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Abstract: A/B testing is used in digital contexts both to offer a more personalized service and to
optimize the e-commerce purchasing process. A personalized service provides customers with the
fastest possible access to the contents that they are most likely to use. An optimized e-commerce
purchasing process reduces customer effort during online purchasing and assures that the largest
possible number of customers place their order. The most widespread A/B testing method is to
implement the equivalent of RCT (randomized controlled trials). Recently, however, some companies
and solutions have addressed this experimentation process as a multi-armed bandit (MAB). This is
known in the A/B testing market as dynamic traffic distribution. A complementary technique used
to optimize the performance of A/B testing is to improve the experiment stopping criterion. In this
paper, we propose an adaptation of A/B testing to account for possibilistic reward (PR) methods,
together with the definition of a new stopping criterion also based on PR methods to be used for
both classical A/B testing and A/B testing based on MAB algorithms. A comparative numerical
analysis based on the simulation of real scenarios is used to analyze the performance of the proposed
adaptations in both Bernoulli and non-Bernoulli environments. In this analysis, we show that the
possibilistic reward method PR3 produced the lowest mean cumulative regret in non-Bernoulli
environments, which proved to have a high confidence level and be highly stable as demonstrated by
low standard deviation measures. PR3 behaves exactly the same as Thompson sampling in Bernoulli
environments. The conclusion is that PR3 can be used efficiently in both environments in combination
with the value remaining stopping criterion in Bernoulli environments and the PR3 bounds stopping
criterion for non-Bernoulli environments.

Keywords: A/B testing; multi-armed bandit; stopping criterion; numerical analyses

1. Introduction

Currently, there is a major trend across different (retail, media, news, online advertis-
ing) companies to provide customers with the fastest possible access to the contents that
they are most likely to use.

At the same time, companies that offer e-commerce services through their website or
app are continuously optimizing the purchasing process so as to reduce customer effort
to complete the online purchasing process and assure that the largest possible number of
customers place their order.

The preferred approach for this and other types of service or user interface optimiza-
tion solutions is to continuously make changes to the offered services or interfaces applying
a specific indicator to measure which change produces the best expected indicator value.

This type of experimentation is commonly known as A/B testing. It is usually imple-
mented by means of ad hoc in-house solutions or services or specialized software such as
Google Analytics [1] or Optimizely [2].

The most widespread classical method for A/B testing is to implement the equiva-
lent of RCT (randomized clinical trials): classical hypothesis testing techniques (usually
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t-Student with the Wald test) are applied to two randomized sub-samples (or as many
samples as there are test variations) of customers to compute the number of experiments
required for each sub-sample. The result is used to identify the best variation or define the
maximum probabilities of type I and II error and the minimum expected effect as input
values, if results are not statistically significant. Then either the variation with the highest
expected value or the original solution will automatically be used depending on whether
or not the test results are statistically significant. Further tests with other variations can be
run continuously and iteratively.

Lately, some companies (like Google Analytics) have adopted a multi-armed bandit
(MAB) problem-solving approach for their solutions [3–8]. They reused existing algorithms
to deal with the exploration–exploitation trade-off. Known as dynamic traffic distribution in
the A/B testing field [9], this technique calls for much fewer experiments. User guidelines
and common errors arising when using these techniques in A/B testing are reported in [10].

Thanks to its sound performance processing delayed rewards, Thompson sampling [5]
is the most popular MAB algorithm. However, it has the drawback that a priori knowledge
of the type of distribution associated with the rewards or indicator is required. Purchase
price, navigation time, number of pages visited before purchase or other factors may
determine the distribution type. Unless action (purchase or content viewing) success or
failure are measured by Bernoulli distributions, the distribution type may be unknown.

Another complementary option for optimizing A/B testing performance is the use of
a better stopping criterion [11,12]. Bayesian techniques can be used for hypothesis testing
to determine statistical significance. Again, however, Bayesian analysis depends on a priori
knowledge of the rewards distribution type.

It has been found [13] based on recent numerical analyses that possibilistic reward (PR)
methods [8] fare better than other MAB algorithms in specific delayed rewards scenarios,
e.g., digital marketing content recommender systems. PR methods have the advantage
that the reward distribution does not have to be known beforehand, although they have
need of a stopping condition based on Bayesian or non-frequentist hypothesis testing. A/B
testing can be carried out using the approximate rewards distribution function output by
PR methods, governed by the stopping criterion.

The contributions of this paper are as follows:

• A performance comparison of the methods reported in the literature with a numerical
analysis based on the precise simulation of real scenarios, as it is extremely difficult to
evaluate all the methods in the real A/B testing configuration with statistical power.
As far as we know, this is the first comparison for this type of problem.

• Apply PR methods, a recent family of MAB problem-solving methods, to A/B testing
with dynamic traffic allocation technology. These methods have proved to outper-
form classical methods mainly in contexts where rewards are delayed and do not
match a parametric distribution. These are common scenarios in many A/B testing
configurations.

• Propose and develop a new stopping criterion for A/B testing configurations (inde-
pendent of static or dynamic configurations) also based on PR methods and applicable
in any usual A/B testing configuration.

The paper is structured as follows. Section 2 gives a brief description of A/B testing
and improvements aimed at optimizing how tests are carried out (dynamic traffic distribu-
tion and stopping criterion). Section 3 briefly reviews possibilistic reward methods and
their use in A/B testing. A new stopping criterion based on PR methods founded on both
value remaining and confidence levels is introduced in Section 4. Section 5 describes the
numerical analysis carried out and the results. Lastly, some conclusions and future research
work are outlined in Section 6.

2. A/B Testing: Optimization of Digital Services and Content through Internet

It is common practice in companies that offer services and products through online
channels (web and mobile apps) to continuously optimize their user interfaces with the aim
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of improving one or more of their key business indicators, such as customer satisfaction,
online sales, content consumption times, or advertising conversion rates. Examples of
sectors that perform this optimization are Internet travel agencies, the retail sector (clothing,
food,...), content services (Netflix, HBO, Spotify...), news services or large multinational
companies (Amazon, Google, Facebook...).

For optimization purposes, continuous experimentation is conducted on:

• The creation of different alternative products or services: changing the size, color
and shape of user interfaces, altering the order of the purchase process steps, offering
different contents, establishing different prices for a product, etc.

• The division of customers or users who access the service through web or digital
channels into different groups, where each group is offered a version or variation of
the experiment.

• The identification of the best variation according to a previously defined indicator,
such as a conversion ratio in advertising, the number of times a button is clicked or
a page is accessed, the browsing time, number of steps to make a purchase or the
income earned.

These experiments are known in the industry as A/B testing, randomized controlled
trials (RCT) where different variations are tested until there is statistical significance.

Therefore, according to the statistical techniques applied in RCT, A/B testing will
randomly divide the set of customers/users in as many sub-samples (groups) as variations
are to be tested. The minimum number of experiments to be executed to assure statistical
significance must be defined a priori using classical hypothesis testing techniques. Then,
each variation is shown to one group until the necessary number of experiments is reached,
where each group should include the same number of experiments.

The most widespread techniques for identifying the minimum number of experiments
to be executed to assure statistical significance (p-value ≤ α) are the Wald or t-Student tests,
where the following input parameters must be provided:

• α, false positive rate, or type I error.
• β, true positive ratio, or (1—type II error).
• Minimum desired effect of the variation.

Note that the winning variation will be automatically configured for all customers/users
until a new experiment is performed on the same service or content.

Two options are currently used to implement A/B testing:

• Ad hoc developments, mainly using proprietary software (primarily large content
managers, such as Google, Netflix, Facebook, Amazon...), or libraries, such as Face-
book Planout, and plug-ins by e-commerce platforms, such as Magento or Pentashop.

• Specialized experimentation software, where there is a wide variety of vendors,
notably Google Optimizer, Optimizely, AB Tasty and VWO.

These products usually have a similar standard operating mode composed of the
following steps:

1. A small javascript code snippet is inserted in the home page and in each page involved
in the experimentation. This javascript library is responsible for implementing the
different variations by modifying the html of each page.

2. One or more variations are made to the format of the web page to be changed using a
tool that shows the current page and elements, such as menu options, button sizes,
typeface, colors, or element arrangements on the web page to be changed.

3. The objective to be optimized is defined. Most products offer different types of
objectives. The javascript code snippet inserted in the customer web is also responsible
for reporting whether or not an objective and its value are achieved. Common
objectives are number of clicks, conversions, sales or navigation time.

4. The statistical significance requirements are defined: α, effect size and statistical power.
5. The test is executed:

• Traffic is distributed uniformly or using weights.
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• If the results are statistically significant, the winning variation will become the
default configuration until another experimentation or test is carried out.

Optimized testing depends on two optimization processes, namely dynamic traffic
distribution and the stopping criterion. The latest A/B testing solutions include these
processes as a means of achieving statistical significance by avoiding tests of the worst
options to achieve the lowest opportunity cost.

2.1. Dynamic Traffic Distribution

In A/B testing, traffic is originally distributed equally for each of the variations to
provide the same number of experiments. However, the percentage of traffic that each
experiment is to receive can also be set manually. Nevertheless, it is more efficient to
redistribute traffic dynamically, sending more or fewer experiments to variations that
perform better or worse, respectively, provided that statistical significance is achieved.

MAB methods are a good alternative for dynamic traffic distribution, choosing the
option (arm) that is displayed when a user/customer views a website. This will send
a scenario-dependent delayed stochastic reward (Bernoulli or other distributions). The
implemented option selection strategy should minimize the opportunity cost, thereby
optimizing the expected reward value.

A review of the most important strategies for the MAB problem can be found in [14],
and a numerical study on the basis of five complex and representative scenarios was
conducted and reported in [8] to compare their performances.

MAB-based dynamic traffic distribution solutions for measuring action success or
failure (Bernoulli distributions) are:

1. Thompson sampling adapted for Bernoulli rewards based on probability matching.
This method weights the probability of the expected value of an option being greater
than the others. This weight (or selection probability) is used to choose which option
from a random sample is most likely to be the best for execution. This weight is
usually calculated applying simulation techniques, which have high computational
costs. Therefore, weights are only updated every N hours or N options. Thompson
sampling is the most popular MAB-based dynamic traffic distribution technique on
the market, as it has very good performance, even within commercial A/B testing
systems where there is a time delay between an option and its feedback [13]. Google,
with Google analytics (although the current version for experimentation, Google
Optimize, does not yet support MBA algorithms), VWO [15], and ABTasty [16] are
some of the companies adopting this approach.

2. Adapted e-greedy algorithms. This is a simpler algorithm, offering linear rather than
logarithmic convergence, which calculates the best options at regular intervals or
after N iterations. The algorithm then distributes 80% of the traffic to the best options
(exploitation), whereas the other 20% is distributed to all options (exploration) for
the duration of the iteration. Adobe Target [17] is an example of this solution. Adobe
Target uses Bernstein’s confidence bounds to run an hourly check of the best two
options. These two options then receive 80% of the traffic.

3. Although not reported, some large companies implementing their own ad hoc experi-
mental software may very well be using a more efficient form of Thompson sampling,
with dynamic algorithm updating at each decision. Otherwise, there is little infor-
mation in the literature on how dynamic traffic distributions within non-Bernoulli
distribution scenarios are performed. We think that this is the option adopted by im-
portant content managers since the algorithm is well known, and it works optimally
in scenarios under Bernoulli delayed rewards.

Thompson sampling is not an option for experiments within a non-Bernoulli scenario,
that is, measuring browsing time, number of visited pages, total revenue, etc., because the
reward distribution cannot be parameterized.

Even in some cases where the reward distribution can be parametrized on one family
of distributions, it will be necessary, if there is no simple way to compute the a posteriori
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distributions (conjugate priors, for example), to apply simulation techniques. This can
make the computation intractable or computationally very expensive. Therefore, the major
companies, such as Adobe and ABTasty, use other alternatives, mainly a variation on
e-greedy algorithms.

As pointed out in [18], “Other vendors such as Google, with Google Analytics, and
ABTasty, do not provide information on whether or not and how they perform dynamic
traffic distribution with objectives not following a Bernoulli distribution”.

However, PR methods are an alternative in this context because no knowledge of the
distribution type associated with the rewards or indicator for optimization is required
beforehand. On this ground, we put forward an alternative PR method-based dynamic
traffic distribution for A/B testing within non-Bernoulli reward scenarios.

2.2. Stopping Criterion

The stopping criterion plays a key role in the execution of A/B testing experiments. It
is used to decide when a variation is considered to be the best. It stops the traffic to the
other variations and automatically sets up this variation as the default configuration until
the next experiment or test is carried out.

The de facto method used to define the stopping criterion in most approaches is based
on a classical hypothesis test, where:

• The variation existing before the test is performed is considered as the default variation,
and the null hypothesis establishes that the new variations are not better than the
default configuration.

• The number of samples required for each variation to assure statistical significance
is computed before performing the test. The false-positive, false-negative rates and
minimum detectable effect also have to be established. The most used hypothesis tests
are the Ward, t-student or χ̃2 tests.

• Then, the test is run with the samples for each variation.
• If the test does not reject the null hypothesis, then the default configuration continues

to be used. Otherwise, we will use one of the alternative variations as the best.
• All the traffic will be diverted from the default variation to the best variation.

Note that if there are more than two variations, adjustments, such as the Bonfer-
roni correction [19], are usually made to counteract the increase in the probability of
type I errors.

However, these classic stopping criteria are not very efficient, since they are unable to
dynamically stop the test when there is enough evidence to suggest that one variation is
better than the others [20].

Recently, the most innovative companies are introducing other dynamic stopping
criteria to reduce testing costs, whereby they arrive at the same statistical significance in a
similar way. These new methods, although perfectly applicable to classical A/B testing,
come hand in hand with the new methods for dynamic traffic distribution. The multi-armed
bandit paradigm is the most popular, since the number of samples that have to be executed
for each variation is determined dynamically rather than using classical hypothesis tests to
identify the number of samples required to achieve statistical significance.

These new criteria are based on different approaches (Bayesian, inequalities bounds...).
We will now review the most important approaches. However, we should first establish
the configuration criteria for proper comparison in the numerical analysis section.

When defining a stopping condition, it is important to define the conditions for a test
to be considered positive. To do this, a parameter nomenclature should be defined, and
standard terminology should be used across the different methods. For clarity’s sake, we
will try to stick to the classical nomenclature:

• α, this value represents the maximum number of false positives or the type I error
percentage threshold considered acceptable when identifying the winning variation.
The lower this value is, the later the test stops. Accordingly, (1 − α) will be the
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confidence threshold that we consider adequate to consider the default variation as
the best.

• β, this value represents the maximum number of false negatives or the type II error
percentage threshold that we consider acceptable when identifying the winning
variation. The lower this value is, the later the test stops. Accordingly, (1− β) will be
the confidence threshold that we consider adequate to consider one of the alternative
variations as the best.

• MED (minimum detectable effect), this value is closely related to parameter β. It
indicates the percentage deviation from the target of the default variation required for
an alternative variation to be considered better.

The stopping criteria most commonly used by leading manufacturers are currently
based on one of the following two approaches:

• a first approach is based on a Bayesian approach [1,20], where N simulations are
executed every x hours. In each one, the expected value of each variation is sampled
according to its density function (this density function corresponds to a beta function
in the case of Bernoulli rewards). Then, the so-called value remaining is computed for
each simulation according to

value_remaining = (vmax − v∗)/v∗,

where vmax is the best variation across the simulations and v∗ is the value of the best
variation in the current simulation.
The next step is to compute the percentile pthres (usually 95 %) for the value remaining
across all simulations. The test ends when pthres is lower than parameter ρmin.
ABTasty and VWO are based on this approach, and Google is one of the vendors that
used this stopping criterion. Note that this stopping method is only practicable if the
family of probability distributions to which the rewards belong is known a priori, so
that the uncertainty of their parameters and, consequently, the probability function of
the expected value of each reward can be modeled using a Bayesian approach. This is
immediate in Bernoulli distributions, but we do not know how vendors like Google
Analytics implement this stopping condition for the other objective. It is probable,
therefore, that Google Analytics only implements MAB with this dynamic stopping
condition in situations with Bernoulli distributed rewards.
For this test to be comparable with classical hypothesis tests, we have to account for
the fact that this approach does not consider null or alternative hypotheses; instead
one hypothesis is considered to be better than another if there is a confidence inter-
val. In order to comply with the above terminology, we would have to make the
following distinction:

– α corresponds to the value (1-pthres) as long as the default variation is the win-
ning variation.

– β corresponds to the value (1-pthres) as long as the winning variation is any of the
new variations.

The most popular configuration for this approach is to use the same value for parame-
ters α and β, usually 0.05. Besides, MED matches parameter ρmin.
Algorithm 1 describes the method for Bernoulli distributed rewards. Briefly, this
algorithm works as follows. First, a vector is initialized containing the number of wins,
i.e., the number of times each variation comes out on top across all the simulations
(lines 1–3). Second, a sample is iteratively generated with the number of successes and
failures of each variation of a Beta distribution for each simulation, and the counter
of the number of wins of the variation with the largest sample is incremented (lines
4–10). Third, for each of the N simulations, the value of its value remaining and the
percentile related to the required confidence level for all the values remaining are
computed (lines 11–16). Finally, we check whether or not this value is lower than the
MED parameter to decide if the stopping criterion condition is met (lines 17–22).
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Algorithm 1 Value remaining stopping criteria

Require: (N: number of simulations, success, f ail: arrays including the number of success
and fails rewards of each variation, respectively;)

Ensure: (True/False)

for i ∈ {1,...,num_variations} do
best_arm[i]← 0

end for
for i ∈ {1, ..., N} do

for j ∈ {1,...,num_variations} do
sims[i][j] ∼ Beta(1 + success[j], 1 + f ail[j])

end for
max_var ← argmax(sims[i])
best_arm[max_var]← best_arm[max_var] + 1

end for
best_arm_o f _sims← argmax(best_arm)
for i ∈ {1,...,N} do

max_value← max(sims[i])
value_max_sims← sims[i][best_arm_o f _sims]
rvalue_remain[i]← (max_value− value_max_sims)/value_max_sims

end for
ρ← percentil(con f idence_level, value_remain)
if (ρ ≤ MED) then

return True
else

return False
end if

An alternative approach is where a stopping method based on confidence intervals
computed by the Bernstein inequality [21] is used. A variation will be the winner
when its 95% confidence interval does not overlap with the 95% confidence interval of
any other variation [17]. Unlike other solutions, once the winning variation is known,
Adobe will automatically redistribute 80% of the traffic to the winning option and the
remaining 20% uniformly across all the variations, including the winner. If there was
no winning option in the future, the traffic would be redistributed according to the
e-greedy strategy explained above.
To compute the confidence intervals using the Bernstein inequality, the variances of
the distributions have to be known. As these variances are unknown in most cases,
we have to use a variation of this method that uses the sample variance.
Although the exact method used by any vendor is not known, the empirical Bernstein
method is the most used in the literature [22]. This method computes the confidence
intervals according to the following equation:

|µ− µ| ≤ σ

√
2 log(3/δ)

n
+

3R log(3/δ)

t
,

where µ is the sample mean, µ the expected value, σ is the sampling standard devia-
tion, δ is the significance level, usually 0.05, n is the number of samples and R is the
range (maximum value - minimum value). Adobe Target is one of the vendors that
uses this approach as a stopping criterion.
As above, if this test is to be comparable with classical hypothesis tests, we have again
to take into account the following:

– Rather than testing a null or alternative hypothesis, this approach considers
that one hypothesis is better than another if there is a confidence level. In order
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to comply with the terminology described above, we would have to make the
following distinction:

* α corresponds to the percentile value used to compute the confidence inter-
vals, as long as the default variation is the winning configuration.

* β corresponds to the percentile value used to compute the confidence inter-
vals, as long as the winning variation is any of the new variations.

Again the most used configuration in this approach is to use the same value for
parameters α and β.

– MED appears to be set to 0 in this algorithm, detecting the smallest variation.
However, a slight extension should be introduced for proper comparison with
other criteria: the overlap with the worse variations should be considered as
being less than or equal to MED rather than there being no overlap at all.

Algorithm 2 describes this stopping criterion. This basically computes the differences
between the lower bound of the variation with the best empirical mean and the upper
bound of each of the other variations. If any of these differences is less than the MED, the
stopping criterion will have been reached.

Algorithm 2 Adobe stopping criterion

Require: (num_samples = number of samples of each variation, means, vars: arrays with
the means and variances of each variation, respectively; BB function that provides the
n percentile bound according to Bernstein’s inequalities)

Ensure: (True/False)

1: best← argmax(means)
2: lcb_best← BB(1− con f idence_level, num_samples[i], means[best], vars[best])
3: for i ∈ {1,...,num_variations} do
4: if i 6= best_variation) then
5: ucb← BB(con f idence_level, num_samples[i], means[i], vars[i])
6: if lcb_best - ucb ≤MED) then
7: return True
8: end if
9: end if

10: end for
11: return False

3. Possibilistic Reward Method in A/B Testing

In this section, we describe a new approach in which MAB PR methods [8,14] are
used to perform dynamic traffic distribution in A/B testing. Table 1 shows a comparison of
these methods with the techniques described in Section 2.

Table 1. Dynamic allocation methods comparative.

Dynamic Allocation Method Type of Metrics Performance

Thompson sampling and Probability matching Just for metric with known Good. Minimize
parametric distribution. cumulative regret.
(i.e., Bernoulli, Normal)

ε-greedy For any type Medium. Good reduction
of metric distribution. of cumulative regret.

No dynamic allocation (classic A/B) For any type Bad. No reduction
of metric distribution of cumulative regret.

PR2 and PR3 For any type Good. Minimize
of metric distribution. cumulative regret.
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Possibilistic reward methods (PR1, PR2 and PR3) [8,14] have recently been proposed as
alternatives to MAB algorithms in the literature. A review of the most important allocation
strategies can be found in [14].

The basic idea of the PR1 method is as follows: the uncertainty about the arm expected
rewards are first modeled by means of possibilistic reward distributions derived from a
set of infinite nested confidence intervals around the expected value on the basis of the
Chernoff–Hoeffding inequality [23].

Then, the method follows the pignistic probability transformation from decision theory
and the transferable belief model [24]. The pignistic probability transformation establishes
that when we have a plausibility function, such as a possibility function, and any further
decision-making information, we can convert this function into an probability distribution
following the insufficient reason principle.

Once we have a probability distribution for the reward of each arm, then a simulation
experiment is carried out by sampling from each arm according to their probability distri-
butions to find out which one has the highest expected reward. Finally, the selected arm is
played and a real reward is output.

As mentioned above, the PR1 method starting point is the Chernoff–Hoeffding in-
equality [23]. This inequality establishes an upper bound on the probability that the sum
of random variables deviates from its expected value for [0,1], which can be used to build
an infinite set of nested confidence intervals.

The difference between PR1, PR2 and PR3 lies in the type of concentration applied
and subsequent approximations. PR1 and PR2 are based on the Hoeffding concentration,
whereas PR3 is based on a combination of the Chernoff and Bernstein concentrations.

A numerical study based on of five complex and representative scenarios was per-
formed in [8] to compare the performance of PR methods against other MAB methods in
the literature. PR2 and PR3 methods perform well in all representative scenarios under
consideration, and are the best allocation strategies if truncated Poisson or exponential
distributions in [0,10] are considered for the arms. Besides, Thompson sampling (TS), PR2
and PR3 perform equally with a Bernoulli distribution for the arm rewards. PR2 is exactly
the same as the generalization of the TS method proposed in [25] (see Algorithm 2).

Moreover, the numerical analyses conducted recently in [13] show that possibilistic
reward (PR) methods outperform other MAB algorithms in digital marketing content rec-
ommendation systems for campaign management, another scenario with delayed rewards.

Lastly, PR methods have one big advantage over other MAB algorithms, including
TS: all they need to know is the interval to which the reward belongs rather than the total
reward distribution. PR methods approximate a distribution function for rewards that
can also be used to perform a classic A/B test, albeit with a stopping condition based
on Bayesian and non-frequentist hypothesis tests. In this way, experimentation can be
efficiently carried out with these methods in contexts where the objective is not confined
merely to action success or failure (Bernoulli distribution), but also to the minimization
of the total number of page views or the duration of a session, or the maximization of the
total income from web e-commerce.

4. New Stopping Criteria Based on Possibilistic Rewards

In this section, we propose the adaptation of the stopping criterion used in both
Google Analytics and Adobe Target to account for possibilistic reward methods.

4.1. PR2 and PR3 Value Remaining

The stopping method based on the value remaining used by Google Analytics [20] is
very efficient in environments with rewards following a Bernoulli distribution, since it has
to know the exact distribution of the expected rewards in order to carry out the simulations.

The distribution of the expected rewards is inferred with a Bayesian approach as
follows: the reward distribution function is modeled by a parametric family. A prior
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distribution is applied to the parameters of this family: both the a posteriori distribution of
the parameters and the expected rewards are inferred by Bayesian techniques.

This approach, however, has a drawback: the shape of the reward distribution has to
be known or modeled by a family of parameterizable distributions on which priors can be
applied. In addition, it should be tractable or at least computationally efficient to update
the a posteriori distributions and the expected value. This is not very often the case in
many real contexts, where the family to which the reward distribution belongs (normal,
Poisson, Bernoulli) is unknown. Besides, if the distribution is known or can be modeled, it
is very difficult to make an efficient inference using, at least it cannot be apply techniques
as, for example, conjugate priors.

To overcome this problem, we propose the following approach. We can approximately
model the probability distribution of the expected rewards efficiently by applying the
possibilistic rewards methods (PR2 and PR3) for the reward in each variation. To do
this, only the minimum and maximum reward bounds have to be known rather than the
distribution of each reward. This information is commonly available in real contexts.

Once we have derived the density function of the expected reward (Step 3 in PR2
and PR3), we just apply the simulation and stopping condition techniques used in [20].
Algorithm 3 shows the process according to which these methods calculate the value
remaining.

The steps executed by this algorithm and Algorithm 1 are identical, except for the
manner in which the samples are generated across the simulations. Specifically, although it
uses the Beta probability distribution, its parameters are computed according to the PR2 or
PR3 specifications (lines 6–16).

In the following sections, reporting a numerical analysis of these methods, they will
be denoted as PR2 value remaining and PR3 value remaining.

4.2. PR2 and PR3 Confidence Level

Emulating confidence level-based stopping criteria, such as empirical Bernstein in
Adobe Target, we now propose a stopping criterion computed from approximations to the
probability distributions of the expected reward derived from the PR2 and PR3 methods.

A comparison of the new stopping criteria with the conditions explained in Section 2
is shown in Table 2.

To do this, we need a function that outputs the percentile value, which will be used as
a confidence level, from distributions PR2 or PR3. As PR2 and PR3 are Beta distributions,
we can use the quantile function, also called ppf (percentile point function), to compute
these dimensions. This function, denoted by beta_ppf from now on, can be analytically
obtained and is available in any statistical software library.

Once these dimensions have been derived, we have practically the same stopping
criterion as the one used by Adobe Target (see Algorithm 4). It operates like Algorithm 2,
except that the bounds are now computed by means of the beta_ppf function of the Beta
distribution (lines 3–5).

Table 2. Stopping criteria methods comparative.

Stopping Criteria Method Type of Metrics Performance

Thompson sampling value remaining Just for metric with known Good. Minimize
parametric distribution. number of samples.
(i.e., Bernoulli, Normal)

Bernstein bounds For any type Medium. Good reduction
of metric distribution. of number of samples.

Classical hypothesis testing (t-Student) For any type Bad. No reduction
of metric distribution of number of samples.

PR2 and PR3 value remaining For any type Good. Minimize
of metric distribution. of number of samples.

PR2 and PR3 bounds For any type Good. Minimize
of metric distribution. of number of samples.
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Algorithm 3 PR value remaining stopping criteria

Require: (N: number of simulations, sample_means, sample_vars: sample means and
variances of each variation reward, num_samples: number of samples of each variation
reward)

1: for i ∈ {1,...,num_variations} do
2: best_arm[i]← 0
3: end for

4: for i ∈ {1,...,N} do
5: for j ∈ {1,...,num_variations} do
6: if (method == PR2) then
7: α← sample_means[j]× num_samples[i]
8: β← num_samples[i]− α
9: else ( # method==PR3)

10: max_var ← sample_means[j]× (1− sample_means[j])
11: con f idence_bound←

√
− log 0.05/(2× num_samples[j])

12: σ2 ← min{max_var, sample_vars[j] + con f idence_bound}
13: r ← num_samples[j]× max_var

σ2

14: α← r× sample_means[j]
15: β← r− α
16: end if
17: sims[i][j] ∼ Beta(1 + α, 1 + β)
18: end for
19: max_var ← argmax(sims[i])
20: best_arm[max_var]← best_arm[max_var] + 1
21: end for

22: best_arm_o f _sims← argmax(best_arm)

23: for j ∈ {1,...,N} do
24: max_value← max(sims[i])
25: value_max_sims← sims[i][best_arm_o f _sims]
26: remain_value[i]← (max_value− value_max_sims)/value_max_sims
27: end for

28: ρ← percentile(con f idence_level, remain_value)

29: if (ρ ≤ MED) then
30: return True
31: else
32: return False
33: end if

4.3. Testing the Null Hypothesis

Note that test A/B executions usually have two main purposes. The main objective
is to test the statistical significance of two content delivery or user interface alternatives
and have the best alternative, irrespective of whether it is the original or any variant,
automatically deployed for further user interaction. The stopping criterion explained and
proposed in this paper will be enough for this purpose.

Furthermore, the experimenter will want to know if the test arrives at reasonable
scientific conclusions, that is, whether or not we can reject the null hypothesis. Note
that any of the criteria mentioned in this paper (the value remaining, Adobe, PR value
remaining, PR bound stopping criteria) will stop in both scenarios: null hypothesis rejection
or non-rejection. Therefore, we will need to run an algorithm to check for null hypothesis
rejection once the stopping criteria has been reached in order to arrive at the final conclusion
for this approach. Algorithm 5 checks if the mean value of the best variation is greater
than the mean value of the original variation plus the MED. If it is, we can reject the null
hypothesis, otherwise it cannot be rejected.
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Algorithm 4 PR bound stopping criteria

Require: (num_samples: n. of samples of each variation, means, vars: means and variances
of each variation, respectively)

1: best← argmax(means)

2: lcb_best← Beta_pp f (1− con f idence_level, num_samples[i], means[best], vars[best])

3: for j ∈ {1,...,num_variations} do
4: if (i 6= best_variation) then
5: ucb← Beta_pp f (con f idence_level, num_samples[i], means[i], vars[i])
6: if (lcb_best− ucb ≤ MED) then
7: return True
8: end if
9: end if

10: end for
11: return False

Algorithm 5 Check for null hypothesis rejection

1: best_mean← max(means)
2: if (best_mean−MED > de f ault_variation) then
3: return “reject null-hypothesis”
4: else
5: return “fail to reject null-hypothesis”
6: end if

5. Numerical Experiments

The numerical experiments conducted are divided into two phases. In a first phase,
we tested the stopping criteria in order to discard any criteria whose performance was
considerably below the level of the best criteria. Then, in the second phase, we apply simu-
lation techniques in four scenarios accounting for Bernoulli and non-Bernoulli distributions
to analyze the performance of the different methods (probability matching, Thompson
sampling, e-greedy, classic A/B testing, PR2 and PR3) on the objectives to be optimized.

5.1. Testing Stopping Criteria

We first tested the stopping criteria existing in the literature and proposed in this
paper with variations that had different density distributions in order to discard any whose
performance was considerably below the level of the best criteria.

These stopping criteria depend exclusively on the density functions of the best and
second-best variations and will return a worse result the closer their means and the more
alike their density functions are. Thus, by directly recreating density functions of different
variations (similar to the functions used in the Phase-2 simulation scenarios), we can
quickly identify whether or not there is a stopping condition that behaves considerably
worse than the others in the scenarios under consideration. It can then be discarded for the
simulations, thus saving computational costs.

We considered three scenarios. First, we considered two Bernoulli variations with
means 0.05 and 0.045, and equal traffic allocation. Next, we again considered the two
Bernoulli variations with means 0.05 and 0.045, using in this case dynamic traffic allocation
with a well-known standard method like Thompson sampling. Lastly, we considered ten
non-Bernoulli variations with a mixture of a Bernoulli and exponential distribution in the
last and most extreme scenario.

Table 3 shows the average number of resulting samples and the 95% confidence
interval for ten replications in each scenario simulation. Note that the stopping condition
in all these cases occurs when the MED value falls below the value 0.01.
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Table 3. Number of samples for scenarios.

Stopping Criteria Scenario 1 Scenario 2 Scenario 3

PR2 value remaining 1045 [609, 2138] 7020 [3887, 13,642] 84,303 [46,570, 163,181]
PR2 bound 9746 [6187, 15,958] 46960 [29,796, 76,815] 101350 [64,240, 165,538]
Empirical Bernstein 34,333 [28,294, 41,911] 133,265 [109,786, 162,613] 232,184 [191,208, 283,198]
PR3 value remaining - - 48,735 [26,951, 94,507]
PR3 bound - - 48,730 [26,949, 94,497]

Notice also that PR3 bound and PR3 Bernoulli value remaining are not evaluated
in Scenarios 1 and 2 because their behavior is exactly the same as the Bernoulli value
remaining and PR2 bound under Bernoulli distributions (Scenarios 1 and 2).

Looking at the average number of sample values and the confidence interval in Table 3,
we find that the stopping criterion based on value remaining outperforms (i.e., requires
a smaller number of samples than) the others for Scenarios 1 and 2, where the Bernstein
criterion falls well behind the other criteria. In the third scenario, the performance for PR3
Bernoulli value remaining and PR3 bound is very similar, and they clearly outperform the
other three stopping criteria. The Bernstein criterion is again quite far removed from the
others. Thus, we discard this criterion for the Phase-2 simulation.

Note that although Adobe Target uses the empirical Bernstein criterion, we do not
know how it is implemented so we cannot provide conclusions about the performance of
Adobe Target stopping criteria.

5.2. Simulating A/B Testing

The empirical evaluation of MAB algorithms on real-world applications is complex
and extremely expensive, mainly because we usually have no way of knowing the rewards
associated with actions that have not been chosen, as mentioned in [5]. Evaluation involves
executing the decision algorithms in real time in real environments and with real users
across a time frame required to gain an accurate assessment of their convergence.

This then has to be repeated a considerable number of times to make statistically
significant estimations. In this respect, [26] states “Compared to machine learning in the
more standard supervised setting, evaluation of methods in a contextual bandit setting is
frustratingly difficult... because of the interactive nature of the problem, it would seem
that the only way to do this is to actually run the algorithm on ‘live’ data. However, in
practice, this approach is likely to be infeasible due to the serious logistical challenges that
it present”.

To get an accurate perception of the requirements for evaluating this method in real
environments, we have simulated 1,696,408,960 user interactions in the numerical test
simulations in order to achieve statistical power for all the method and stopping criterion
combinations within the four scenarios. Obviously it is only feasible to execute this number
of interactions in a real environment for a very small subset of world companies.

Thus, we have to opt for one of the following alternatives:

• Simulate the evaluation environment such that the probability distribution of the arm
rewards is as similar as possible to real environments. For delayed rewards, like A/B
testing, we also have to simulate the probability distribution of the reward delay.

• Use a recommendation database, such as Yahoo Todays Module (https://webscope.
sandbox.yahoo.com/catalog.php?datatype=r&did=49, accessed on 1 June 2021), and
apply an offline evaluation method as in [5,26], replayed using previous random-scan
data, to provide an unbiased estimator at the expense of considerably reducing the
amount of effective data.

We decided to carry out a numerical simulation, since available offline databases do
not totally fit our experiment requirements (they account for only binary rewards and
not for feedback delay) mainly because off-line evaluations (e.g., [5,26]) are carried out
only once.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49
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Recommendation databases can be used to evaluate supervised algorithms, where the
evaluation of each algorithm for each input datum depends not on previous evaluations
but is, in itself, an experiment and is, consequently, sufficient for statistical significance.
However, this does not apply with MAB algorithms, where each evaluation depends on the
previous evaluations, where slightly different starting conditions could produce different
convergence results. It is, therefore, necessary to repeat the experiment with different
database subsets to achieve statistical significance.

Scenario Description

In the simulation process that we propose for the numerical analysis, we considered
the most reliable environment possible, modeling the intrinsic properties of the systems ar-
chitecture under consideration, as well as the behavior of customers accessing the systems.

First, customers enact a non-homogeneous Poisson process with the intensity function
shown in Figure 1 to access the web. The average traffic is approximately 500 calls per day.
This reflects how customers behave in digital environments. Most of these systems offer
solutions for companies whose traffic volume is relatively low.

Figure 1. Intensity function for customer accesses.

Apart from the usual delays associated with the algorithm update (for example,
probabilistic matching in Google, or Adobe Target), there is an intrinsic and inevitable
delay from the moment the customer is offered a variation: he/she visualizes the web and
decides to click or read the news. More customers may access the web during this time
period, and the method will have to offer a variation without having updated the reward
distribution. This delay will be simulated using an exponential distribution function with
mean 150 s.

In our numerical analysis, we will consider four scenarios. The first two are based
on the optimization of objectives that follow a Bernoulli distribution (success or failure).
We assume that the performance of the above methods for this type of objective is very
good and near optimum. In this case, we conduct a comparative analysis in terms of
performance, and also evaluate whether PR2 bound improves the current state of the
art for the proposed new stopping criteria, especially criteria to be applied in Bernoulli
environments. Note that, in this context, PR3 bound is the same as PR2 bound, and the
PR2 and PR3 value remaining methods are the same as the Bernoulli value remaining.

The following two scenarios are based on the optimization of objectives that do not
follow a Bernoulli distribution. Here, we analyze whether or not the novelties proposed in
this paper outperform the state of the art.

The first scenario is based on a context where the objective to be optimized is a con-
version ratio (whether or not the customer clicks on a banner or button), comparing the
current solution against one variation, which is the simplest case. We simulate a fairly
common situation, also considered in [20], where the success rate is very low, 0.04, and the
variation is slightly better, 0.05.

The second scenario, except that there are 10 variations, all with a low success rate. The
best variation has a success value of 0.05, and the other variations return [0.045, 0.04, 0.04,
0.035, 0.035, 0.03, 0.03, 0.02, 0.02].

The first two scenarios are very common in online advertising contexts, where the
best advertising option for a customer must be selected in the knowledge that they all have
fairly low success rates.
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The third scenario simulates a context where the customer is shown a short content,
such as a news item or video. It is designed to maximize the time that the customer spends
reading or paying attention to the content (when deciding whether or not to continue
reading). In this case, the rewards are a continuous variable. As a very approximate
simulation of real situations, a reward will be generated for each customer. This reward
depends on whether or not the customer clicks on the news or the content. Then, a
truncated exponential function models the time that the customer spends reading the news
as a ratio or average time. In this scenario, the default news will be compared with other
news. The parameters of the original and the variation are:

• Original: News item click ratio: 0.45; average and maximum reading time: 150 and
450 s, respectively.

• Variation: News item click ratio: 0.5; average and maximum reading time: 140 and
450 s, respectively.

The fourth scenario is similar to the third, albeit evaluating up to 9 new variations. The
corresponding parameters are:

• Best variation: News item click ratio, 0.45; average and maximum reading time:
150 and 450 s, respectively.

• Original and other variations: News item click ratio, 0.5; average and maximum
reading time: 140 and 450 s, respectively.

We have simulated these four scenarios because they are representative of real situa-
tions. In the first two scenarios, very common click conversions are used as the metric, and
the performance of the proposed new methods is equal to Thompson sampling. In the third
and fourth scenarios, on the other hand, the optimization metric depends on user resource
consumption time, and the proposed new methods do not behave like Thompson sampling.

Finally, the MAB algorithms for dynamic traffic distribution tested in the scenarios
under consideration are as follows:

• Thompson sampling (TS) for Bernoulli distributions of rewards (TS is the same as PR2
and PR3 in Bernoulli environments). This algorithm is used in Scenarios 1 and 2 only.

• Probabilistic matching (PM) with a short update window (window size = 1 h) and a
long update window (window size = 12 h). These algorithms are used in Scenarios 1
and 2 only.

• ε-greedy, with ε = 0.2.
• Classic A/B testing. The traffic is evenly distributed across all variations.
• PR2 and PR3, which are new methods proposed in this paper and are applicable

only to Scenarios 3 and 4. As mentioned above, PR2 and PR3 are the same as TS in
Scenarios 1 and 2.

• PR2 and PR3. As already mentioned, PR2 is the same as the purest version of Thomson
sampling, i.e., for generic stochastic bandits (see [25]). Therefore, the results of PR2
will also refer to this algorithm.

We opted to analyze these methods rather than other methods because:

• The first three are TS variations for different update window sizes. The first is pure TS,
where there is no window, the second has a short update window, and the third has a
long update window. TS is one of the best-performing algorithms in environments
with Bernoulli rewards, even in delay situations [13]. Additionally, many dynamic
distribution products for A/B experiments appear to use different variations of TS
(probabilistic matching) with different update window sizes (ABTasty, VWO, for-
merly Google Analytics). On this ground, we decided to use this method and two
variations, increasing the update window size to analyze how they behave in the
proposed scenarios.

• Even though it is a method with linear convergence, we analyze ε-greedy since it
is very widespread in commercial products, such as Adobe Target, and we want to
evaluate its behavior with respect to the state-of-the-art methods.
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• Classic A/B testing is the reference method when traffic distribution is not dynamic.
Therefore, it has to be measured for comparison with the default model.

• PR2 and PR3 are more recent MAB algorithms whose performance in similar contexts,
as reported in [13], has been very good. We analyze their performance in A/B
experimentation environments. As mentioned above, PR2 and PR3 are the same as TS
in Scenarios 1 and 2. They are applicable only to Scenarios 3 and 4.

• We have not considered other MAB algorithms in the literature, such as UCB and its
variations, because they appear to be at a clear disadvantage with respect to TS or TS
for generic stochastic bandits [8,13].

The results of the simulations for the different scenarios are reported in the tables
below. The tables include the accumulated mean regrets and corresponding standard
deviation together with the mean number of samples in the simulation and the percentage
error or false-positive rates. In addition, we calculated confidence intervals for both mean
cumulative regrets and standard deviations using bootstrapping techniques and ranked
all the results according to the upper percentile of the mean cumulative regret. To select
the right statistical significance value α to bound the confidence intervals, we applied the
Bonferroni correction to the desired level of α = 0.05, returning confidence intervals of
99.5% for Scenarios 1 and 2 and 99.79% for Scenarios 3 and 4.

Besides, rigdeline plots illustrate the accumulated mean regret densities for the best
four combinations of methods and stopping criteria, including a vertical red line reflecting
the mean accumulated regret of the best method, and a blue line, corresponding to the
regret derived by performing A/B testing using the classical test hypothesis.

5.3. Scenario 1 Results

Table 4 shows the Scenario 1 results for all the combinations of methods and stopping
criteria under consideration. Mean values are provided in all columns derived from
500 simulations, and the methods are ranked from lowest to highest mean accumulated
regret. 99.5% confidence intervals using the Bonferroni correction and bootstrapping
methods have been added for mean accumulated regret and standard deviation values.

Table 4. Results for Scenario 1.

Method Stopping Criteria Accumulated Regret Std Deviation Samples % Errors

PM_ws1 BerValRem 10.499 [8.884, 11.975] 13.504 [10.987, 15.957] 3432.00 7.6
TS BerValRem 11.486 [9.903, 13.036] 14.422 [11.551, 17.126] 3873.30 8.0
PM_ws12 BerValRem 12.647 [10.949, 14.548] 14.614 [11.997, 17.155] 4262.70 4.8
A/B testing BerValRem 13.433 [11.209, 15.775] 18.926 [14.753, 22.521] 2682.40 7.6
TS PR2 bounds 23.941 [21.28, 26.472] 21.121 [18.469, 23.94] 24,565.28 0.8
PM_ws1 PR2 bounds 24.573 [21.564, 27.214] 23.217 [19.126, 28.836] 25,388.98 0.8
PM_ws12 PR2 bounds 24.668 [21.835, 27.221] 22.16 [18.353, 26.863] 27,184.72 0.2
e-greedy BerValRem 25.575 [22.993, 27.971] 19.294 [16.142, 22.647] 5112.40 0.6
A/B testing PR2 bounds 47.341 [42.44, 52.835] 38.406 [33.792, 42.531] 9463.96 0.2
e-greedy PR2 bounds 53.958 [49.222, 58.875] 42.074 [37.183, 46.952] 10,792.18 1.0

First, we find that the methods based on probability matching (PM) and Thompson
sampling (TS) with Bernoulli value remaining (BerValRem) as the stopping criterion pro-
vide the best results in terms of mean accumulated regrets. The results are better when
the delay is small (PM_ws1) than for an online update like TS, possibly because more
exploration is performed in the initial phases, which allows the algorithm to converge
faster later. However, when the delay is greater, PM method performance drops (see, for
example, the PM_ws12-configuration used by Google Analytics). Note again that TS is the
same as PR2 and PR3 in Scenarios 1 and 2.

Besides, the algorithm with the worst performance is e-greedy based on the Adobe
Target configuration parameters. The probable explanation for such poor performance,
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which is even worse than for A/B testing with equal traffic distribution, is the long warm-
up period.

Note also that the performance of an algorithm based on uniformly distributed traffic
with a dynamic stopping criterion based on Bernoulli value remaining (BerValRem) is not
much worse than the optimal algorithm (ranking fourth in Table 4).

Besides, the accumulated regret densities for the combinations are shown in Figure 2.
We find that the maximum accumulated regret for the PM_ws1 + BerValRem combination is
again the lowest, followed by the TS + BerValRem and PM_ws2 + BerValRem combinations,
which were ranked second and third, respectively, with respect to accumulated mean regret
and the standard deviation, see Table 4.

Looking at the mean samples column in Table 4, we find that the stopping criteria
values for combinations with Bernoulli value remaining (BerValRem) are quite a lot lower
than for PR2 bounds. Thus, the new stopping criteria proposed in this paper do not result
in any improvement in this scenario. A/B testing + BerValRem is the combination that
requires a smaller mean number of samples (2682.4), followed by PM_ws1 + BerValRem,
TS + BerValRem and PM_ws2 + BerValRem.

However, we find that the percentage error or false-positive rate are between 4.8 and
7.6. This can be considered significantly high. This is a drawback of these combinations.

Figure 2. Ridgeline plots for Scenario 1.

5.4. Scenario 2 Results

Table 5 shows the Scenario 2 results for all the combinations of methods and stopping
criteria under consideration. Mean values are provided in all columns derived from
500 simulations, and the methods are listed from lowest to highest mean accumulated
regret. 99.5% confidence intervals using the Bonferroni correction and bootstrapping
methods have been added for mean accumulated regret and standard deviation values.
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Table 5. Results for Scenario 2.

Method Stopping Criteria Accumulated Regret Std Deviation Samples % Errors

PM_ws1 BerValRem 194.555 [185.843, 201.895] 73.961 [63.911, 82.649] 60,639.18 0.0
PM_ws12 BerValRem 194.785 [185.121, 205.635] 77.099 [64.384, 93.904] 61,127.26 0.6
TS BerValRem 197.545 [187.344, 207.089] 83.44, [69.08, 99.238] 63,312.14 0.4
PM_ws1 PR2 bounds 218.134 [208.681, 226.015] 80.993, [72.323, 91.895] 105,112.06 0.0
PM_ws12 PR2 bounds 220.427 [211.444, 232.338] 94.451 [67.116, 128.154] 105,706.12 0.4
TS PR2 bounds 220.561 [211.506, 232.514] 89.888 [75.233, 106.156] 105,939.20 0.4
e-greedy BerValRem 1208.136 [1124.058, 1302.655] 623.357, [541.329, 695.437] 87,840.12 0.2
e-greedy PR2 bounds 1732.984 [1610.772, 1862.06] 1029.226 [919.671, 1122.726] 128,500.10 0.2
A/B testing BerValRem 1960.025 [1813.084, 2106.305] 1329.872 [1139.229, 1519.782] 126,450.30 0.2
A/B testing PR2 bounds 3324.493 [3003.617, 3698.993] 2402.718 [2177.281, 2648.417] 214,477.92 0.0

As in Scenario 1, the methods based on probability matching (PM) and TS with the
Bernoulli value remaining (BerValRem) stopping criterion are the best in terms of mean
accumulated regrets. In this case, the performance of the first three methods is significantly
similar. Moreover, the three best-ranked combinations in terms of mean accumulated
regrets are also the best three combinations (in the same order) with respect to the standard
deviations (dispersion of accumulated regrets), the maximum accumulated regret (see
Figure 3) and the number of mean samples required in the simulations.

Figure 3. Ridgeline plots for Scenario 2.

Now, the uniformly distributed traffic (A/B testing) methods are clearly outperformed
by the others, including e-greedy, see Table 5. Thus, the classical methods based on
uniformly distributed traffic (A/B testing) perform worse, as the number of samples
required to achieve experiment statistical significance increases, even with a dynamic
stopping criteria.

As in Scenario 1, the methods whose stopping criterion is based on PR2 bound are
clearly worse than others based on Bernoulli value remaining (BerValRem). Therefore, we
conclude that they do not constitute an improvement with respect to the state of the art in
environments with Bernoulli rewards.

Finally, the percentage error or false-positive rate values are low for all combinations
(0.2, 0.6), where PM_ws1 + BerValRem was again the best combination, scoring 0.

5.5. Scenario 3 Results

Table 6 shows the Scenario 3 results for all the method combination and stopping
criteria under consideration. 99.79% confidence intervals using the Bonferroni correction
and bootstrapping methods have been added for mean accumulated regret and standard
deviation values.
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Table 6. Results for Scenario 3.

Method Stopping Criteria Accumulated Regret Std Deviation Samples % Errors

PR3 PR3 ValRem 17.509 [15.827, 19.853] 16.144 [13.699, 18.888] 4769.70 1.2
PM_ws1 PR3 ValRem 18.05 [16.127, 20.453] 16.982 [14.347, 19.926] 4259.90 1.6
PR2 PR3 ValRem 19.227 [16.933, 21.271] 17.641 [14.993, 20.584] 4502.20 1.0
PR3 PR2 ValRem 19.876 [17.61, 22.115] 18.202 [15.49, 20.95] 6904.60 1.2
PM_ws12 PR3 ValRem 20.527 [18.433, 22.688] 17.217 [15.126, 19.919] 4838.10 0.8
PM_ws1 PR2 ValRem 20.582 [18.333, 23.612] 19.577 [16.725, 22.604] 5568.30 1.4
PR2 PR2 ValRem 22.136 [19.675, 24.675] 19.576 [17.278, 22.308] 6081.30 0.8
PM_ws12 PR2 ValRem 23.304 [21.076, 25.76] 19.576 [17.278, 22.308] 6363.70 0.4
A/B testing PR3 ValRem 24.874 [22.261, 28.047] 21.267 [18.116, 24.911] 3302.70 1.0
PR3 PR3 bounds 27.955 [25.576, 30.217] 18.708 [16.434, 20.804] 19,051.18 0.0
e-greedy PR3 ValRem 29.852 [27.74, 32.496] 18.104 [14.811, 21.628] 3964.10 0.0
A/B testing PR2 ValRem 31.11 [27.457, 34.69] 27.528 [23.505, 31.108] 4132.00 0.8
PR2 PR3 bounds 31.754 [29.099, 34.976] 23.472 [18.746, 28.531] 14,605.28 0.0
PM_ws1 PR3 bounds 32.38 [29.734, 35.136] 22.2 [19.491, 25.2] 15,176.76 0.0
PM_ws12 PR3 bounds 32.816 [29.677, 35.753] 21.22 [18.407, 23.826] 15,617.36 0.0
PR3 PR2 bounds 35.214 [32.089, 37.893] 21.831 [19.187, 24.287] 57,131.10 0.0
e-greedy PR2 ValRem 36.068 [32.474, 39.552] 23.865 [19.76, 28.499] 4786.40 0.0
PR2 PR2 bounds 40.967 [37.335, 44.977] 26.863 [22.931, 31.962] 34,122.30 0.0
PM_ws12 PR2 bounds 41.784 [38.635, 44.984] 25.111 [22.66, 27.832] 35,956.58 0.0
PM_ws1 PR2 bounds 41.818 [38.746, 45.56] 26.908 [23.676, 30.295] 35,676.58 0.0
A/B testing PR3 bounds 57.497 [53.691, 62.432] 33.763 [30.165, 37.272] 7638.42 0.0
e-greedy PR3 bounds 58.759 [54.506, 62.56] 32.715 [28.831, 36.662] 7801.54 0.0
A/B testing PR2 bounds 95.405 [88.663, 102.207] 50.954 [46.493, 55.533] 12,673.12 0.0
e-greedy PR2 bounds 96.279 [90.85, 102.754] 50.682 [46.421, 56.148] 12,786.00 0.0

In this scenario, PR3 + PR3 ValRem is the best combination, followed by PM_ws1 +
PR3 ValRem and PR2 + PR3 ValRem in terms of mean accumulated regrets. Moreover, the
three best-ranked combinations in terms of mean accumulated regrets are also the best
three combinations (in the same order) with respect to standard deviations (dispersion of
accumulated regrets). However, PM_ws1 + PR3 ValRem slightly outperforms the other
two combinations in terms of maximum accumulated regret (see Figure 4).

Figure 4. Ridgeline plots for Scenario 3.

As in Scenario 1, the e-greedy method output the worst results due to its warm-
up phase.

Regarding the stopping criteria, we find, looking at the mean samples column, that
the values for combinations with the PR3 value remaining (PR3 ValRem) stopping criterion
are the lowest, followed by PR2 ValRem and PR2 and PR3 bounds. Note that the PR2
and PR3 ValRem stopping criteria are the original contributions in this paper. The three
best-ranked combinations in terms of mean accumulated regrets are among the best with
respect to the number of mean required samples.

Finally, percentage error or false-positive rate values are low for all combinations
(0, 1.6), with the combination PR3 + PR3 ValRem combination scoring 1.2.
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5.6. Scenario 4 Results

Table 7 shows the Scenario 4 results for all method combinations and stopping criteria
under consideration. 99.79% confidence intervals using the Bonferroni correction and
bootstrapping methods have been added for mean accumulated regret and standard
deviation values.

In this scenario, PR3 is again the best method in terms of mean accumulated regrets,
combined with PR3 bounds as the stopping criterion. For all methods, the mean accumu-
lated regrets are lower when the PR3 bound stopping criterion is used, followed by the PR3
RemVal, and PR2-based stopping criteria. However, the standard deviations (dispersion of
accumulated regrets) and maximum accumulated regret (see Figure 5) are slightly better
when using PR3 RemVal than PR3 bounds for all methods.

Figure 5. Ridgeline plots for Scenario 4.

Table 7. Results for Scenario 4.

Method Stopping Criteria Accumulated Regret Std Deviation Samples % Errors

PR3 PR3 bounds 297.885 [288.683, 307.784] 72.661 [64.164, 79.885] 58,374.62 0.0
PR3 PR3 ValRem 314.402 [306.081, 322.783] 65.726 [57.646, 73.918] 71,610.50 0.0
PR2 PR3 bounds 331.952 [320.883, 341.7] 84.417 [76.892, 92.593] 47,568.54 0.0
PM_ws1 PR3 bounds 336.177 [324.022, 349.837] 98.973 [88.272, 112.498] 48,150.88 0.0
PR2 PR3 ValRem 342.995 [332.6, 353.55] 77.049 [68.029, 86.996] 51,962.66 0.0
PM_ws12 PR3 bounds 344.552 [331.648, 357.038] 92.832 [83.426, 106.653] 49,327.28 0.0
PM_ws1 PR3 ValRem 344.185 [331.093, 358.874] 98.207 [85.103, 110.513] 51,565.74 0.0
PM_ws12 PR3 ValRem 349.415 [339.469, 362.155] 88.82 [77.917, 100.732] 51,626.04 0.0
PR3 PR2 bounds 378.907 [370.474, 387.263] 71.807 [64.846, 80.103] 169,198.04 0.0
PR3 PR2 ValRem 395.031 [385.282, 403.973] 71.38 [64.317, 78.215] 207,593.72 0.0
PM_ws1 PR2 ValRem 419.929 [406.494, 430.834] 97.844 [85.994, 109.369] 87,988.90 0.0
PR2 PR2 ValRem 423.064 [410.97, 434.289] 82.953 [75.133, 90.271] 91,690.60 0.0
PM_ws12 PR2 ValRem 428.112 [416.32, 440.194] 96.57 [86.796, 107.049] 88,687.40 0.0
PR2 PR2 bounds 433.309 [421.156, 445.92] 88.816 [81.052, 96.499] 99,834.48 0.0
PM_ws1 PR2 bounds 436.013 [424.017, 448.782] 100.925 [90.395, 111.934] 99,408.86 0.0
PM_ws12 PR2 bounds 445.884 [433.262, 459.936] 100.957 [90.125, 111.406] 101,205.00 0.0
e-greedy PR3 ValRem 531.664 [510.642, 555.046] 185.89 [168.448, 201.686] 41,856.16 0.0
e-greedy PR3 bounds 627.735 [603.311, 653.955] 209.193 [190.073, 231.37] 49,635.12 0.0
A/B testing PR3 ValRem 683.777 [645.122, 718.451] 285.261 [256.161, 318.201] 50,443.04 0.0
e-greedy PR2 ValRem 725.434 [691.615, 758.818] 241.654 [217.532, 268.492] 57,547.42 0.0
A/B testing PR3 bounds 913.549 [868.428, 953.342] 359.637 [315.555, 401.617] 67,394.40 0.0
e-greedy PR2 bounds 957.14 [918.402, 990.533] 281.442 [254.412, 307.287] 76,309.54 0.0
A/B testing PR2 ValRem 947.351 [905.521, 992.398] 357.559 [316.945, 392.403] 69,888.32 0.0
A/B testing PR2 bounds 1407.125 [1336.966, 1467.677] 470.799 [421.703, 520.804] 103,809.12 0.0

As in Scenario 2, the method with uniformly distributed traffic (A/B testing) is again
the worst performer.

Regarding the stopping criteria, PR3 bounds is used in four out of the five best
combinations in terms of mean samples, but the differences between PR3 bounds and PR3
RemVal are generally small.
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Finally, percentage error or false-positive rate values are 0 for all the combinations
under analysis.

6. Conclusions

The first thing to be highlighted is that none of the method + stopping criterion com-
binations outperforms the other combinations in all the four scenarios under consideration.
Besides, it is clear that the use of the homogeneous traffic distribution method (denoted
as A/B testing in the simulation process) already constitutes a considerable improvement
over methods based on classical testing hypotheses.

In the scenarios where the rewards follow a Bernoulli distribution (Scenarios 1 and 2),
it is perfectly documented that vendors use dynamic traffic distribution by means of multi-
armed bandit (MAB) methods. The best solution is a Bayesian approach with probabilistic
matching or Thompson sampling. Moreover, methods that update weights at small, for
example, one-hour intervals (PM_ws1), like Optimizely and ABTasty, even appear to have
a slight performance edge over online updating methods. However, performance appears
to drop when the update window is larger, for example using Google Analytics with a
12-hour window (PM_ws12).

Bernoulli value remaining (BerValRem) is clearly by far the most efficient stopping
criterion for Bernoulli distributed scenarios, although there is some doubt, above all in
the first case, as to percentage error, where the resulting values are greater than those
specified in the design (1%). Besides, it is also evident that the PR2 bounds stopping
criteria, proposed in this paper in no case improves the state of the art for Bernoulli
environments.

Regarding the unknown non-Bernoulli distribution Scenarios (3 and 4), i.e., scenarios
where the methods proposed in this paper really apply, PR3 outperforms all the state-of-
the-art methods. Except for Adobe Target, where it is unclear which MAB algorithm and
stopping criterion is used or whether or not it accounts for dynamic traffic distribution,
none of the vendors clearly describe how they implement their solutions in non-Bernoulli
environments. In any case, the simulations were carried out assuming that the vendors
used the best methods known in the literature in these situations: Thompson sampling for
general stochastic bandits in combination with one of the stopping criteria considered in
this paper.

In Scenarios 3 and 4, the most efficient stopping criteria are PR3 value remaining (PR3
ValRem) and PR3 bounds. PR3 value remaining is the best when not many experiments
are required to achieve statistical significance, and PR3 bounds when the number of
experiments increases (due to a greater number of variations or a smaller difference between
the best and the other variations). However, PR3 value remaining requires more computing
resources than PR3 bounds, since it entails simulation. In production environments, a finer
adjustment can be made by combining the two methods, where PR3 bounds is used merely
to check if a stopping threshold has been reached, and then PR3 value remaining is used
for the latest experiments or iterations.

We should also emphasize that the PR3 algorithm is equivalent and behaves exactly
like Thompson Sampling in Bernoulli rewards environments, also offering optimal per-
formance. Therefore, we can conclude that it is not necessary to use one algorithm or
another according to the type of objective to be measured (scenario) in the experiment, PR3
is a good option in all cases where the stopping criterion should be value remaining for
Bernoulli rewards environments, and PR3 bounds for non-Bernoulli environments.

Last but not least, according to the cost (in terms of number of samples) required
to achieve significant scientific conclusions about executed experiments (based on null
hypothesis rejection), all the combinations offer a substantial improvement on classical
techniques where the number of samples for each variation have to be established a priori
or under conditions where traffic allocation is not dynamic (denoted as A/B testing in the
simulation process).
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Prospective future lines of research should address more complex simulation envi-
ronments that take into account other metrics than described in the four scenarios (e.g.,
valuation ratings or sale prices), as well as evaluating the best alternatives in real produc-
tion environments. It would also be interesting to implement this type of multivariate
dynamic traffic distribution and stopping criteria using, for example, contextual MAB
techniques.
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