ, p1
µ, p2

µ, p3
µ},

prµ = {p0
µ, p1

µ, p2
µ,−p3

µ}, p2
rµ

= p2
rµ

= p0 2
µ − p1 2

µ − p2 2
µ − p3 2

µ = m2
µ. In the used parametriza-

tion, p1
µ = (mµ + p0

µ) fµ cos(ωµ), p2
µ = (mµ + p0

µ) fµ sin(ωµ), p3
µ = (mµ + p0

µ)kµ.
In virtue of (23) and φ̄inµ

γ3φrµ + φ̄µrµ
γ3φinµ

= 0,

J3
tµ
= lim

x3→+0
φ̄µ+(x)γ3φµ+(x) = lim

x3→−0
φ̄µ−(x)γ3φµ−(x) = J3

inµ
+ J3

rµ
.

Thus, the continuity of the current component J3
µ at the plane x3 = 0 implies that

J3
inµ

= J3
tµ
− J3

rµ
. Taking into account the direction of the current J3

rµ
, we come to the

conclusion that the equality

a∗µaµ = bµb∗µ + cµc∗µ = a∗µR(µ)†R(µ)aµ + a∗µT(µ)†T(µ)aµ (32)

must be fulfilled. To verify (32), it is sufficient to use the above given expressions for the
matrices R(µ), T(µ) and to take into account the relations u1±u2± + v1±v2± = 1 for the
parameters on which they depend. It follows from (32) that if one denotes the reflection
and transmission coefficients for the considered scattering process of the µ-th particle as

Krµ =
bµb∗µ
aµa∗µ

=
a∗µR(µ)†R(µ)aµ

aµa∗µ
, Ktµ =

cµc∗µ
aµa∗µ

=
a∗µT(µ)†T(µ)a

aµa∗µ
,

then Krµ + Ktµ = 1. The matrices R(µ)†R(µ), T(µ)†T(µ) are Hermitian. The elements Tµ ij =

{T(µ)†T(µ)}ij, i, j = 1, 2, i ≤ j of the matrix T(µ)†T(µ) can be presented as

Tµ 11 = 4k2
µ(k

2
µ(2 + u2

2− − u2
2+) + v2

1− + ( f 2
µ + k2

µ)(u
2
2+ + u2

1− + k2
µv2

2− + f 2
µv2

2+)−

−2 f 2
µ((u2+u1− + v2+v1−) cos(ξ) + kµ(u2+v2− − v2+u2−) sin(ξ)),

Tµ 12 = 4i fµk2
µ(u2+(ikµu2+ + v1+)− u2−(ikµu2− + v1−) +

+((u1+v1− − u1−v1+)− ikµ(u2+u1− − u2−u1+ + v2+v1− − v2−v1+))e−iξ) +

+( f 2
µ + k2

µ)(v2−(u1− − ikµv2−)− v2+(u1+ − ikµv2+)) + (u2−v2+ − u2+v2−)( f 2
µeiξ + k2

µe−iξ),

Tµ 22 = 4k2
µ(k

2
µ(2 + u2

2+ − u2
2−) + v2

1+ + ( f 2
µ + k2

µ)(u
2
1+ + u2

2− + f 2
µv2

2− + k2
µv2

2+)−

−2 f 2
µ((u1+u2− + v1+v2−) cos(ξ) + kµ(u2+v2− − u2−v2+) sin(ξ))),
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where ξ = η+ − η−. The elements Rµ ij = R∗µ ji of the matrix R(µ)†R(µ) for i ≤ j, i, j = 1, 2
are the following

Rµ 11 = d∗µdµ − Tµ 11, Rµ 12 = −Tµ 12, Rµ 22 = d∗µdµ − Tµ 22.

This is a consequence of the relation (32).
We see that in the mass representation, the obtained results for characteristics of

the scattering process do not depend on parameters ρi of diagonal matrix Λ. However,
they influence the oscillation events of transmitted and reflected neutrinos in the flavor
description of the system, taking the contribution to the oscillating part of (2) in the form

3

∑
µ 6=µ′=1

c∗µ′λcµλei(pµ−pµ′ )x
χ̄µ(pµ)Γχµ′(pµ′).

It can essentially change the characteristics of neutrino oscillations after their collision
with the material plane.

In the model with diagonal matrix Λ and matrix S of the form (17), we constructed
a plane wave solution of Equations (13) and (14), describing the motion of particles with
an arbitrary angle of incidence to the plane x3 = 0. Now, we consider a special process of
neutrino collision with a plane with an angle of incidence equal to zero.

7. Moving of Particles along the x3-Axes

If the particles move orthogonally to the plane’s x3 = 0 direction, then pinµ
= ptµ =

{p0
µ, 0, 0, p3}, prµ = {p0

µ, 0, 0,−p3}. This scattering process is described by reflection and
transition matrices

R(µ)
⊥ = R(µ)

∣∣∣
f=0

= eiρµ

(
rµ+ 0

0 rµ−

)
, T(µ)
⊥ = T(µ)

∣∣∣
f=0

= ei(ρµ+η+)

(
tµ+ 0
0 tµ−

)
where

rµ+ = r+(kµ) =
k2

µv2+ − ikµ(u1+ − u2+)− v1+

k2
µv2+ + ikµ(u1+ + u2+) + v1+

, rµ− = r−(kµ) =
k2

µv2− + ikµ(u1− − u2−)− v1−

k2
µv2− − ikµ(u1− + u2−) + v1−

,

tµ+ = t+(kµ) =
2ikµ

k2
µv2+ + ikµ(u1+ + u2+) + v1+

, tµ− = t−(kµ) =
2ikµei(η−−η+)

ikµ(u1− + u2−)− k2
µv2− − v1−

,

kµ =

√√√√ p0
µ −mµ

p0
µ + mµ

=
p3

mµ +
√

p3 2 + m2
µ

=
ρ

1 +
√

ρ2 + 1

∣∣∣∣∣
ρ=

p3
mµ

.

The matrices R(µ)†
⊥ R(µ)

⊥ , T(µ)†
⊥ T(µ)

⊥ are also diagonal. Their elements

|rµ±|2 =
(v1± − k2

µv2±)2 + k2
µ(u1± − u2±)2

(v1± + k2
µv2±)2 + k2

µ(u1± + u2±)2 , |tµ±|2 =
4k2

µ

(v1± + k2
µv2±)2 + k2

µ(u1± + u2±)2

fulfill the relations |rµ±|2 + |tµ±|2 = 1. The reflection and transition coefficient could be
written as

Krµ = Kr(kµ) = |rµ+|2 cos(θµ)
2 + |rµ−|2 sin(θµ)

2, Ktµ = Kt(kµ) = |tµ+|2 cos(θµ)
2 + |tµ−|2 sin(θµ)

2.

Here, the angle θµ is defined by relation cos(θµ)2 = aµ1a∗µ1/(aµ1a∗µ1 + aµ2a∗µ2).
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Let us denote

f (q) = f (u, w1, w2; q) =
4

u + w1
q + qw2

,

where u > 0, w1 ≥ 0, w2 ≥ 0 are constant parameters determining this function, which
will be used to analyze the scattering process under consideration. It follows directly
from definition that f (q) > 0. For q ≥ 0, this function reaches its maximal value fmax by
q = qmax =

√
w1/
√

w2:

fmax = f (qmax) = f
(√

w1

w2

)
=

4
u + 2

√
w1
√

w2
.

The equation f (q) = fmax/2 has, by w1w2 6= 0 and 0 < q, two solutions, q =
q−, q+, 0 < q− < qmax < q+:

q± =
8− fmaxu±

√
(8− fmaxu)2 − 4 f 2

maxw1w2

fmaxw2
=

u + 4
√

w1w2 ±
√
(u + 4

√
w1w2)2 − 4w1w2

2w2
.

The neighbourhood q− < q < q+ of the point qmax can be considered as characterizing
the function f (q) region. We denote an estimation of its extension as fext =

√
q
+
−√q−.

Then,

f 2
ext =

u + 2
√

w1
√

w2

w2
.

The parameters u, w1, w2 can be expressed in terms of qmax, fmax, fext as

u =
4 ( f 2

ext − 2qmax)

f 2
ext fmax

, w1 =
4 q2

max

f 2
ext fmax

, w2 =
4

f 2
ext fmax

.

Substituting them in f (u, w1, w2; q), we receive the following presentation of this function

f (q) =
fmax f 2

extq
f 2
extq + (qmax − q)2

= fmax g
(

qmax

f 2
max

;
√

q
qmax

)
, g(c; x) =

1
1 + c(x− x−1)2 .

Let us put u = 2 + u2
1 + u2

2, w1 = v2
1, w2 = v2

2, where u1, u2, v1, v2 are real constants
which can be parameterized by 0 ≤ r, 0 ≤ α < 2π, 0 ≤ β < 2π as follows:

u1 = cosh(r) sin(α) + sinh(r) cos(β), u2 = cosh(r) sin(α)− sinh(r) cos(β),

v1 = cosh(r) cos(α) + sinh(r) sin(β), v2 = cosh(r) cos(α)− sinh(r) sin(β).

Then, u1u2 + v1v2 = 1 and

f (u, w1, w2; k2) =
4

2 + u2
1 + u2

2 +
v2

1
k2 + k2v2

2

=
4

(u1 + u2)2 + ( v1
k + kv2)2

=
4

4 + (u1 − u2)2 + ( v1
k − kv2)2 = h(u1, u2, v1, v2; k) = h(k) = h̃(r, α, β; k) = h̃(k).

The function h̃(k) has the form h̃(k) = fmaxg(k2
max/ f 2

ext; k/kmax), where

fmax =
2

2c− a2 − b2 −
√
(a2 − b2)2

, fext =
2(2c− a2 − b2 −

√
(a2 − b2)2 )

(a− b)2 , k2
max =

(a + b)2√
(a2 − b2)2
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and a = cosh(r) sin(α), b = sinh(r) cos(β), c = cosh r2. Since this relation between
parameters fmax, fext, kmax, and r, α, β is symmetric in respect to replacement a � b, there
are two possibilities of inverting it, as

cosh(r)2 =
f 2
ext + (k2

max − 1)2

f 2
ext fmax

,

sin(α) cos(β) =
k4

max − 1√
f 2
ext + (k2

max − 1)2
√

f 2
ext(1− fmax) + (kmax − 1)2

and

(1) sin(α)2 =
(k2

max − 1)2

f 2
ext + (k2

max − 1)2
, cos(β)2 =

(k2
max + 1)2

f 2
ext(1− fmax) + (k2

max − 1)2
;

(2) sin(α)2 =
(k2

max + 1)2

f 2
ext + (k2

max − 1)2
, cos(β)2 =

(k2
max − 1)2

f 2
ext(1− fmax) + (k2

max − 1)2
.

Since sin(α)2 ≤ 1, cos(β)2 ≤ 1, the relation 2) imposes the restriction fext ≥ 2kmax
on fext, and in case 1), the inequality fest ≥ 2kmax/

√
1− fmax must be fulfilled. Thus,

the function h̃(k) can be presented in the form h̃(k) = c1g(c2; k/c3) with 0 < c1 < 1,
0 < c2 ≤ 1/4, 0 < c3. It is even: h̃(k) = h̃(−k) has the maximum value h̃max = c1 by
|k| = c3 = kmax, and the extension of the neighborhood of kmax is hext = c3/

√
c2. By

given c3, the function h̃(k) has the minimal value of hext by c2 = 1/4. If c2 = 1/4, then
h̃(k) = hmaxg(1/4, k/c3).

The graphs of the functions g(1/4, k/c) by different c = kmax are shown on Figure 1.
With an increase of c, the vicinity of the maxima becomes increasingly more flat, and the
positions of the maxima become increasingly less noticeable. Using the notation

h(u1±, u2±, v1±, v2±; k) = h±(k) = h̃(r±, α±, β±; k) = h̃±(k) = c1±g(c2±; k/c3±),

one can present the functions |tµ±|2 of kµ in the form |tµ±|2 = h±(kµ) = g±(kµ) =
c1±g(c2±; kµ/c3±) and obtain the following expression for the transmission coefficient:

Kt(k) = c1+g(c2+; k/c3+) cos(θ)2 + c1−g(c2−; k/c3−) sin(θ)2.

Figure 1. The graphs of function g(1/4, k/c) by 0 ≤ k ≤ 1 and different values of parameter c:
(1) c = 0.01; (2) c = 0.05; (3) c = 0.25; (4) c = 0.5; (5) c = 0.9; (6) c = 2.5.

Let us consider, as an example, a scattering process for which θ = 0 and u1+ =
0.5, u2+ = 0.3, v1+ = 0.01, v2+ = 85. In this case, α+ = 0.00941038, β+ = −1.56844, r+ =
4.442675 and
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Kt(k) = h+(k) =
4

4 + 0.22 + ( 0.01
k − 85k)2

=
c1+

1 + c2+

(
c3+

k −
k

c3+

)2 = c1+g(c2+; k/c3+), (33)

c1+ =
4

4.04
≈ 0.990099, c2+ =

0.85
4.04

≈ 0.210396, c3+ =
1

10
√

85
≈ 0.0108465. (34)

The maximal value of Kt(k) is hmax+ = c1+ = h+(km), kmax = c3+, hext+ = c3+√
c2+

=
√

4.04
85 ≈ 0.0236468. The parameters c1, c2, c3 (34) are very close to ones defining the function

presented by Graphic 1 on the Figure 1. The difference between it and the graph of the
function Kt(k) (33) is inessential. Note that c2+ (34) fulfill the restrictions c2+ ≤ 1/4
and hext =

√
4.04/85 ≈ 0.0236 > 2kmax ≈ 0.0216. However, 2kmax/

√
1− fmak ≈ 0.218

and the inequality hext
√

1− fmak ≥ kmax is not satisfied. Therefore, there is only one
{r, α, β}-parametrization h̃+(r, α, β; k) of the function h+(u1, u2, v1, v2; k) in this case.

Outside the neighborhood, 0.00162 < k < 0.0726 ( 0.00324 < ρ < 0.146 ) of the point
kmax = 0.0108 (ρmax = 0.0217), h+(k) (33) is 10 times less than its maximum value. For
0.1 < k < 1, it decreases monotonically from h+(0.1) = 0.0536193 to h+(1) = 0.000553454
and has the maximal value h+(max) at the point 0 < c3+ < 1 (34).

The graph of h+(k) (33) differs significantly from the (graphs (2)–(6)) shown in Figure 2
for Kt(k) by cos(θ)2 6= 1, 0. These ones can have two maxima (graphs (2) and (3)), one
smoothed maximum (graph (6)), or change very little on the most part of the interval
0 ≤ k ≤ 1 (graphs (4) and (5)).

Figure 2. Transmission coefficient Kt(k) = c1+g(c2+; k/c3+) cos(θ)2 + c1−g(c2−; k/c3−) sin(θ)2 by
different values of c1±, c2±, c3±, θ : (1) c1+ = 0.99, c2+ = 0.225, c3+ = 0.01, c1− = 0.8, c2− =

0.025, c3− = 0.1, cos(θ)2 = 0.95; (2) c1+ = 0.95, c2+ = 0.225, c3+ = 0.07, c1− = 0.9, c2− = 0.25, c3− =

0.5, cos(θ)2 = 0.55; (3) c1+ = 0.8, c2+ = 0.25, c3+ = 0.02, c1− = 0.9, c2− = 0.2, c3− = 0.6, cos(θ)2 =

0.35; (4) c1+ = 0.9, c2+ = 0.025, c3+ = 0.5, c1− = 0.8, c2− = 0.0025, c3− = 0.7, cos(θ)2 = 0.9;
(5) c1+ = 0.8, c2+ = 0.025, c3+ = 0.7, c1− = 0.7, c2− = 0.0025, c3− = 0.9, cos(θ)2 = 0.9; (6) c1+ =

0.6, c2+ = 0.25, c3+ = 0.7, c1− = 0.8, c2− = 0.25, c3− = 0.8, cos(θ)2 = 0.7.

In the general case, the process of neutrino scattering on the plane is described by
one universal function g(k) = g(α, β, k) parameterized by constants 0 ≤ α < 0.25, β > 0:
Kt(k) = g(α−, β−, k)γ− + g(α+, β+, k)γ+ with factors γ± > 0. In the terms of parameters
c1±, c2±, c3±, θ used above, α± = c2±, β± = c3±, γ+ = c1+ cos(θ)2, γ− = c1− sin(θ)2.
The maximal value of g(k) is 1 = g(α, β; β). The argument k of this function is k =√

p0 −m/
√

p0 + m, where m is the mass of the particle and p0 its energy. Hence, 0 ≤ k < 1
by the physical values m ≤ p0 < ∞ of p0. If 0 < β ≤ 1, then g(α, β; k) has the maximum on
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the interval 0 < k ≤ 1. If β > 1, then g(α, β; k) grows from g(α, β; 0) = 0 to g(α, β; β) = α
with an increase of k by 0 < k ≤ 1.

Since, in the considered scattering process m, p3 and k fulfill the relations k =√
p0 −m/

√
p0 + m, p2

0 − p2
3 = m2, one can present p3, p0 as p0 = (1 + k2)m/(1− k2),

p3 = 2km/(1− k2). Hence, if g(α, β; k) = 1, then k = β and p0 = (1 + β2)m/(1− β2),
p3 = 2βm/(1− β2).

Corresponding to (33) function Kt(p), the transmission coefficient as functions of p3

has the maximum by p3 = 2c3+m/(1− c2
3+) = 20

√
85m/8499 ≈ 0.0216956 m, and as the

function of p0, it is maximal by p0 = (1 + c2
3+)m/(1− c2

3+) = 8501m/8499 ≈ 1.00024m.
Now, we analyze the features of system dynamics in the framework of the flavor repre-

sentation. As the matrices Γ used in (2) when discussing the oscillation process of neutrinos,
we consider Γ = I, γ0, γ3; γ5, γ0γ5, γ3γ5. The function χ̄µ(pµ)χµ(pµ) (χ̄µ(pµ)γ5χµ(pµ))
is interpreted as the scalar (pseudo-scalar) density of the µ-th particles with momentum
pµ = {p0

µ, 0, 0, p3}, χ̄µ(pµ){γ0, 0, 0, γ3}χµ(pµ) (χ̄µ(pµ){γ0γ5, 0, 0, γ3γ5}χµ(pµ)) is the four-
current vector (axial four-current pseudo-vector) of the µ-th particles moving along the
x3-axis. We will use the plane wave presentation for spinors χ̄µ(pµ), χµ′(pµ′) describing
the particles with momentum p3 moving orthogonal to the plane x3 = 0:

χµ = eiρµ(σ1µα1µ + σ2µα2µ), χ̄µ = e−iρµ(σ1µα∗1µ + σ2µα∗2µ)γ
0,

σ1µ =


1
0
kµ

0

, σ2µ =


0
1
0
−kµ

, kµ =
p3

p0
µ + mµ

, p0
µ =

√
(p3)2 + m2

µ,

kµ =
1
2

p3

mµ
− 1

8

(
p3

mµ

)3

+O
(

p3

mµ

)4

, kµ = 1−
mµ

p3 +
1
2

(
mµ

p3

)2
+O

(
mµ

p3

)4
.

By means of notation a±µµ′ = α∗1µα1µ′ ± α∗2µα2µ′ , the results obtained for the χ̄µ(pµ)Γχµ′(pµ′)

are written in the form

χ̄µχµ′ =
(

1− kµkµ′

)
ei(ρµ′−ρµ)a+µµ′ ,

χ̄µγ0χµ′ =
(

1 + kµkµ′

)
ei(ρµ′−ρµ)a+µµ′ , χ̄µγ3χµ′ =

(
kµ + kµ′

)
ei(ρµ′−ρµ)a+µµ′

and

χ̄µγ5χµ′ =
(

kµ − kµ′

)
ei(ρµ′−ρµ)a−µµ′ ,

χ̄µγ0γ5χµ′ =
(

kµ + kµ′

)
ei(ρµ′−ρµ)a−µµ′ , χ̄µγ3γ5χµ′ =

(
1 + kµkµ′

)
ei(ρµ′−ρµ)a−µµ′ .

Oscillations of incident waves are presented by ψ̄λ(x)Γψλ(x) = ∑3
µ, µ′ e

∗
µλeµ′λφ̄µ(x)Γφµ′(x)

as

ψ̄λ(x)ψλ(x) =
3

∑
µ=1

e∗µλeµλ

(
1− k2

µ

)
a+µµ +

3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
1− kµkµ′

)
ei(ρµ′−ρµ)a+µµ′ ,

ψ̄λ(x)γ0ψλ(x) =
3

∑
µ=1

e∗µλeµλ

(
1 + k2

µ

)
a+µµ +

3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
1 + kµkµ′

)
ei(ρµ′−ρµ)a+µµ′ , (35)

ψ̄λ(x)γ3ψλ(x) = 2
3

∑
µ=1

e∗µλeµλkµa+µµ +
3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
kµ + kµ′

)
ei(ρµ′−ρµ)a+µµ′ .

and
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ψ̄λ(x)γ5ψλ(x) =
3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
kµ − kµ′

)
ei(ρµ′−ρµ)a−µµ′ ,

ψ̄λ(x)γ0γ5ψλ(x) = 2
3

∑
µ=1

e∗µλeµλkµa−µµ +
3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
kµ + kµ′

)
ei(ρµ′−ρµ)a−µµ′ , (36)

ψ̄λ(x)γ3γ5ψλ(x) =
3

∑
µ=1

e∗µλeµλ

(
1 + k2

µ

)
a−µµ +

3

∑
µ 6=µ′=1

e
i(p0

µ−p0
µ′ )x0

e∗µλeµ′λ

(
1 + kµkµ′

)
ei(ρµ′−ρµ)a−µµ′ .

For transmitted waves, one needs to replace a1µ → c1µ = tµ+a1µ, a2µ → c2µ = tµ−a2µ.
Thus, changing in (35) and (36)

a±µµ′ → c±µµ′ = c∗1µ′c1µ ± c∗2µ′c2µ = (t∗µ′+tµ+)a∗1µ′ a1µ ± (t∗µ′−tµ−)a∗2µ′ a2µ,

one receives the corresponding results for transmitted neutrino oscillations. If m1 < m2 <
m3 and momentum p3 is the same for all particles, then p3/m1 > p3/m2 > p3/m3. For

given p3, we denote kµ = p3/(mµ +
√
(p3)2 + m2

µ), µ = 1, 2, 3. If |t±|2(k) monotonically

increases from zero to |t±|2(1) by 0 ≤ k ≤ 1, then |t±|2(k1) > |t±|2(k2) > |t±|2(k3), since
k1 > k2 > k3. In virtue of

|t±|2(k1)− |t±|2(k2) = (k1 − k2)
∂

∂k
|t±|2(k)

∣∣∣∣∣
k=k′

, k1 > k′ > k2,

|t±|2(k2)− |t±|2(k3) = (k2 − k3)
∂

∂k
|t±|2(k)

∣∣∣∣∣
k=k′′

, k2 > k′′ > k3,

the greater the derivatives of the function |t±|2(k) are at points k′ and k′′ for given k1, k2, k3,
that is, the faster |t±|2(k) grows on the interval k1 > k > k3, the more there will be an
influence of the neutrino collisions with the plane on the process of their oscillations.

If there is a maximum of |t±|2(k) by 0 < k < 1, then each |t±|2(kµ), µ = 1, 2, 3 can be
maximal, and the following situations are possible:

(1) |t±|2(k1) is maximal, |t±|2(k3) < |t±|2(k2) < |t±|2(k1);
(2) |t±|2(k2) is maximal, |t±|2(k3) < |t±|2(k1) < |t±|2(k2)

or |t±|2(k1) < |t±|2(k3) < |t±|2(k2);
(3) |t±|2(k3) is maximal, |t±|2(k1) < |t±|2(k2) < |t±|2(k3).

The more the function |t±|2(k) resembles an approximation of the delta-function and
the nearer the maximal |t±|2(kµ) is to the maximum of |t±|2(k), the greater is the difference
of maximal |t±|2(kµ) from non-maximal |t±|2(kµ′), and the more significant will be the
changes in neutrino oscillations as a result of their collisions with the plane.

We considered the model with 8 real parameters in the matrix Q (6). It could be
interesting to compare its properties with features of the system with matrices Q of the
form (7)–(9). In the case (7), there are four real parameters defining Q and

S(±)
± = eiη(ς0τ

(±)
0 + i ς1τ

(±)
1 ± ς2τ

(±)
2 ± ς3τ

(±)
3 ), (37)

u1+ = u2− = ς0 + ς3 = u1, u2+ = u1− = ς0 − ς3 = u2, (38)

v1+ = v2− = ς1 + ς2 = v1, v2+ = v1− = ς1 − ς2 = v2, (39)

ς0 = cosh(r) cos(α), ς1 = cosh(r) sin(α), ς2 = sinh(r) cos(β), ς3 = sinh(r) sin(β). (40)

Here, ς0, ς1, ς2, ς3, u1, u2, v1, v2 are real parameters fulfilled the conditions ς2
0 + ς2

1 −
ς2

2 − ς2
3 = 1, u1u2 + v1v2 = 1 and r ≥ 0, 0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π, 0 ≤ η ≤ π. Hence, for

such materials,
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tµ+ = t∗µ− =
2ikµ

k2
µv2 + ikµ(u1 + u2) + v1

= tµ, |tµ|2 =
4

4 + (u1 − u2)2 + ( v1
kµ
− kµv2)2 = Ktµ ,

|rµ+|2 = |rµ−|2 = |rµ|2 = Krµ = 1− Ktµ , c±µµ′ = (t∗µ′ tµ)a∗1µ′ a1µ ± (tµ′ t
∗
µ)a∗2µ′ a2µ.

Putting η = 0, ς1 = 0, α = 0 in (37)–(40), one obtains for the model given by matrix Q
(8) with two real parameters

S(±)
± = ς0τ

(±)
0 ± ς2τ

(±)
2 ± ς3τ

(±)
3 , ς0 = cosh(r), ς2 = sinh(r) cos(β), ς3 = sinh(r) sin(β) (41)

u1 = ς0 + ς3, u2 = ς0 − ς3, v1 = ς2 = v, v2 = −ς2 = −v, (42)

with real ς0, ς2, ς3, u1, u2, v fulfilling the conditions ς2
0 − ς2

2 − ς2
3 = 1, u1u2 − v2 = 1, and

r ≥ 0, 0 ≤ β ≤ 2π. In this model,

tµ+ = t∗µ− =
2ikµ

ikµ(u1 + u2) + v(1− k2
µ)

= tµ, |tµ|2 =
4

4 + (u1 − u2)2 + v2( 1
kµ

+ kµ)2
= Ktµ .

If one sets in (41) and (42) ς3 = 0, β = 0, then one receives, for the model with a matrix
Q (9) containing one real parameter,

S(±)
± = ς0τ

(±)
0 ± ς2τ

(±)
2 , ς0 = cosh(r), ς2 = sinh(r), u1 = u2 = ς0 = u, v1 = −v2 = ς2 = v.

Here, ς0, ς2, u, v are real parameters, ς2
0 − ς2

2 = 1, u2 − v2 = 1 and r ≥ 0. In this case,

tµ =
2ikµ

2iu kµ + v (1− k2
µ)

, |tµ|2 =
4

4 + v2( 1
kµ

+ kµ)2
= Ktµ .

The essential difference between the models with matrix Q of the form (6)–(9) is that
the functions |tµ±|2(k), |tµ|2(k), in the models (6), (7) can have the maximum by 0 < k < 1,
but |tµ|2(k) in models (8), (9) are, by 0 ≤ k ≤ 1, the monotonously growing functions.

8. Conclusions

In our work, we considered the problem of neutrino interaction with matter. Using
our experience in constructing models of QED in singular background fields, we have
proposed a quantum-field approach, which may be useful for the theoretical description of
neutrino propagation in a highly inhomogeneous medium. It assumes taking into account
the basic symmetry principles of modern physics of fundamental interactions that underlie
the Standard Model and can, in principle, be generalized to describe the interaction of all
lepton fields with the external environment. Mainly, attention was paid to the problem of
neutrino scattering on a material plane, considered as a simplest example of process in the
space with a strongly inhomogeneous distribution of substance.

In a general form, for a model with an off-diagonal unitary matrix Λ mixing Dirac
fields in the mass representation, expressions for the reflected and transmitted waves were
obtained. For them, in the model with a diagonal Λ, an explicit solution was obtained,
which was used to analyze the oscillations of neutrinos in the case of their motion, orthogo-
nally to the plane x3 = 0. It was shown that the parameters that determine the material
properties of the plane can be chosen so that its effect on the neutrino flux is similar to a
filter that transmits particles in a narrow interval of low energies and almost completely
reflects all other ones. As a result of the neutrino collision with the plane, the parallel
component of the momentum does not change, and the orthogonal one does not change in
absolute value. Only the amplitudes of fields can change significantly.

The example we have considered with parameters of the model (33) and (34) shows
that the interaction of neutrinos with a plane can effect their filtration. A characteristic
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feature of the filtration process of particles upon collision with a plane is the possibility of
essentially different transmission coefficients for neutrinos of different masses. In this case,
due to filtration of their flux, the regimes of the neutrino oscillations before the plane and
behind it can be strongly different. This phenomenon can be used to estimate the masses of
neutrinos of various types in carrying out analyses of experimental data.

Although the filtering and MSW-resonance results are similar in many ways, their
mechanics are not the same. The MSW effect is formed non-locally in space and time. This
requires a certain volume of matter and a certain period of time, generally speaking, that
are different for various substances. In order for the filtration of the neutrino flux to occur,
their collision with the plane is sufficient, which (in the framework of the considered model)
occurs instantaneously and locally at x3 = 0. From the point of view of the possibility
of verifying the adequacy of the proposed model, it would be interesting to reveal in the
dynamics of neutrino oscillations an effect, which cannot arise as a consequence of MSW
resonance and is a manifestation of the filtration process.

One of the current theoretical problems in neutrino astro-physics is constructing
numerical models of dynamics of supernova explosions. Many research teams have been
working on this issue [52–67]. Perhaps, taking into account the filtering mechanism in such
models will be useful to achieve a better understanding of the features of the process of
collapse of the super-heavy star core.

In general terms, a possible scenario of its evolution can be presented as follows. If,
in the core of the star, its shell filters neutrinos by energies, they can be divided into two
classes. Particles with energies from the narrow range of the low-energy region leave the
core unhindered. These neutrinos can be called free. For all the others, which we will call
bound, the core shell is impermeable.

In the process of the star’s evolution, its core is subjected to the pressure of the
increasing gravitational forces. In it, neutrinos are born, the free ones are emitted, and the
bound neutrinos are accumulated in the core. This can go on until the main features of
the interaction between the core shell and neutrinos changes, the class of free neutrinos
expands, and the star will emit them with further contraction without a significant change
in its structure. In our model, this can be described by changing the function Kt(k). For
instance, if the plots of possible Kt(k), is shown in Figure 2, then within the change
(1)→ (4), a large fraction of the bound high-energy neutrinos become free, they will leave
the star, essentially changing the intensity and spectrum of its neutrino emission.

If the main interaction features of neutrinos with the core shell are not changed
and at least some of the bound neutrinos do not become free, then the enormous energy
accumulated by them in the core destroys its shell sooner or later. After that, the core and
the star are exploded.

There is great interest among experimentalists to determine neutrino masses di-
rectly [68–72]. One can assume that the employment of 2D materials and special sur-
face treatment techniques in the construction of neutrino detectors would enable one to
efficiently use the filtering mechanism in experiments of such a kind.

The maximal number of parameters in the model, the properties of which we have
studied in detail, was eight for the matrix Q and three for the diagonal matrix Λ. Not
all of them are included in our results, and the question arises whether it is possible to
reduce the number of parameters in the model without limiting its area of applicability.
We considered versions of the model with four, two, and one parameters in the Q matrix,
simplified for symmetry reasons, and found a difference in the properties of their predicted
transmission coefficients. This raises the question of whether one can confine oneself to
using the simplest models to describe real neutrino oscillation data.

We suppose that the proposed method for modeling the processes of interaction of
neutrinos with matter can be useful for theoretical studies and analysis of the obtained
experimental data.
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Appendix A. Regularization and Parameters of Model

If the matrix S in (14) is a function of Q ′ = Q′ (+)
+ + Q′ (−)− , then S(Q ′) = S(+)

+ + S(−)
−

where S(±)
± = S(Q ′(±)± ), and the corresponding (2× 2)-matrices S± can be presented as

S± = ei η±(ς0±τ0 + i ς1±τ1 + ς2±τ2 + ς3±τ3) (A1)

with real parameters ςk±, k = 0, 1, 2, 3, 0 ≤ η± ≤ π and ς2
0± + ς2

1± − ς2
2± − ς2

3± = 1.
Indeed, for the (2 × 2) matrices Q± we can use the parametrisation of the form

S± = ∑3
k=0 sk

±τk. In virtue of γ0γ3 = τ
(+)
1 − τ

(−)
1 , the condition (15) is written for S± as

S†
±τ1S± = τ1 and S†

±τ1 = τ1S−1
± . Since S−1

± = (s0
±τ0 −~s±~τ)/ det S±, one obtaines

S†
±τ1 =

3

∑
k=0

s∗k± τkτ1 =
τ1(s0

±τ0 −~s±~τ)
det S±

, det S± = s0 2
± − s1 2

± − s2 2
± − s3 2

± . (A2)

The solution of (A2) for s∗k± has the form

s∗k± =
sk
±

det S±
, k = 0, 2, 3, s∗1± = −

s1
±

det S±
. (A3)

In virtue of |s∗k± | = |sk
±|, it follows from (A2) and (A3) that |det S±| = 1, det S± =

e2 i η± and sk
± = ei η±ςk±, k = 0, 2, 3, s1

± = ei η± i ς1± with 0 ≤ η± ≤ π, real ςk±, k = 0, 1, 2, 3
and ς2

0± + ς2
1± − ς2

2± − ς2
3± = 1.

Thus, the representation (A1) for S± is proven, and the matrices S(±)
± are written as

S(±)
± = ei η±

(
ς0±τ

(±)
0 + i ς1±τ

(±)
1 + ς2±τ

(±)
2 + ς3±τ

(±)
3

)
, ς2

0± + ς2
1± − ς2

2± − ς2
3± = 1. (A4)

Here, 0 ≤ η± ≤ π and ςµ±, µ = 0, 1, 2, 3 are real numbers which can be expressed
in terms of parameters rj, 1 ≤ j ≤ 8, of the matrix Q (6) in accordance with chosen
regularisation.

If the parameters h0 = −h∗0 , h1 = −h∗1 , h2 = h∗2 , h3 = h∗3 define the matrix h =

∑3
k=0 hiτi = h0τ0 +~h~τ , then

h†τ1 = (−h0τ0 − h1τ1 + h2τ2 + h3τ3)τ1 = −τ1(h0τ0 + h1τ1 + h2τ2 + h3τ3) = −τ1h,

and for the function F(h) one obtains F(h†)τ1 = τ1F(−h). Therefore F(h)†τ1F(h) = τ1, if
F(h)† = F(h†) and F(−h)F(h) = τ0.

The parameters q
′i
± of the matrices Q′± (16) are imaginary by i = 0, 1 and real by

i = 2, 3. For the functions F(Q ′±) = (τ0−Q ′±/2)(τ0 +Q ′±/2)−1 and F(Q ′±) = exp(Q ′±),
the conditions F(Q ′±)† = F(Q ′±

†) and F(−Q ′±)F(Q ′±) = τ0 are fulfilled. Hence, the
expressions

S = S(+)
+ + S(−)

− = (I + iγ3Q/2)(I − iγ3Q/2)−1, S = S(+)
+ + S(−)

− = exp(−iγ3Q)

obtained for S(±)
± by means of the regularization procedures [33,39] are in agrement with

(15) and (A4).
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The solutions of equations exp{Q ′±} = S± with S± given in the form (A1) can be
written as

Q ′± = i(η± + 2nπ)τ0 + 2(i ς1±τ1 + ς2±τ2 + ς3±τ3)
ln
(√

1 + z2
± + z±

)
z±

, z± =
√

ς2
2± + ς2

3± − ς2
1± (A5)

where n is an arbitrary integer number.
The parameters z± fulfill the restriction 1 + z2

± = 1− ς2
1± + ς2

2± + ς2
3± = ς2

0± ≥ 0.

Hense, if z± is real then
√

1 + z2
± + z± > 0 and ln

(√
1 + z2

± + z±
)

/z± is real. If z± is
imaginary, then ∣∣∣∣√1 + z2

± + z±

∣∣∣∣2 = 1− |z±|2 + |z±|2 = 1.

Therefore, in this case, ln
(√

1 + z2
± + z±

)
is imaginary and ln

(√
1 + z2

± + z±
)

/z±
is real.

The solutions of equations (τ0 −Q ′±/2)(τ0 + Q ′±/2)−1 = S± in respect to Q ′± are of
the form

Q ′± = 2(S± − τ0)(τ0 + S±)−1 =
2(i sin(η±)τ0 + i ς1±τ1 + ς2±τ2 + ς3±τ3)

cos(η±) + ς0±
(A6)

For the matrix Q ′± written as (16), the coefficients q′0±, q′1± are imaginary and q′2±, q′3±
are real. The matrices Q ′± of the form (A5), (A6) fulfill this condition. The calculation
of the characteristics of the neutrino scattering on the plane x3 = 0 can be carried out
using the regularization of the modified Dirac equations. In this case, the expression of
the results in terms of the parameters of the Lagrangian turns out to depend on the choice
of the regularization scheme. The same results are obtained if we use the solutions of the
Dirac equations for free particles and the boundary condition of the form (14) with the
appropriately, in accordance with the used regularization scheme chosen matrix S.

Since regularization is not required to solve the boundary problem (14) with arbitrary
S defined as (A4), the results turn out to be expressed directly in terms of the parameters
of the matrix S. They can be considered as the only solutions of the posed problem that
have a physical meaning. This is similar to what happens in quantum field theory, when
the results of calculations are expressed in terms of the independent of the regularization
scheme renormalized parameters.
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