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Abstract: The biological system relies heavily on the interaction between prey and predator. Infections
may spread from prey to predators or vice versa. This study proposes a virus-controlled prey-predator
system with a Crowley–Martin functional response in the prey and an SI-type in the prey. A prey-
predator model in which the predator uses both susceptible and sick prey is used to investigate the
influence of harvesting parameters on the formation of dynamical fluctuations and stability at the
interior equilibrium point. In the analytical section, we outlined the current circumstances for all
possible equilibria. The stability of the system has also been explored, and the required conditions
for the model’s stability at the equilibrium point have been found. In addition, we give numerical
verification for our analytical findings with the help of graphical illustrations.

Keywords: prey-predator model; eco-epidemiological model; harvesting factor; equilibrium points;
existence criteria; stability analysis

1. Introduction

When compromised foreign substances penetrate the internal organs, viral illnesses
develop. Germs, viruses, fungus, and parasites are examples of alien bodies. Some organ-
isms are spread via transmission out of another person, animals, potentially contaminated,
or contact to any of the ecological factors polluted with these organisms. An ecosystem
is a discipline of biology that studies distinct organism interactions and their connections
with their environment. Epidemiology is the study of the incidence, development, and
treatment of illness and other wellbeing characteristics. Eco-epidemic models are used to
study disease propagation in ecosystems with interacting populations. The most common
mathematical models in medicine are first-order ordinary differential equations, and the
dynamic features of these models have been studied using a variety of qualitative and
quantitative methodologies. Refs. [1–5] are examples of works that used Lie symmetry
approaches for epidemiological models. A mathematical model depicts an actual event
employing mathematical terms in order to understand the characteristics of a biophysical
phenomenon. Epidemiology and theoretical ecology are two major fields that have been
explored independently for years in the field. For a predator–prey species, Lotka [6] and
Volterra [7] took the first step forward in contemporary mathematical ecology. Kermack
and McKendrick [8] utilized mathematics to investigate illness transmission. These two
areas became closer in the late 1990s, and a new field called eco-epidemiology emerged to
study both epidemiology and ecological problems together. Anderson and May [9] were
the first to combine the two sciences and develop a predator–prey model with population
illness. Many publications [10–14], Wang et al. [15] examined numerous predator–prey
models in the presence of infection in the system, and it was found that the illness is
propagated by either prey or predator, or both prey and predator. The infectious illness
divides prey-predator models into three categories. In systems [16–19], the diseased prey
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is postulated early. Johri et al. [20] investigated a Lotka–Volterra type predator–prey model
without harvesting or illness in the prey, with the assumption that the exchange rate of the
sensitive prey is the same as that of the sick prey. Sharma and Samanta [21] investigated
an eco-epidemiology scenario in which one prey organism is affected with an infectious
illness. Furthermore, in the systems of [22–25], the diseased predator is taken into account.
Zhang and Sun [25] looked into a predator–prey system that included sickness in the
predator and a specific functional reaction. Holling type-II functional response is the most
prevalent and well-known functional response. In the predator–prey model with Holling
type II functional response, Ko and Ryu [26] investigated asymptotic behavior of inhomo-
geneous solutions and the local presence of periodic solutions. Chen et al. [27] investigated
the global stability of equilibria, as well as the presence and uniqueness of limit cycles,
in a type-II prey-predator model. Selvam and Jacob [28] investigated the prey-predator
paradigm in discrete time with type II functional response. Many researchers have focused
on the type-II response function in latest years [29–33]. Bera et al. [34] investigated the
dynamical behavior of a tritrophic food chain model with a herd of prey. The connection
between medium predator and super-predator is thought to be regulated by Holling type-II
functional response, according to Das et al. [35]. The last approach, Prey-Predator systems,
assumes that the illness is spread through both prey and predator groups [36]. Kant and
Kumar [37] explored at a predator-prey system that included traveling prey and virus
illness in both prey and predator groups. Disease is part of the key alterations in an ecosys-
tem’s dynamics, according to all of the research. Harvesting, on the other hand, may have a
significant influence on distribution and abundance [38,39]. The degree of this influence is
determined on the harvesting approach. The study of population dynamics with harvesting
is a topic in mathematical bio-economics, and it is linked to the best use of energy sources,
according to [40]. Harvesting and illness in predators in a predator-prey system have been
studied extensively, and many scientists have determined that harvesting plays an essential
role in preventing the transmission of infectious diseases. Bairagi et al. [41] studied the
cumulative influence of gathering and illness in prey in a predator-prey system, where gath-
ering influences the transmission of infections in a prey sub-population. Bairagi et al. also
discovered that the harvest can get rid of a disease [41]. Hethcote et al. [42] demonstrated
how the existence of infections might alter the prey-predator state’s biological behavior.

Refs. [43–46] are only a few of the scholars that have looked into the impact of har-
vesting tactics on the interplay of various organisms. Scientists investigated predator-prey
models with linear and continuous harvesting processes, for example [45–47]. Systems with
a linear harvesting mechanism have comparable dynamics to systems with linear survival
rates. Systems with a continual harvesting procedure, on the other hand, may have more
sophisticated dynamics. In their paper [46], Brauer and Soudack addressed a percentage
predator-prey system with continual predator harvesting, indicating the presence of a limit
cycle and homoclinic bifurcation. Despite linear and steady harvesting being frequently
utilized, the far more accurate harvest method is one in which the harvested output grows
with density at first and then fills up at a respectable level when the size is heterogeneous
enough, as described by [48]. However, nothing is known about the impact of nonlinear or
saturation harvesting on the standard predator-prey model’s dynamics. As a result, one
of the goals of this research is to see if nonlinear predator harvesting may lead to more
sophisticated dynamics in a classic predator-prey model.

This research considers an eco-epidemiological system with a harvesting element. This
suggested model differs from earlier works in that it assumes that the predator consumes
both susceptible and diseased prey using the Crowley–Martin functional response. The
following is a breakdown of how this paper is organized. The suggested model is described
in full in Section 2. The presence of all equilibrium points is explained in Section 3, as
well as the stability analysis of each equilibrium point. The analytical simulation of the
suggested method is presented in Section 4. Eventually, in Section 5, there is a discussion.
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2. Mathematical Model

Consider that S(t) and I(t) represent the percentages of susceptible and infected prey
populations at time t, and Z(t) denote the number of predators at time t. Throughout the
apparent lack of a predator, S(t) and I(t) adopt logistic dynamics, and Z(t) could really
suppose prey by using the Crowley-Martin form of functional response, which is defined

by f (S, I) =
a S

(1 + b S)(1 + c I)
, where a signifies the detect proportion of I or S and b, c is

the managing period and severity of interference among them, respectively. Consider the
following system of differential equations.

dS
dt

= rS(1− S + I
κ

)−mIS− µSZ
(1 + b S)(1 + c I)

− E1S

dI
dt

= mIS− αIZ
(1 + b S)(1 + c I)

− λI − E2 I

dZ
dt

= −θZ +
gSZ

(1 + b S)(1 + c I)
+

hIZ
(1 + b S)(1 + c I)

− E3Z.

(1)

Parameters used to describe the system (1) have been defined in Table 1.

Table 1. Notations used for the denoted parameters.

Parameters Units Description
r per day Intrinsic growth rate constant
κ no. per Carrying capacity of the prey species in the absence of predation

unit area and harvesting
m per day Infection rate
µ per day The amount of handled susceptible prey in a unit time
E1 per day Harvesting efforts for the susceptible prey
α per day Maximum attack rate
λ per day The death rates of the infected prey
E2 per day Harvesting efforts for the infected prey
θ per day The death rates of the predator
g per day Growth rate of the predator due to predation of susceptible prey
h per day Growth rate of predator due to perdation of infected prey

E3 per day Harvesting efforts for the predator

We first observe that the right-hand sides of the system (1) are continuously differ-
entiable functions in the positive octant, then by existence and uniqueness, the theorem
systems (1) have a unique solution. Furthermore, we provide that the solution of the
system is bounded.

Theorem 1. Suppose that X(t) is a solution of (1). Then X(t) is uniformly bounded for X0 in the
positive octant, if the following condition holds

µ >
gα

h
. (2)

Proof. Let
W(t) = S(t) + I(t) +

α

h
Z(t). (3)

Clearly W(t) is well defined and differentiable on some maximal interval (0, tp) and

dW
dt

= rS(1− S+I
κ )− µSZ

(1 + b S)(1 + c I)

−E1S− λI − E2 I − α
h θZ +

α
h gSZ

(1 + b S)(1 + c I)
− α

h E3Z
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for any ε > 0 and since µ > α g
h we have

dW
dt + ε W(t) ≤

(
r(1− S

κ )− E1 + ε
)

S− (λ + E2 − ε)I − α
h (θ + E3 − ε)Z

≤ κ(r+ε−E1)
2

4r − (λ + E2 − ε)I − α
h (θ + E3 − ε)Z.

If we assume that 0 < ε < min{λ + E2, θ + E3}, and 0 < t < t f . Then there exists

β =
κ(r + ε− E1)

2

4r
> 0 such that dW

dt + ε W(t) ≤ β

Now, suppose that H(t, y) = β− ε y. It is obviously satisfies the Lipschitz condition.

dW
dt
≤ H(t, y) ∀t ∈ (0, t f ). (4)

Let dx
dt = H(t, x) = β− ε x and x(0) = W(0) = W0. The solution of the above equation

has the following expression

x(t) =
β

ε

(
1− e−ε t)+ W0e−ε t.

The comparison theorem yields that x(t) is bounded for any t ∈ (0, t f ).

W(t) ≤ x(t) =
(
1− e−ε t)+ W0e−ε t ∀t ∈ (0, t f ). (5)

The solution was found uniquely for certain interval (0, t f ) through the Picard-
Lindelof theorem for t f < ∞ when W(t) ≤ x(t f ) < ∞. This would be in direct opposition
to the assumption that t f < ∞. As a result, for any t > 0, W(t) must be bounded. As a
result, I(t) is uniformly bounded.

3. Equilibrium Points and Their Stability

Now, we will look at the system’s dynamical behavior, such as whether it has attained
equilibria and how stable it is. There are five non-negative equilibrium points in the
system (1):

1. Eq0(0, 0, 0) this is the trivial equilibrium point and it is exists at any time.
2. The disease and predator-free equilibrium point; Eq1(κ(1−

E1
r ), 0, 0), always exists (it

is obvious from the conditions of the parameters of the system (1)) r−E1> 0).
3. The predator free equilibrium point Eq2(S, I, 0) where

S =
λ + E2

m
, I =

κm(r− E1)− r(λ + E2)

m(r + κm)

exists in SI−plane provided that the following condition holds

κ >
r(λ + E1)

m(r− E1)
. (6)

4. The infected free equilibrium point Eq3(Ŝ, 0, Ẑ) where Ŝ =
θ + E3

g− b(θ + E3)
, Ẑ =

1 + bŜ
µκ

(
κ(r− E1)− rŜ

)
exists in SZ−plane if and only if the following conditions

hold:

b <
g

θ + E3
(7)

0 < Ŝ <
κ(r− E1)

r
. (8)
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5. The interior equilibrium point Eq4(S
∗, I∗, Z∗) where

I∗ =
κ[α(r− E1) + µ(λ + E2)]− (rα− µmκ)S∗

α(r + mκ)
(9)

Z∗ =
1
α
(mS∗ − (λ + E2))(1 + bS∗)(1 + cI∗) (10)

S∗ =
−A1 +

√
A2

1 − 4A2 A0

2A2
. (11)

Equation (11) is a positive root of

A2S∗2 + A1S∗ + A0 = 0 (12)

where

A = (θ + E3)(rα + µmκ)

A0 = κ(h− (θ + E3)c)(α(r− E1) + µ(λ + E2))− α2(θ + E3)(r + mκ).

A1 = αg(r + mκ) + cA− h(rα + µmκ) (13)

−b(θ + E3)[α(r + mκ) + cκ(α(r− E1)) + µ(λ + E2)]

A2 = bcA.

Since A2 > 0 so Equation (11) has a positive root if the following condition holds

h < (θ + E3)c. (14)

Additionally, from Equations (10) and (11) I∗ > 0 and Z∗ > 0 provided that

λ + E2

m
< S∗ < κ[α(r− E1) + µ(λ + E2)]. (15)

4. Stability

In this part, we demonstrate the local stability of the model (1) around each of its
equilibrium points. At the beginning, we calculate the Jacobian matrix of the model around
the equilibrium points and then we investigate its eigenvalues. The Jacobian matrix has
the following expression

J(S, I, T) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where

a11 = r− (1− 2S
κ )− ( r

κ + m)I − µZ
F2G − E1

a12 =
(
−r
κ −m− cµZ

FG2

)
S

a13 =
−µS
FG

a21 =

(
m +

αbZ
F2G

)
I
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a22 = mS− αZ
FG2 − (α + E2)

a23 =
−αI
FG

a31 =
(g− hbI)Z

F2G

a32 =
(h− gcS)Z

FG2

a33 =
gS
FG
− bI

FG
− (θ + E3)

where F = (1 + bS), and G = (1 + cI).
We compute the eigenvalues for resulting matrix at all equillibrium points as:

1. The eigenvalues of J(Eq0) are λ01 = r − E1 > 0, λ02 = −(λ + E2) < 0, and λ03 =
−(θ + E3) < 0. So Eq0 is the hyperbolic saddle point with locally stable manifold in
the IZ direction and with locally unstable manifold in the S−direction.

2. The eigenvalues of J(Eq1) are λ11 = E1 − r < 0, λ12 = mκ(1− E1
r )− (λ + E2), and

λ13 = gκ(r−E1)
r+bκ(r−E1)

− (θ + E3), therefore Eq1 is locally asymptotic stable provided that
Eq2 and Eq3 do not exist.

3. The eigenvalues of J(Eq2) satisfy the following relations

λ21 + λ22 =
−rS

κ
< 0 (16)

λ21λ22 = mI S(
r
κ
+ m) > 0 (17)

λ23 =
gS
F G
− hI

F G
− (θ + E3), (18)

where F = 1+ bS, and G = 1+ aI. Hence Eq2 is asymptotically stable in R+
3 provided

E3 >
gS− hI

F G
. (19)

4. The eigenvalues of J(Eq3) satisfy the following relations

λ31 + λ33 =
−rŜ

κ
− bµẐ

F̂2
< 0

λ31λ33 =
µgŜ Ẑ

F̂3
> 0

(20)

and

λ32 = mŜ− αẐ
F̂
− (λ + E2) where F̂ = 1 + bŜ.

Hence Eq3 is asymptotically stable in R+
3 provided

Ŝ <
µκ(E2 + λ) + ακ(r− E1)

mµκ + αr
. (21)



Symmetry 2021, 13, 2179 7 of 14

5. Finally, the Jacobian matrix of system (1) at the interior equilibirum point Eq4 is given
by J(Eq4) =

(
bij
)

3×3 where

b11 =

(
−r
κ

+
bµZ∗

F∗2G∗

)
S∗

b12 =

(
−r
κ
−m +

cµZ∗

F∗G∗2

)
S∗

b13 =
−µS∗

F∗G∗
< 0

b21 =

(
m +

bαZ∗

F∗2G∗

)
I∗

b22 =
cαI∗Z∗

F∗G∗2
S∗ > 0

b23 =
−αI∗

F∗G∗
< 0

b31 =
(g− bhI∗)Z∗

F∗2G∗
, b32 =

(h− gcS∗)Z∗

F∗G∗2
, and b33 = 0

where F∗ = (1 + bS∗), G∗ = 1 + cI∗. Then, the characteristic equation of J(E4) is
given by

λ3 + β1λ2 + β2λ + β3 = 0 (22)

where
β1 = −(b11 + b22)
β2 = b11b22 − b12b21 − b13b31 − b23b32
β3 = b31(b13b22 − b12b23) + b32(b11b23 − b13b21).

This β1 > 0 if and only if the following condition holds

bµZ∗S∗G∗ + αcI∗Z∗F∗ <
rS∗F∗2G∗2

κ
. (23)

β3 > 0 if and only if
h− gcS∗

g− hbI∗
>

( r
κ + m

)
ακG∗

(rα + κmµ)F∗
. (24)

For

∆ = β1β2 − β3 = (b11 + b22)(b12b21 − b11b22) + b13[b31b11 + b21b32] + b23[b32b22 + b12b31]

hence ∆ > 0 if and only if

0 < b31b11 + b21b32 =
(g− hbI∗)bµZ∗S∗

F∗4G∗2
+

αbZ∗ I∗(h− gcS∗)
F∗3G∗2

+
mI∗(h− gcS∗)κF∗ − rS∗(g− bhI∗)G

κF∗2G∗2
.

So by Routh-Harwitz criterion (S∗, I∗, Z∗) is asymptotically stable if in addition to
conditions (23,24) the following condition holds

h− gcS∗

g− hbI∗
> max

{
rS∗G∗

κmI∗F∗
,

( r
κ + m

)
ακG∗

(rα + κmµ)F∗

}
. (25)
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5. Numerical Simulation

In this section, we study the system (1) numerically, starting at different initial points
to confirm our obtained analytical results regarding to each equilibrium point. For the
following set of hypothetical parameters

r = 2.1, k = 40, m = 0.2, µ = 1, b = 0.8, c = 0.9, g = 0.6, (26)

h = 0.5, E1 = 2.2, E2 = 0.4, E3 = 0.8, α = 0.98, λ = 0.5, θ = 0.5. (27)

System (1) approaches asymptotically to the non-survival point as illustrated in
Figures 1 and 2, which is that all of the population will die out because the harvesting rate
is greater than the intrinsic growth rate.

Figure 1. System (1) approaches asymptotically stable point Eq1 under the parameter values in (26)
and (27).

Figure 2. The time series starts at (2, 3, 4) and the solution approaches asymptotically to the disease
and predator-free equilibrium point (30.4648, 0, 0).

If we decrease the value of E1 to 0.5 and the value of m to 0.02 then the system
approaches the predator free equilibrium point, as shown in Figures 3 and 4.
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Figure 3. System (1) approaches the asymptotically stable point Eq2 = (4.4896, 6.5828, 0) under the
parameter values (26) and (27) where E1 = 0.5 and m = 0.02.

Figure 4. The time series starts at (2, 3, 4) and the solution approaches asymptotically the point
Eq2 = (4.4896, 6.5828, 0).

Note that it is easy to verify that the data in Figure 3 satisfy the conditions (19) and
hence Figure 3 confirms the analytical results. Further, for the data

r = 2.1, k = 40, m = 0.17, µ = 0.3, b = 0.8, c = 0.9, g = 0.9, (28)

h = 2.5, E1 = 0.5, E2 = 0.4, E3 = 0.09, α = 0.98, λ = 0.5, θ = 0.5. (29)

that satisfy conditions of Equations (23)–(25), then the system (1) approaches asymptotically
to the interior equilibrium point Eq4 = (5.2986, 5.9304, 0.0364), as shown in Figures 5 and 6.



Symmetry 2021, 13, 2179 10 of 14

Figure 5. System (1) approaches the asymptotically stable point Eq4 under the parameter values in
(28) and (29).

Figure 6. The time series starts at (1.1, 1, 1.7), and the solution approaches the epidemic positive
point (5.2986, 5.9304, 0.0364).

For

r = 0.45, k = 40, m = 0.5, µ = 1, b = 0.8, c = 0.9, g = 1.6, h = 0.9, (30)

E1 = 0.43, E2 = 0.3, E3 = 0.5, α = 0.9, λ = 0.5, θ = 0.5, (31)

which satisfies the conditions (20) and (21).
The system approaches asymptotically to the infected free equilibrium point

Eq3 = (1.25, 0, 0.0119), as shown in Figures 7 and 8.
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Figure 7. System (1) approaches asymptotically the stable point Eq3 under the parameter values in
(30) and (31).

Figure 8. The time series starts at (1.1, 1, 1.7), and the solution approaches the infected free equilib-
rium point Eq3 = (1.25, 0, 0.0119).

6. Conclusions

In this article, we explored the interaction of a vulnerable and diseased predator
with prey in an eco-epidemiological predator-prey model. In the system, the afflicted
predator is liable to harvesting. For all feasible positive equilibrium points, we discovered
the key requirements of the parameters of the proposed system for existence as well as
asymptotically stable. Harvesting a diseased predator can be considered a biological control
to minimize disease transmission and lower the chance of healthy predator extinction. By
increasing the rate of harvesting, E1, with respect to the rate of intrinsic growth, then the
predator-prey model (1) approaches asymptotically to non-survival point Eq1 as shown in
Figure 1, which is that the entire population will die out.

When we decreased the value of E1 for which r − E1 is positive, we observed that
the system (1) approaches the predator free equilibrium point Eq2 as shown in Figure 3
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because Eq2 = (S, I, 0) satisfies Equation (6), approaches asymptotically to the infected free
equilibrium point Eq3 as shown in Figure 7, and approaches asymptotically to the interior
equilibrium point Eq4 as shown in Figure 5.

By maximizing an intrinsic biological parameter, we obtain an optimal harvesting
strategy that will benefit the population the most. The symmetry properties of the optimal
strategy are also discussed. In fact, the mathematical symmetry of the domain is rarely
found in the habitat of true populations. However, our arguments show that in general,
the rate of harvest should be chosen as minimally as possible. We have obtained that the
increasing value of the harvesting with respect to the value of intrinsic growth causes
destabilization in the positive equilibrium.

We have solved the model numerically by using MATLAB program (Ode 45 command).
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