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Abstract: Parking and ride is a very effective method to improve the traffic condition of commuter
channels, and it is necessary to develop effective parking guidance strategies. In this study, consid-
ering the travel time, walking distance, parking cruise time, parking fee, and personal attributes
of drivers, a probability model of parking and ride selection in commuter scenarios was proposed,
and a dynamic price adjustment method based on the equilibrium of parking occupancy in the
region was constructed. The parking price was adjusted by determining the target occupancy, thus
affecting the parking choice behavior to guide the commuter to park. The example analysis showed
that this method adjusted the selection probability of the parking lot by using the dynamic price
adjustment method from the perspective of regional parking occupancy equilibrium, solved the
model by symmetric duality algorithm and formulated a reasonable parking replacement induction
scheme to achieve the goal of occupancy equilibrium. Compared with parking guidance under static
pricing, it can avoid the crowding of commuter vehicles into the city center effectively to reduce the
congestion of commuter channels.

Keywords: park and ride induction; commuters; travel choice; price adjustment; equilibrium of
occupancy

1. Introduction

According to the 2018 annual report on the Gaode map, 74% of cities across China
are experience congestion or slow transit during rush commuting periods, with the mean
velocity of the Beijing road network being only 23.35 km per hour [1]. Parking and ride
(P&R) [2] is an important means to alleviate the pressure on the city heartland. P&R
behavior means that travelers stop at the parking lot near the transfer center, transfer to
urban transit, enter the central urban areas, return to the parking lot near the transfer center
by using urban transit, and then drive cars back to the point of origin. P&R can reduce the
number of vehicles entering the urban center effectively and alleviate the contradiction
between traffic supply and demand caused by the lack of parking space. By 2018, there
were 27 officially operated transfer parking lots facilitating the public to connect with
subway commuting in Beijing. However, some parking lots in Shanghai are oversaturated,
and the utilization rate of some parking lots is even lesser than 10%. There is a serious
phenomenon named uneven hot and cold parking in the existing transfer parking lots [3].

Thompson et al. [4] and Thompson and Richardson [5] studied the influence of
parking guidance information on parking selection. Taking the shortest queue length
of the parking lot and the least number of vehicle kilometers as objective functions, the
parking lot allocation is realized by establishing the optimization display model of the
parking guidance information board. Mei and Tian [6] established the goal function
with the minimum total travel time and used the combination optimization method to
display the variable message signs (VMS) information to play the role of parking selection
induction. Molenda and Seig [7] modeled from the perspective of trade-offs between
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residents’ parking and economic viability to allocate roadside parking spaces to residents
for parking. Ji et al. [8,9] constructed a stochastic user equilibrium allocation model of a
multilayer road network under the influence of VMS, revealed the driver’s parking search
behavior, analyzed the change of the driver’s path selection behavior under the parking
guidance system, proposed a parking reservation real-time decision method based on fuzzy
logic, solved the model to determine the fuzzy rule base, and used fuzzy logic to judge
whether to accept the parking reservation application in real time to realize the parking
allocation. Yang et al. [10] proposed a dual-object model with the shortest total driving
time and the degree of air-filled parking lot to be close to the induction target and used the
exhaustive method to overcome the non-uniqueness of the optimal solution of the existing
double-objective model and achieve the optimal induction target. Zou et al. [11] aimed to
maximize social welfare by parking induction, infrastructure, and vehicle communication
to obtain a driver’s parking characteristics, thereby achieving public parking allocation.
Duan et al. [12] designed a nested particle swarm optimization algorithm to solve the
parking lot allocation model with the shortest total walking distance for drivers. Shao
et al. [13] built a simple model of shared use of residential parking by residents and
public parking personnel, used binary linear solution model, and gave the corresponding
allocation scheme. He and Gao [14] established a bi-level programming model for parking
facility selection and travel route selection and designed the related solving algorithm based
on the idea of a nested Frank–Wolfe algorithm in the partial augmented multiplier method.
Lu et al. [15] established a dynamic allocation and guidance model of regional parking
space with the minimum virtual total cost of parking guidance system as the optimization
objective, considering the psychological willingness of drivers. Zhang et al. [16] proposed
a bi-objective model that takes the utilization rate of the parking lot and the walking
distance into account. The driver was induced to the shared parking lot and the optimal
allocation was realized by particle swarm optimization. Zhao et al. [17] established an
integer linear programming model with the goal of maximizing the allocation of vehicles
under the background of shared parking and, on this basis, extended an estimation model
of quantitative emission reduction, with branch cutting method as the core algorithm
for solving the model. Han et al. [18] based on the predictive guidance strategy, with
queue length as constraint conditions, used the wavelet neural network to predict traffic
congestion sections, so as to establish a wide-area guidance model. Huang et al. [19]
established a shared parking allocation model under the overtime scenario of parking users
to maximize the parking revenue of allocating shared parking spaces.

The above studies were mainly aimed at guiding the driver to the destination park-
ing lot under the condition of car travel and lacked guidance under the condition of
multimodal travel.

With the continuous increase of car ownership, the P&R travel mode has become an
important traffic management measure to alleviate traffic congestion. The current research
focused on the location, transfer demand, and distribution of P&R. Faghri and Lang [20]
used the expert decision method combined with geographic information system technology
to determine the weight of influencing factors and further improved the location model
of P&R facilities. Wang et al. [21] considered the construction of urban rail transit P&R
facilities from the dual aspects of location and scale. Using the user equilibrium distribution
model and multimode distribution method, a location model of urban peripheral P&R
facilities based on investment minimization was established. He et al. [22] introduced
the planning and selection of P&R facilities in Beijing rail transit and used the analytic
hierarchy process and expert scoring method to select the advantages and disadvantages
of the alternative parking facilities. Hendricks and Outwater [23] studied the change of
transfer demand with transfer station capacity, charging, and other factors. Farhan [24]
summarized the method of determining the attracting range of P&R demand and used GIS
technology to study the attracting range of P&R facilities, which was verified by examples.
Wang et al. [25] studied the demand intensity of parking facilities in specific locations,
established the function between the transfer demand intensity and the distance to P&R
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facilities, and analyzed the factors affecting the attraction intensity. There is little research
on the induction method of parking change.

Based on the above situation, this paper determines the travel cost function by consid-
ering the time and cost of each part of the commuting chain and establishes the transfer
selection model considering the maximum walking distance of the driver for a trip and
the maximum parking cost that can be tolerated. The parking price is adjusted dynami-
cally according to the equilibrium of the parking occupancy rate in the region. The paper
constructs the relationship model between the occupancy rate and the parking price, and
the ultimate goal is to achieve equilibrium of the utilization rates of the parking lots in the
same region. At the same time, the proportion of P&R in multimode travel is increased to
improve the traffic condition of the commuting channel. Finally, the effectiveness of the
method is analyzed by numerical experiments on some subway networks in Shanghai and
Shenzhen. The elastic coefficient of price on traffic demand is calculated by the existing
elastic analysis method, and the exhaust emission is analyzed.

2. Park and Ride Induction Model
2.1. Basic Assumptions

This park and ride analysis modeling is mainly in the context of parking behavior
norms and parking demand can be roughly met, so the experiment abides by the follow-
ing hypothesizes:

1. Assuming that the driver stops normally and there is no occupancy of two parking
spaces by one vehicle, the number of remaining parking spaces in the parking lot are
guaranteed to be accurate.

2. There is no zombie vehicle that has a parking time of more than 24 h in each parking
lot, which means the vehicles that remain in the parking space for a long time are
not taken into account here to ensure the normal operation of the parking lot, and
the nearby residents will not park the vehicle in the parking lot at night to avoid the
shortage of spaces in the next morning peak.

3. In the process of P&R induction, it is maintained that the route will not be altered
after receiving induction, and there is no secondary induction.

4. Supposing that the supply of parking spaces can satisfy the parking demand, a car is
allocated at most one parking space.

5. After the transfer of traffic facilities, supply is sufficient and meets the use requirements.

2.2. Parking Cruise Time

Parking cruise time is the time when the driver seeks the appropriate parking space
after entering the off-street parking lot. It can be considered as a time search function
f (γj(t)). Parking cruise time is usually related to the vehicle occupancy in the carport, and
the parking occupancy is the ratio of the total number of vehicles in the parking lot to the
capacity of the parking lot.

γj(t) =
nj(t)

Cj
(1)

Cj represents the number of parking spaces in the parking lot j,
λj(t) represents the arrival rate of vehicles in the parking lot j at time t,
µj(t) represents the departure rate of vehicles in the parking lot j at time t, and
nj(t) =

[
λj(t)− µj(t)

]
(t − t0) + nj(t0) represents the total number of vehicles in the

parking lot j at time t, where t0 is the reference point of vehicle storage at a given time in
the parking lot, namely the initial time of parking guidance.

Usually, the cruise time of the vehicle is related to the current occupancy rate of
the parking lot and the parking information obtained by the driver. In reality, the driver
usually knows the number of free parking spaces in the parking lot, rather than the accurate
information of free parking spaces, assuming that the cruise time of the vehicle in a parking
lot depends only on the use of the parking lot and that the driver chooses the parking
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space randomly. The usual parking cruise time function is shown in Figure 1. When the
parking occupancy is at a low level, the vehicle cruise time increases with the occupancy
growth, but in general, the vehicle cruise time is relatively stable. When the parking
occupancy exceeds a certain value, the vehicle cruise time increases rapidly. When the
parking occupancy is close to 1, the vehicle cruise time gradually approaches infinity.
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Axhausen et al. [26] proposed an average cruise time function.

f
(
γj(t)

)
=

φiδ

1 − γj(t)
(2)

φi represents the time required to search for a parking space in an empty parking
lot, and

δ is an adjustment coefficient, where δ < 1.
According to the cruise time function, the greater the parking occupancy, the longer

the cruise time; the cruise time function is strictly monotonous relative to the park-
ing occupancy.

2.3. Construction of the Cost Function for Park and Ride

P&R means that drivers shift from car travel to public transport—public transport
travel includes rail transit, bicycle, and bus travel.

2.3.1. Car Trip without Park and Ride

The single-traffic travel mode under the P&R mainly means that the driver steers the
car through the whole journey. The cost of car travel is divided into time cost and charge
cost. Among them, the time cost mainly includes the driving time, the parking cruise time,
and the walking time after getting off. The charge cost is mainly the parking fee, and the
model is as follows:

Ucar
ij (t) = α

[
td
ij + f

(
γj(t)

)
+ t f

ij

]
+ Pij(t) (3)

td
ij represents the travel time of the driver from the origin to the parking lot j,
f
(
γj(t)

)
represents the parking cruise time of the parking lot j at time t,

t f
ij represents the walking time from the parking lot to the destination,

Pij(t) represents the parking fee for the parking lot j at time t, and
α represents the value coefficient of the time cost, which can be determined by pro-

duction method or income method.
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2.3.2. Multimodal Travel under Park and Ride

Combined travel mode can comprise the following three travel modes:

• car to rail transit transfer,
• car to rail transit transfer and then transfer to bicycle, and
• car to bus transfer.

These combinations of the travel network are shown in Figure 2.
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1. Car to the rail transit transfer

The travel cost of the car to rail transit transfer is mainly divided into time cost and
charge cost. The time cost includes the driving time of the driver to the transfer parking
lot, the parking cruise time, the time of the driver walking to the subway station after
getting out of the car, the time of the driver waiting for the subway, the travel time of the
driver taking the subway, and the walking time of the driver from the subway station to
the destination. The charge cost mainly includes the parking fare and the cost of subway.
The model is set as follows:

Usub
ij (t) = α

[
td
ij + f

(
γj(t)

)
+ t f

ij + tw
i(sub) + td

i(sub) + t f
i(sub)

]
+ Pij(t) + Pi(sub) (4)

td
ij represents the travel time of the driver from the origin to the parking lot j,
f
(
γj(t)

)
represents the parking cruise time of the parking lot j at time t,

t f
ij represents the walking time from the parking lot to the subway station,

tw
i(sub) represents the waiting time of a driver at the subway station,

td
i(sub) represents the travel time of the driver on the subway,

t f
i(sub) represents the time when the driver walks out of the subway to the destination,

Pij(t) represents the parking cost for the parking lot j at time t, and
Pi(sub) represents the charge for the driver to take the subway.

2. Car to rail transit transfer and then transfer to bicycle

Travel costs for this combination of trips is mainly divided into time cost and charge
cost. The time cost includes the driving time of the driver to the transfer parking lot, the
parking cruise time, the time for the driver to walk to the subway station after getting off,
the time for the driver to wait for the subway, the travel time for the driver to take the
subway, the walking time from the subway station to the shared bicycle station, the shared
bicycle riding time, and the time to walk from the shared bicycle station to the destination.
The charge cost mainly includes the fare of parking, subway, and sharing bicycles. The
model is as follows:

Ubike
ij (t) = α

[
td
ij + f

(
γj(t)

)
+ t f

ij + tw
i(sub) + td

i(sub) + t f
i(sub) + td

i(bike) + t f
i(bike)

]
+ Pij(t) + Pi(sub) + Pi(bike) (5)

td
i(bike) represents the travel time of a driver riding a shared bike,

t f
i(bike) represents the time when the driver walks from the shared bicycle point to the

destination, and
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Pi(bike) represents the charge of sharing bikes for drivers.

3. Car to bus transfer

Travel costs for this combination of trips is mainly divided into time cost and charge
cost. The time cost includes the driving time of the driver to the transfer parking lot, the
parking cruise time, the time for the driver to walk to the bus station after getting off, the
time for the driver to wait for the bus, the travel time on the bus, and the walking time
from the bus station to the destination. The charge cost mainly includes the fee of parking
and the bus fare. The model is as follows:

Ubus
ij (t) = α(td

ij + f (γj(t)) + t f
ij + tw

i(bus) + td
i(bus) + t f

i(bus)) + Pij(t) + Pi(bus) (6)

tw
i(bus) represents the waiting time of the driver at the bus stop,

td
i(bus) represents the travel time on a bus,

t f
i(bus) represents the time when the driver walks from the bus stop to the destina-

tion, and
Pi(bus) represents the charge for the driver to take the bus.
The final expression of individual travel cost function is as follows:

Uij(t) =



U(car) = α
[
td
ij + f

(
γj(t)

)
+ t f

ij

]
+ Pij(t)

U(tr) =


U(sub) = α

[
td
ij + f

(
γj(t)

)
+ t f

ij + tw
i(sub) + td

i(sub) + t f
i(sub)

]
+ Pij(t) + Pi(sub)

U(bus) = α
[
td
ij + f

(
γj(t)

)
+ t f

ij + tw
i(bus) + td

i(bus) + t f
i(bus)

]
+ Pij(t) + Pi(bus)

U(bike) = α
[
td
ij + f

(
γj(t)

)
+ t f

ij + tw
i(sub) + td

i(sub) + t f
i(sub) + td

i(bike) + t f
i(bike)

]
+ Pij(t) + Pi(sub) + Pi(bike)

(7)

2.4. Park and Ride Selection Model of Driver

In addition to the factors mentioned above, the factors affecting the probability of
parking lots are also influenced by the maximum walking distance and the maximum
parking fare that individuals can tolerate. Therefore, in order to consider the above
constraints, the impedance functions of walking distance θW(i,j) and parking fee θP(i,j) must
be defined, respectively.

The walking distance impedance function represents the ratio of the total walking
distance of the driver in a travel to the maximum walking distance that the individual can
tolerate. It can be expressed as follows:

θW(i,j) =
Wj

Wi
max

(8)

Wj represents the total walking distance of the driver from the parking lot to the
destination, and

Wi
max represents the maximum walking distance acceptable to a driver during a trip.

The parking fee impedance function represents the ratio of the parking fee for the
parked lot to the maximum parking fee that the individual can tolerate. It can be expressed
as follows:

θP(i,j) =
Pij

Pi
max

(9)

Pij represents the parking fees at the parking lot j at time t, and
Pi

max represents the maximum parking fee acceptable to the driver in the parking lot j.
For parking interchanges, the tolerance of the driver is different for various locations

of the parking lot, and the maximum parking fare acceptable to the driver is different in
the city center and in the periphery.
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According to the above influencing factors, the parking utility function of individuals
is defined as follows:

ωim(t) =
A

∑
a=1

σaya + σuUi(t) + σpθP(i,j) + σwθW(i,j) + ε (10)

ωim(t) represents the parking utility of the driver at the moment t in the scheme m;
ya(a = 1, 2 . . . .) represents the various attributes of the driver, such as gender and

monthly income, in which a represent the quantity of attributes;
σa represents the coefficients of driver attributes;
σu represents the coefficients of driver travel cost;
σp represents the coefficient of parking fare impedance function;
σw represents the coefficient of walking distance impedance function; and
ε represents the constant term of the utility function.
Using the non-aggregate model [27], it is concluded that the probability value of the

choice of scheme m at any time is Pim(t).

Pim(t) =
e−ωim(t)

1 +
M
∑

m=1
e−ωim(t)

(11)

2.5. Objective Function

This paper aims not only to fulfill the needs of drivers but also to consider the demands
of the parking system’s management; drivers usually choose the parking lot with the
highest probability to travel. Since there is a serious uneven hot and cold phenomenon in
existing transfer parking lots in China, rather than an insufficiency of the overall parking
space, the main goal we considered was to construct a P&R induction model by balancing
the utilization rate of regional parking lots.

The equilibrium of parking utilization can be expressed as the minimum variance of
parking occupancy in the region at time t.

min(r(t)) =
l

∑
j=1

1
l−1 (γj − γ∗)

2

St.
n
∑

j=1
u(i, j) ≤ 1

γj ≤ 1

(12)

The parking guidance control variable was defined. When the parking space in the
parking lot is sufficient, any parking demand should be met in such a way that a single
vacancy is allocated to only one driver.

It was stipulated that the parking occupancy rate of the parking lot shall not exceed 1,
which means that the storage of vehicles in the parking lot shall not exceed the capacity of
the parking lot.

2.6. Dynamic Price Adjustment Method

Since the objective function adopted in this paper was the equilibrium of the occu-
pancy rate, in order to ensure that the driving path can be adjusted in real time, so that
the occupancy rate in the region is balanced, the driver could spontaneously enter the
expected parking lot, the parking fee was altered with the change of the parking occupancy
rate [28–30], and the relationship model between the parking fare and the occupancy rate
was established.

Driver departure time point were defined as t∗. Driver travel time was designated
ttravel , which indicates the interval between departure and the parking lot. The real-time
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price of the parking lot at time t was defined as pj(t). It was assumed that there are two
parking lots j1 and j2 available for drivers to choose in the travel area.

Tj represents the period when the driver stops in the parking lot. Two parking lots
within the same transfer station area that are close in down time can be regarded as
Tj1 = Tj2. If the driver chooses the car travel, the driver travel costs can be regarded as
Ucar

ij1
= Ucar

ij2
for the same traveler. Under the same conditions of walking distance and other

factors, the probability of the same driver choosing j1 and j2 is almost equal. However, the
parking occupancy of different parking lots is different, which leads to the different cruise
times for drivers in different parking lots, which can reflect the different parking costs of
drivers in different parking lots.

Tj1 pj1(t∗1) + α
[
ttravel
ij1

+ f
(
γj1(t

∗
1)
)]

= Tj2 pj2(t
∗
2) + α

[
ttravel
ij2

+ f
(
γj2(t

∗
2)
)]

t∗1 = t∗ + ttravel
ij1

t∗2 = t∗ + ttravel
ij2

(13)

t∗1 , t∗2 represents the time taken to arrive at the parking lot j1 and j2, respectively.
Polarization on both sides of t can be obtained.

k j1
[
pj1(t

∗
1)− pj1(t

∗
1 − 1)

]
+ α

∂( f γj1
(t∗1))

∂γj1
(t∗1)

1
Cj1

(
λj1(t)− µj1(t)

)
= k j2

[
pj2(t

∗
2)− pj2(t

∗
2 − 1)

]
+ α

f (γj2 (t
∗
2))

∂γj2 (t
∗
1)

1
Cj2

(
λj2(t)− µj2(t)

) (14)

The purpose of this research was to study a change of parking price in a parking lot
with its own parking factor. When studying parking lot j1, we assumed parking lot j2 as
a virtual parking lot and assumed that the parking fee was a constant value. This study
postulated that parking fees are charged per unit time. The parking price formula was
determined from the above assumptions and Formula (14) as follows: pj(0) = β

pj(t)− pj(t − 1) = αφiδ

Cj(1−γj(t))
2

(
λj(t)− µj(t)

) (15)

pj(0) represents the initial parking price.
According to Formula (15), it can be concluded that in the case of known arrival and

departure rates, the parking price can change with the parking occupancy.
The specific iterative solution process is shown in Figure 3.
According to the arrival attributes of all induced vehicles, the travel costs of all

drivers in different travel modes were calculated. Combined with the personal attributes
of different drivers, the parking lot and vehicle arrival time selected by all drivers were
preliminarily determined, and the parking occupancy of each parking lot at the future time
point could be predicted. If the variance of parking occupancy in the region was less than a
certain value, it would be published according to the guidance information in the current
guidance system. If the variance of parking occupancy in the area was greater than the
threshold, it iterated again until the variance was less than the threshold.

In this iterative cycle, this paper takes the heterogeneity of the driver into account. In
the context of vehicle–road collaboration, it is easy for the parking guidance platform to
obtain the parking characteristics of the driver through on-board devices and establish the
corresponding feedback mechanism.
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2.7. Impact of Parking Ride Induction on Carbon Emissions

The main purpose of parking is to alleviate traffic congestion in the city and reduce
the travel time of high-emission travel modes such as cars. This paper discusses the
sustainability of a parking guidance strategy based on the theoretical results of carbon
emission calculation and measures the contribution of research results to the global carbon
peak and carbon neutrality [31].

Among the four travel vehicles involved in this paper, bicycles, as green travel vehicles,
have no exhaust emissions. Moreover, the main energy consumption mode of the subway
is electricity, there are no exhaust emissions. Therefore, the exhaust emissions of traffic
travel in this section mainly originated from the cars and buses.

Carbon monoxide, hydrocarbons, and carbon oxides in the tail gas generated by motor
vehicles were the main emission pollutants.

Benedek and Rilett [32] used the TRANSYT-7F average speed function to describe the
exhaust emissions in the road traffic network.

Ra =
DeBVa

CVa
(16)

Ra represents the emission rate of vehicles on road a;
Va represents the average speed of all vehicles on the road a; and
B, C, D are constants.
According to the values of different parameters, Yin [33] expressed TRANSYT-7F in

two forms:

ea(xa) = ROPa · La = 3.3963 · e0.01456Va

1000Va
· La (17)
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ea(xa)= 0.0238 · ta(xa) · e0.7962 La
ta(xa) (18)

ROPa represents the exhaust gas generation rate, and
La represents the length of road segment a.
Formula (17) indicates that emissions are related to average vehicle speed and segment

length, and Formula (18) indicates that emissions are related to total travel time and
road length.

3. Numerical Experiment

In order to verify the effectiveness and applicability of the proposed method, this
paper selected some rail transit routes in Shanghai and Shenzhen and built the experimen-
tal network.

A questionnaire was designed to establish the parking choice behavior model of
commuter drivers [34]. A total of 113 valid questionnaires were obtained through online
and offline distribution. Through the processing of the survey data, the maximum travel
distance that the driver could tolerate was found to be 728.84 m, and the maximum parking
fee per unit time of the parking lot near the destination that the driver could accept was
about 5.72 RMB per hour. At present, China encourages P&R by reducing parking fees.
Usually, drivers who use the relevant certificates for P&R will be charged the parking fee
per unit time for one day, and the maximum acceptable cost of a transfer parking lot is
RMB 8 per day.

The statistical analysis software Stata was used to fit the experimental data by binomial
logit. According to the experimental results, it was concluded that the actual driving years
of the driver, the monthly income of the family, and the number of cars available in the
family had a significant impact, and the three factors in the scheme attribute had an
important impact on travel.

The fitted function was as follows:

ln(ωim(t))= −0.62y5 − 0.52y6 − 1.02y7 − 0.21Ui(t)− 1.119θP(i, j)− 2.27θW(i, j)+3.09 (19)

y5, y6, y7 represent the actual driving years of the driver’s, monthly household
income, and the number of cars in family, respectively. Refer to Table 1 for details.

Table 1. Symbol of driver’s personal attributes.

Symbol Variable Attributes Symbolic Value

y5 Actual driving years

Less than one year 0
2–3 years 1
4–5 years 2
6–10 years 3

More than 10 years 4

y6
Monthly household

income

Less than RMB 5000 0
RMB 5000–10,000 1

RMB 10,000–15,000 2
RMB 15,000–20,000 3

More than RMB 20,000 4

y7
Number of cars in the

family

1 car 0
2 cars 1
3 cars 2

More than 4 cars 3

3.1. Road Network Based on Shanghai
3.1.1. Experimental Parameter Setting

The numerical experiment period was from 06:00 to 09:10, and the data statistical
time interval was 10 min. Assuming that the drivers were commuting at work, there were
no leaving vehicles in the parking lot in the experiment, only the phenomenon of vehicle
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arrival. This assumption is reasonable for morning peak commuting. In order to reflect
the experimental road network more truly, it was necessary to assume the experimental
conditions and determine the relevant parameters before building the road network.

1. Determination of maximum walking distance. The total walking distance that the
driver could tolerate was 728.84 m.

2. Determination of the maximum parking cost. According to the survey, the maximum
parking fee of the parking lot near the destination acceptable to the driver was about
RMB 5.72 per hour, and the maximum acceptable parking fare for the transfer parking
lot was RMB 8 per day.

3. Determination of time value coefficient. Work travel time value of Chinese residents
in 2019 α was RMB 54.66 per hour based on Production Methods.

4. Subway line determination. When building the subway network, the subway depar-
ture time was set to six in the morning, the departure interval of each subway line
was 5 min, and the travel time between the two subway stations was about 2 to 6 min.

5. The definition of subway fare was based on the number of stations through, and the
number of stations was defined as z.

Pi(sub) = 2 z < 4
Pi(sub) = 3 4 ≤ z < 8
Pi(sub) = 4 8 ≤ z < 11
Pi(sub) = 5 z ≥ 11

(20)

6. Determination of transfer walking distance in the transfer subway stations. The
transfer distance within the subway station was set to 198 m. According to the
existing research, the pedestrian walking speed was set to 1.2 m per second [35].

7. The network shown in Figure 4 was selected to participate in the experimental parking
setup under the specific circumstances detailed in Table 2.

8. According to the experimental parameters, Formula (18) was selected to calculate the
exhaust emission.
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According to the road network situation, the parking lot near 3, 55 stations is selected
as the P&R parking lot, and 24 stations are selected as the area near the destination, and
two related destination parking lots are set.

Table 2. Parameter settings of parking lot.

3 (P&R) 55 (P&R) 24(a) 24(b)

Parking lot capacity 169/260 116/200 54/120 78/150
Initial parking fee (RMB) 6.3/day 5.2/day 3.9/h 4.1/h

Initial parking occupancy rate 0.65 0.58 0.45 0.52
Distance from parking lot to

subway station(m) 175 180 120 63

φi 55 50 42 45
δ 0.82 0.87 0.82 0.81

After setting the experimental parameters, the relevant variables of the driver were
set in the road network. Two hundred drivers were put into the road network, and the
personal attributes and travel attributes related to the driver are referred to in Tables 3–5.

Table 3. Driver’s personal attributes.

No. Actual Driving Years Monthly Household Income Number of Cars in the Family

1 4 4 3
2 1 0 0
3 0 1 0
4 1 1 0

. . . . . . . . . . . .
200 0 2 0

Table 4. Driver’s travel attributes.

No. Departure Time
Travel Distance from Departure to

Parking Lot (km)
Travel Time from Departure to

Parking Lot (min)

3 55 24(a) 24(b) 3 55 24(a) 24(b)

1 7:25 7.59 4.26 39.23 39.44 24 13 92 95
2 7:40 2.98 1.79 30.21 29.78 7 5 72 70
3 7:10 7.12 3.99 45.32 44.21 22 12 103 99
4 7:35 6.58 3.02 35.67 33.71 20 9 85 80

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
200 7:35 7.05 6.76 62.12 62.23 22 21 118 118

Table 5. Driver’s travel distances.

No.
Walking Distance from Subway

Station to Destination (m)
Walking Distance from Parking

Lot 24(a) to Destination (m)
Walking Distance from Parking

Lot 24(b) to Destination (m)

1 142 46 69
2 68 91 150
3 84 160 120
4 55 55 89

. . . . . . . . . . . .
200 212 137 96

3.1.2. Model Solving and Analysis

According to the experimental road network and basic assumptions, there were
many constraints placed on the road network. Any linear programming problem has
a corresponding dual linear programming problem. In order to reduce the constraints,
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the dual theory was used to solve the objective equation. In the dual theory, the original
problem is symmetric with the dual problem, and the symmetric dual algorithm is used
to solve it [36,37]. Combined with Formula (19) and Tables 3–5, the distribution of each
parking lot was obtained as shown in the Table 6.

Table 6. The arrival rate of each parking lot.

Timetable 07:00 07:10 07:20 07:30 07:40 07:50 08:00 08:10 08:20 08:30 08:40 08:50 09:00

3 1 4 9 8 13 11 7 4 0 0 0 0 0
55 3 9 6 11 17 7 8 2 0 0 0 0 0

24(a) 0 0 0 0 0 0 0 0 2 7 8 10 7
24(b) 0 0 0 0 0 0 0 0 6 7 9 11 13

Figures 5 and 6 show the arrival of the vehicle in the parking lot near the destination
and the transfer parking lot separately, which indicates the time when the vehicle arrives
at the parking lot and the corresponding parking occupancy rate and the parking price.
After inducing all the vehicles, the change of the parking occupancy rate of each parking
lot is shown in Table 7.
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Table 7. Changes of parking occupancy rate.

Parking Lot ID 3 55 24(a) 24(b)

Parking occupancy rate before induction 65% 58% 45% 52%
Parking occupancy rate after dynamic price induction 86.92% 89.50% 73.33% 82.67%

Rate of change 25.97% 54.31% 62.96% 58.98%
Parking occupancy rate after static price induction 78.85% 71.00% 100% 100%

Rate of change 14.28% 22.41% 122.22% 92.31%
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It can be seen from Table 7 that the price regulation gave the driver a parking with a
low occupancy rate trend. After the application of the induction process, the parking lot
with low occupancy rate had larger change rate because the capacity of the 24(b) parking
lot was larger than that of the 24(a), so the change rate of the two parking occupancy rates
was similar. For specific trends, refer to Figures 7 and 8.
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It can be seen from Table 8 that the parking guidance under dynamic price control
reduced the number of vehicles entering the city center effectively compared with the
parking guidance under static price control, so as to achieve the purpose of alleviating
traffic congestion. Under the static price, the destination parking lot reached saturation.
However, if there are sufficient parking spaces in the destination parking lot, some vehicles
will continue to flow into the city center. Likewise, because P&R reduces the amount of
time a car is used, and thus the total emissions of a vehicle, it can reduce carbon emissions
by nearly 35% during a commute, making it an environmentally friendly way to travel.

Table 8. Comparison of P&R guidance under different price adjustments.

Dynamic-Price P&R Guidance Static-Price P&R Guidance Optimization Rate

Average cruise time of destination parking lot (min) 3.49 ∞ -
Number of vehicles flooding into the city center 80 138 43.01%

Average vehicle exhaust emission (kg) 3.86 5.83 33.79%

In order to analyze the impact of parking price on the elastic demand of traffic flow,
parking lot 3 and 24(b) were selected as the targets to analyze the change of traffic flow
demand in the road network. When analyzing parking lot 3, the price of other parking lot
was set to dynamic price, and the influence of price on traffic flow demand was analyzed
with intervals of RMB 0.5. Specific analysis results are shown in Tables 9 and 10.
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Table 9. Price elasticity analysis of parking lot 3.

Parking Price of Parking Lot 3 (RMB)
Parking Demand Elasticity

3 55 24(a) 24(b)

6.3 - - - -
6.8 10.14 3.39 3.30
7.3 −1.11 4.55 3.41 3.24
7.8 −4.59 13.70 10.86 4.93
8.3 −9.05 7.04 14.63 9.65
8.8 −3.91 0.71 7.07 4.78

The price fluctuation of parking lot 3 showed a negative elasticity to its own parking
lot. The price of its own parking lot increased, and the number of vehicles decreased. It
can be seen that the elasticity index was the highest between the RMB 7.8 and 8.8. which
corresponded to the maximum price that the drivers could tolerate in the survey, i.e., RMB
8 per day. Other parking lots showed a positive elasticity with the price of parking lot 3.
This was because vehicles that did not go to parking lot 3 and went to alternative parking
lots according to the dynamic price adjustment. The elasticity index of price changes
for these four parking lots was basically greater than 1, which indicated that price had
a significant indigenous impact on traffic demand. Among them, parking lot 55 had the
largest increase in traffic flow. This may be due to the fact that parking lot 3 and parking
lot 55 were transfer parking lots, which could be replaced by each other.

Table 10. Price elasticity analysis of parking lot 24(b).

Parking Price of Parking Lot 24(b) (RMB)
Parking Demand Elasticity

3 55 24(a) 24(b)

4.1 - - - -
4.6 0.35 2.21 10.38 −8.35
5.1 0.88 2.37 5.03 −11.56
5.6 0.89 9.51 5.17 −20.98
6.1 0.73 13.63 17.21 −62.77
6.6 0.00 4.39 2.49 −12.78
7.1 0.21 2.19 2.48 −15.00

The price fluctuation of the parking lot 24(b) showed a negative elasticity to its
own parking lot. The price of its own parking lot increased, and the number of vehicles
decreased. It can be seen that the elasticity index was the highest between the RMB 5.6 and
6.1. which corresponds to the maximum price that the driver can tolerate in the survey of
RMB 5.72 per hour. Other parking lots showed a positive elasticity with the price of parking
lot 24(b). The largest increase in traffic flow was in parking lot 24(a), which may be due
to the fact that parking lots 24(a) and 24(b) were the parking lots around the destination,
which could be replaced by each other. The impact on parking lot 3 was small, which may
be due to the fact that parking lot 3 had reached an equilibrium state.

3.2. Road Network Based on Shenzhen
3.2.1. Experimental Parameter Setting

The experimental method was verified by selecting the Shenzhen rail transit network,
which is similar to Shanghai’s rail transit network and has similar economic conditions. The
following road network depicted in Figure 9 can be obtained by simplifying the Shenzhen
rail transit network. The parameters of parking lot have been completed in Table 11. For
the hypothetical road network experimental conditions, refer to Section 3.1.1.
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Table 11. Parameter settings of parking lot.

65 (P&R) 86 (P&R) 68

Parking lot capacity 33/60 26/50 12/30
Initial parking fee (RMB) 5.0/day 4.5/day 3.0/h

Initial parking occupancy rate 0.55 0.52 0.40
Distance from parking lot to subway station(m) 78 92 40

φi 50 52 46
δ 0.85 0.90 0.82

After the parameter setting of the parking lot was completed, the relevant parameters
of drivers in the road network were set as shown in Tables 3–5; due to the small scale of
parking lot, the remaining parking space was limited and the first 50 drivers were selected
for induction.

3.2.2. Model Solving and Analysis

Since the traffic conditions and economic development level of Shenzhen are similar to
that of Shanghai, according to the Formula (19) and the dynamic price adjustment method,
the arrival of vehicles in each parking lot was obtained as shown in Figure 10, which indicated
the time when the vehicle reached, the parking lot occupancy rate, and parking lot price at
the corresponding time. Finally, the change of parking occupancy in each parking lot and
parking guidance at different prices are shown in Tables 12 and 13 respectively.

It can be seen from Table 12 that the price regulation gave the driver a parking with
a low parking occupancy trend. In the process of applying the guidance, the occupancy
rate of the parking lot with the lower parking occupancy rate changed faster. As shown
in the table, differences in parking occupancy at different price-induced gaps were small,
this was because the parking capacity was small, but the static price of parking occupancy
variance was about 10 times the dynamic price.

It can be seen from Table 13 that the parking transfer guidance under dynamic price
regulation reduced the entry of vehicles into the city center compared with static price
regulation and achieved the purpose of alleviating traffic congestion to a certain extent.
Price regulation greatly alleviated the parking pressure in the parking lot in the city. Under
the static price, the destination parking lot reached saturation. Likewise, as park and
ride reduces the use time of the car, thereby reducing the exhaust emissions, which can
be reduced by nearly 20% during the commute, it is an environmentally friendly way
to travel.
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Table 12. Changes of parking occupancy rate.

Parking Lot ID 65 (P&R) 86 (P&R) 68

Parking occupancy rate before induction 55% 52% 40%
Parking occupancy rate after dynamic price induction 85.00% 90.00% 83.33%

Rate of change 54.55% 73.01% 108.33%
Parking occupancy rate after static price induction 83.33% 80.00% 100%

Rate of change 51.51% 53.85% 150.0%

Table 13. Comparison of P&R guidance under different price adjustments.

Dynamic-Price
P&R Guidance

Static-Price
P&R Guidance Optimization Rate

Average cruise time of destination parking lot (min) 3.77 ∞ -
Number of vehicles flooding into the city center 13 18 27.78%

Average vehicle exhaust emission (kg) 2.82 3.52 19.89%

In order to analyze the impact of parking lot price on the elastic demand of traffic flow,
the parking lot 68 was selected as the target to analyze the change of traffic flow demand.
The price of the remaining parking lot was set as the dynamic price, and the influence
of the parking price on the traffic flow demand was analyzed at an interval of RMB 0.5.
Specific analysis results are shown in Table 14.

Table 14. Price elasticity analysis of parking lot 68.

Parking Price of Parking Lot 68 (RMB)
Parking Demand Elasticity

65 86 68

3.0 - - -
3.5 0.00 0.44 −0.41
4.0 1.07 0.24 −1.07
4.5 0.00 0.50 −0.64
5.0 1.43 0.53 −4.00
5.5 1.38 0.00 −4.71
6.0 0.92 1.14 −16.00

The price fluctuation of parking lot 68 showed a negative elastic state for its own
parking lot. The price of its own parking lot increased, and the number of vehicles
decreased. It can be seen that the elastic index was the highest between RMB 5.5 and 6.0,
which corresponds to the maximum price that the driver can tolerate in the survey, i.e.,



Symmetry 2021, 13, 2176 18 of 20

RMB 5.72 per hour. Other parking lots showed a positive elastic state with the price of
parking lot 68. Among them, parking lot 86 changed in the early stage of traffic flow, and
the transfer parking lots changed together in the later stage.

4. Conclusions

This paper proposes a probability model of P&R selection for commuter traffic, taking
the travel time cost, walking distance, parking cruise time, and personal attributes of
drivers into account. With the equilibrium of regional parking occupancy as the opti-
mization objective, this paper studies the parking price adjustment method, and realizes
vehicle guidance through price orientation, so as to realize the balanced driving of vehicles
into each parking lot. The experimental results show that the dynamic price adjustment
promotes the balanced distribution of drivers to each parking lot. The elasticity analysis of
different parking lot price fluctuations on traffic demand shows that price adjustment has
a great influence on changing traffic flow demand. It can effectively reduce the influx of
vehicles into the city center, in order to ensure punctuality to work, to encourage drivers
to choose the way of car to rail transit transfer, and to reduce the occurrence of traffic
congestion during commuting time, while also decreasing the car travel time, reducing
vehicle carbon emissions, and being an environmentally friendly way to travel.

The research results can be used for urban intelligent parking management platforms,
all kinds of travel guidance system, etc. Under the background of cooperative vehicle
infrastructure, the guidance system can push relevant information to the driver accord-
ing to their preference, such as parking fees, parking occupancy, travel time, and other
information, to achieve the goal of balanced occupancy.

In this study, the influence of the driving behavior of non-induced vehicles and
vehicles not controlled by the guidance system on the parking occupancy rate and parking
price was not considered, as well as the influence of the adjustment frequency, change
frequency, and change range of parking price on the psychology of the driver during the
driving process.

Future research can consider refining the calculation methods of vehicle emissions
and vehicle fuel consumption and incorporate them into the estimated travel costs. Large
sample data can be used to fit the P&R selection model for people in different cities. It is
also a need for a qualitative study on the range value of the parking price on the elasticity
coefficient of traffic demand, which is conducive to building a smart parking platform and
improving the parking guidance system.
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