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Abstract: In this work, we derived new asymptotic results for multinomial models. To obtain these
results, we started by studying limit distributions in models with a compact parameter space. This
restriction holds since the key parameter whose components are the probabilities of the possible
outcomes have non-negative components that add up to 1. Based on these results, we obtained confi-
dence ellipsoids and simultaneous confidence intervals for models with normal limit distributions.
We then studied the covariance matrices of the limit normal distributions for the multinomial models.
This was a transition between the previous general results and on the inference for multinomial mod-
els in which we considered the chi-square tests, confidence regions and non-linear statistics—namely
log-linear models with two numerical applications to those models. Namely, our approach overcame
the hierarchical restrictions assumed to analyse the multidimensional contingency table.

Keywords: confidence ellipsoids; covariance matrices; limit distributions; classification; non-linear
models

1. Introduction

In several fields of study such as health, business, social sciences and education, the
outcomes of variables are mainly discrete, i.e., the variables only take finite or count-
able numbers. A discrete variable whose outcome only takes finite numbers is called a
categorical variable [1]. A categorical variable consists of a set of categories that are non-
overlapping [2] and the outcome could be binary (dichotomous), i.e., with just two possible
levels, such as “present” or “absent” as a desired condition, or polytomous, i.e., with more
than two levels, as is the case of the “Likert” scale [3]. There are two common types of
polytomous variables, as can be seen in [4], which are the ordinal and nominal scale of
measurement. Categorical variables, such as one’s eye colour, ethnicity and affiliations,
the categories of which cannot be ordered in any way, are nominal, while categories such
as the level of resistance to a drug of a patient, the level of education and economic status
exhibit a natural order and are thus ordinal.

In a study in which all the observed variables are categorical, the most common
way of representing the data is in a contingency table, which is a cross-tabulation of the
variables [5,6]. When there are m-variables, the contingency table is an m-dimensional
table—also known as a multidimensional table when the attributes are more than two.
The information of a contingency table is mainly summarized through appropriate mea-
sures such as measures of association or models. Association measures, although easy in
their computation and interpretation, lead to a great loss of information, as can be seen
in [7]. Models are preferred in the case where a more sensitive analysis is required. A model
is a “theory” or a conceptual framework about observations, and the parameters in the

Symmetry 2021, 13, 2173. https://doi.org/10.3390/sym13112173 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4856-8899
https://orcid.org/0000-0001-8620-0721
https://orcid.org/0000-0001-6453-6558
https://doi.org/10.3390/sym13112173
https://doi.org/10.3390/sym13112173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112173
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112173?type=check_update&version=1


Symmetry 2021, 13, 2173 2 of 17

model represent the “effects” that particular variables or combinations of variables have in
determining the values taken by the observations.

The easiest and most common model for a contingency table is the log-linear model [8].
It is constructed by taking the natural logarithms of the cell probabilities by the analogy
of the analysis of variance (ANOVA) models, as can be seen in [9–11]. Classical log-linear
models are sometimes regarded in the framework of the generalized linear model (GLM).
They are also important in connection with contingency matrices, as can be seen in [12].
Contemporary problems in categorical data analysis with extremely high-dimensional data
with demanding computational procedures require the development of complex models.
Much work has been done on the modelling of categorical data, as can be seen in [7,13].
For example, in [14], the author used regression models for modelling categorical data.
In our work, we derived new asymptotic results that will enable us to obtain confidence
ellipsoids and simultaneous confidence intervals, respectively, for the vector of probabilities
and its components, which will enable us to overcome some inference limitations of the
existing procedures.

Inferential statistical analysis requires assumptions about the probability distribution
of the response variable. For categorical data, the main distribution is the multinomial
distribution. Most of the time, categorical data result from n-independent and identical
trials with each trial having two or more possible outcomes. When the n is identical and
independent trials have the same category probabilities, then the distribution of counts
in the various categories is the multinomial distribution. The binomial distribution is
a special case of the multinomial distribution with just two possible outcomes for each
trial. Usually, the parameters of the multinomial distribution are not known and these
parameters are often estimated from the sample data by several estimation methods such
as the maximum likelihood estimation (MLE), as can be seen, for instance, in [15], the
minimum discrimination information (MDI) [16], weighted least squares (WLS) [17] and
Bayesian estimation (BA) [18]. In a previous study [19], we wanted to minimize the average
cost so we used statistical decision theory (SDT) since there were only a finite number
of possible choices. We point out that we achieved consistency since the probability of
selecting the choice with the least average cost tends towards 1 and when the sample size
tends towards infinity.

If we have n realizations of an experiment with m possible results with probabilities
p1, · · · , pm, we have the probability mass function, as can be seen in [20,21]:

Pr

[
m⋂

l=1

(Nl = nl)

]
=

n!
∏m

l=1 nl !
pnl

l (1)

for the vector N = (N1, · · · , Nm) of the times we obtain the different results. This proba-
bility mass function corresponds to the singular multinomial distribution M(·|n, p). We
name as multinomial the models for describing these sets of independent realizations of
experiments with a finite number of results:

For the vector with p = (p1, · · · , pm) of probabilities, we have the vector of estimators:

p̃ = ( p̃1, · · · , p̃m) (2)

with:
p̃l =

nl
n

, l = 1, · · · , m (3)

Moreover, as can be seen in [22], as n→ ∞:
√

n(p̃m − p) ∼ N (0, U(p)) (4)
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where ∼ indicates the limit distribution, in this case N (0, U(p)), the normal distribution
with the null mean vector and covariance matrix:

U(p) = D(p)− ppt, (5)

where D(p) is the diagonal matrix with principal elements p1, · · · , pm. This result will
play an important role in the asymptotic treatment of the multinomial models which is this
paper’s goal.

To carry out that asymptotic treatment, we start by obtaining a convenient version of
the continuous mapping theorem [23] in the next section on limit distributions. Then, we
obtained confidence regions in Section 3, namely the confidence ellipsoids and simultane-
ous confidence intervals. Then, in Section 4, we studied the algebraic structure of the limit
covariance matrix, U(p).

In Section 5, we obtained chi-square tests for hypotheses on outcome probabilities
and confidence ellipsoids and simultaneous confidence intervals for them. We also consid-
ered log-linear models for which we presented a numerical application. We pointed out
that our approach to these models overcame the hierarchical restriction used to analyse
multidimensional contingency tables.

Our use of both the classical and the new version of the parametrized continuous
mapping theorem (PCMT) enabled us to carry out statistical inference for multinomial
models. This inference was similar to ANOVA and related techniques but F-tests were
replaced by chi-square tests which is highly convenient since now we have an infinity of
degrees of freedom for the error.

Finally, we stress the close relationship between our ANOVA-like inference using the
chi-square test and the usual treatment of fixed effect models. We point out that the F-test
in that treatment had interesting invariance properties that expressed the symmetry of
those models, especially since those models are associated with orthogonal partitions or
sub-spaces which are invariant for rotation.

2. Limit Distributions

Let C be the class of continuous functions. If l(·) ∈ C, and the distribution FYn , of Yn
converges to FY ∈ C (that is FYn(y·) FY (y·), whenever y· is a continuity point of FY (·)),
we have, as can be seen in [23–26]:

Fl(Yn) −−−→n→∞
Fl(Y) (6)

as follows from the continuous mapping theorem.

If z is obtained superposing sub-vectors u and v, we put z = [u v]t. Then, if θn
p−→ θ,

with θ belonging to a compact set D, and FYn −→ FY , putting Ẏn =
[
Y t

n θt
n
]t, Y+

n =
[
Y t

n θt]t

and Ẏ =
[
Y t θt]t to show that:

Fl̇(Ẏn)
−→ Fl̇(Ẏ)(·|θ), (7)

it is only needed to show that, as can be seen in [27]:

sup
{
|Fl̇(Ẏn)

− Fl̇(Y+
n )|
}
−−−→
n→∞

0 (8)

since Fl̇(Y+
n )(·) = Fl̇(Ẏ)(·|θ)

With ξn(.) and ξ(.), the probability measures associated with FYn and FY and repre-
senting the Cartesian product by ×, whatever ε > 0, there exists a parallelepiped:

H(ε) = ×m
i=1[a(ε); b(ε)] (9)
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with Yn, Y ∈ Rn, such that ξ(H(ε)) ≥ 1− ε. Since FYn −→ FY , we have ξn(H(ε)) −−−→
n→∞

ξ(H(ε)) and so there will be n(ε) such that, for n > n(ε):

ξn(H(ε)) > 1− 2ε. (10)

Now:
Ḣ(ε) = H(ε)×D (11)

will also be a compact. Thus, if l̇(·) ∈ C, it is restriction to Ḣ(ε) will be uniformly con-
tinuous. So, whatever δ > 0, there exists δ′(δ) > 0, such that, if Ẏ , Ẏ ′ ∈ Ḣ(ε) and
‖Ẏ − Ẏ ′‖ ≤ δ′(δ), ‖l̇(Ẏ)− l̇(Ẏ ′)‖ < δ , where ‖ · ‖ indicates the Euclidean norm of a vector.

Let Ėn(δ) and Ėn(ε) be events that occur when ‖l̇(Ẏ)− l̇(Ẏ ′)‖ < δ and when Yn ∈
H(ε), respectively. We now establish:

Lemma 1. Pr
(
Ėn(δ)

)
−−−→
n→∞

1.

Proof. Since the restriction on l̇(·) to Ḣ(ε) is uniformly continuous:

Pr
[
Ėn(δ)|Ėn(ε)

]
−−−→
n→∞

1.

Thus, we only have to point out that ε is arbitrary and that:

Pr
[
Ėn(δ)|Ėn(ε)

]
− Pr

[
Ėn(δ)

]
≤ 1− Pr

[
Ėn(ε)

]
(12)

so that:
Pr
[
Ėn(δ)

]
≥ Pr

[
Ėn(δ)|Ėn(ε)

]
−
(
1− Pr

[
Ėn(ε)

])
(13)

where lim
n→∞

(
1− Pr

[
Ėn(ε)

])
≤ ε, whatever ε > 0, to establish the thesis.

�

Since:

Pr
(
Ėn(δ)

)
−−−→
n→∞

1, ∀δ > 0,

we have:
Pr
[(

l̇(Y+
n ) ≤ z± ε1m

)
|Ėn(δ)

]
−−−→
n→∞

Pr
[
l̇(Y+

n ) ≤ (z± ε1m)
]
= Fl̇(Y+

n )(z± ε1m)

Pr
[(

l̇
(
Ẏn
)
≤ z± ε1m

)
|Ėn(δ)

]
−−−→
n→∞

Pr
[
l̇
(
Ẏn
)
≤ (z± ε1m)

]
= Fl̇(Ẏn)(z± ε1m)

(14)

thus, also whatever δ > 0, there exists n̈(ε) such that, for n ≥ n̈(ε), we have:

Fl̇(Y+
n )(z) = Fl̇(Yn)

(z|θ) −−−→
n→∞

Fl̇(Y)(z|θ) (15)

as well as:
Fl̇(Y+

n )(z) −−−→n→∞
Fl̇(Y)(z|θ) (16)

whenever z is a continuity point of Fl̇(Y). Thus, we have the parametrized continuous
mapping theorem (PCMT).

If l̇̇l̇l(·) ∈ C, FYn −→ FY ∈ C, and θn
p−−−→

n→∞
θ, with θ ∈ D, a compact set:

Fl̇(Ẏn)(·) −→ Fl(Y)(|θ) (17)

Remark 1 (Corollary to PCMT ).
a With θ a parameter both for FY and Fl(Y);
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b when FY is N (0, V(θ)) and θn
p−→ θ, we have:

Fl̇(Ẏn) −→ N
(
0,GV(θ)G t)

when l̇
(
Ẏn
)
=
[
(GYn)

t, θt
n

]t
with G a matrix and V(θ) the covariance matrix of the parame-

ter, θ.
This remark will be renamed as a corollary of PCMT (CPCMT), as can be seen in [6].

We now consider the case of a sequence of random vectors with the same limit
distribution. The sequence {Xn} of random vectors is the mean stable when all its vectors
have the same mean vector µ.

Between the mean stable sequences, we may establish an equivalence relation writing
{Xn}γ{Yn} if and only if:

Sn = sup{‖Yn − Xn‖}
s−−→

n→0
0 (18)

where s−→ means stochastic convergence, i.e., convergence in probability, as can be seen
in [27,28]. We now establish:

Proposition 1. If Sn
s−→ 0 and FXn → F◦ ∈ C, then FYn → F◦, whenever {Xn}γ{Yn}.

Proof. Let the vectors in {Xn} and {Yn} have m components. Given x ∈ Rm, we consider
the events An,1(ε) = {Xn ≤ x− ε1m}, An,2(ε) = {Yn ≤ x}, An,3(ε) = {Xn ≤ ε + 1m} and
Bn(ε) = {Sn ≤ ε}.

Taking Ȧn,i(ε) = An,i(ε)
⋂

Bn(ε), and⇒ to indicate the implication, we have Ȧn,1(ε)⇒
Ȧn,2(ε) ⇒ Ȧn,3(ε). Thus, with qn,i(ε) = Pr(An,1(ε)) and q̇n,i(ε) = Pr

(
Ȧn,1(ε)

)
, i = 1, 2, 3,

we have q̇n,1 ≤ q̇n,2 ≤ q̇n,3.
Moreover, since Sn

s−−−→
n→∞

0, whatever δ > 0, there exist n(ε, δ) such that, for n >

n(ε, δ), Pr(Bn(ε)) > 1− δ, so q̇n,i(ε) ≤ qn,i(ε) ≤ q̇n,i(ε) + δ, and, since δ is arbitrary:

lim
n→∞

q̇n,i(ε) = lim
n→∞

qn,i(ε), i = 1, 2, 3 (19)

so:
lim

n→∞
qn,1(ε) ≤ lim

n→∞
qn,2(ε) ≤ lim

n→∞
qn,3(ε) (20)

since F◦ ∈ C, we have lim
n→∞

qn,1(ε) = F◦(x− ε1n) and lim
n→∞

qn,3(ε) = F◦(x + ε1n), so:

F◦(x− ε1n) ≤ lim
n→∞

FYn(x) ≤ F◦(x + ε1n) (21)

and given ε is arbitrary and x may be whatever, from F◦ ∈ C, we obtain:

FYn(x) −−−→
n→∞

F◦(x) (22)

which completes the proof. �

We then consider normal limit distributions, starting with:

Proposition 2. Given G(·) = {g1(·), · · · , gw(·)} such that its component functions have gra-
dients g1(·), · · · , gw(·), Hessian matrices g1(·), · · · , gw(·), and continuous second-order partial
derivatives. Whatever the mean stable sequence {Zn} with the invariant mean vector µ, taking
Yn = G(Zn) and Xn = G(Zn) with G(·) = [g1(·), · · · , gw(·)]t, we have {Xn}γ{Yn}, whenever√

n(Zn − µn) converges in distribution to F◦ ∈ C.
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Proof. We have gj(Zn)− gj(µ) = gj(µ)
t(Zn − µ)+

1
2
(Zn − µ)tgggj

(
θn,j
)
(Zn − µ) with

(
θn,j
)

between Zn and µ. Since Zn
s−→ µ, we also have θn,j

s−→ µ. Then, with Θε(µ) the radius ε
sphere with centre µ, Pr

(
Zn, θn,jεΘε(µ)

)
−→ 1, j = 1, · · · , m. Now ‖gggj(z)‖ is a continuous

function of z so it will have a maximum uj,ε in Θε(µ) that will exceed the supremum of the
spectral radius of gggj(µ) in Θε(µ), so:

‖1
2
(Zn − µ)tgggj

(
θn,j
)
(Zn − µ)‖ ≤ uj,ε‖Zn − µ‖2, j = 1, · · · , m (23)

thus: (
gj(Zn)− gj(µn)

)
− gggj(µ)

t(Zn − µ)
s−→ 0, j = 1, · · · , m (24)

and so:
‖(G(Zn)− G(µ))− G(µ)t(Zn − µ)‖ s−→ 0 (25)

and the thesis follows from Proposition 1. �

Corollary 3. If
√

n(Zn − µ) ∼ N (0, V), under the hypothesis of Propositions 1 and 2,√
n[G(Zn)− G(µ)] ∼ N

[
0,G(µ)VG(µ)t].

Proof. The thesis follows from Propositions 1 and 2 since the continuous mapping the-
orem, as can be seen in [23,24], implies that the limit distribution of

√
nG(µ)(Zn − µ) is

N
(
0,G(µ)VG(µ)t). �

3. Confidence Ellipsoids

We start by establishing the following.

Proposition 4. If Y—not necessarily normal—has a covariance matrix C, with a range space
Ω = R(C), and the mean vector µ, then:

Pr(Y − µ ∈ Ω) = 1 (26)

Proof. Let α1, · · · , αm constitute an orthonormal basis for the orthogonal complement, Ω⊥,
of Ω. Then, αt

j(Y − µ) will have a null mean value and variance. Thus, according to the
Bienaymé–Tchebycheff inequality:

Pr
(

αt
j(Y − µ) = 0

)
= 1, j = 1, · · · , m.

Therefore, we obtain, with A, the matrix with row vectors α1, · · · , αm:

Pr(Y − µ ∈ Ω) = Pr[A(Y − µ) = 0]

= Pr

 m⋂
j=1

(
αt

j(Y − µ) = 0
)

= m− (m− 1)

= 1,

as follows from the Boole generalized inequalities, and so the thesis is established. �

We then have:

Lemma 2. Given BBB is a positive semi-definite [definite] matrix with positive eigenvalues
ε1, · · · , andεh corresponding to eigenvectors α1, · · · , αm, we have BBB = AtDADADA and BBB+ =
AtD−1 A with + indicating the Moore–Penrose inverse, D the diagonal matrix with principal
elements ε1, · · · , εh and At = [α1, · · · , αh].
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Proof. It is easy to show that BBBBBB+ and BBB+BBB are asymmetrical and that BBBBBB+BBB = BBB and
BBB+BBBBBB+ = BBB+ establish the thesis. �

We can now establish the following.

Proposition 5. If Y ∼ N
(
µ, σ2BBB

)
, with BBB+ the Moore–Penrose inverse of BBB:

(Y − µ)tBBB+(Y − µ) ∼ σ2χ2
h

where χ2
h is a central chi-square distribution with h = rank(BBB), degrees of freedom and σ2 is the

variance of Y .

Proof. As stated in Lemma 2, we have:

(Y − µ)tBBB+(Y − µ) = Ÿ tŸ ∼ σ2χ2
h

with Ÿ = D−
1
2 A(Y − µ) where D−

1
2 is the diagonal matrix with principal elements

ε−1/2
1 , · · · , ε−1/2

h . We now only have to point out that Ÿ ∼ N
(
0, σ2 Ih

)
to establish the

thesis, where Ih is the identity matrix. �

We now consider confidence ellipsoids and simultaneous confidence intervals. Ellip-
soids and their support planes are presented in [29]; the affine point of x belongs to the
ellipsoid:

ξ(µ, BBB, r) =
{

x : (x− µ)tBBB+(x− µ) ≤ r
}

(27)

if and only if: ⋂
v

(
|vtµ− vtx| ≤

√
r(vtBBBv)

)
, (28)

where
⋂
v

indicates that all possible vectors v are considered. We now establish:

Proposition 6. If Y ∼ N (µ, BBB) :

Pr

[⋂
v

(
|vtµ− vty| ≤

√
xh,1−q(vtBv)

)]
= 1− q, (29)

with xh,1−q, the (1-q)-th quantile of χ2
h (the central chi-square with h degrees of freedom), when

rank(BBB) = h.

Proof. The proof for the case Y ∼ N (µ, BBB) directly follows from the previous considera-
tions. Thus, we only have to point out that x ∈ ξ(µ, BBB, r) is equivalent to, as can be seen
in [29]: ⋂

v

(
|vtµ− vtx| ≤

√
r(vtBv)

)
. (30)

�

Since, as we saw (Y − µ)tBBB+(Y − µ) ∼ σ2χ2
h when Y ∼ N

(
µ, σ2BBB

)
, we have

(p− p̃)tU+(p)(p− p̃) ∼ χ2
m−1, because, as we shall see in the next section, rank(U(p)) =

m− 1.
In the next section, we will obtain results on (U(p)) that will be used to obtain

chi-square confidence regions for p and through duality, test hypothesis on p.

4. Covariance Matrices

As we saw, for p̃, the limit covariance matrix of
√

n(p̃m − p) is:

U(p) = D(p)− ppt (31)
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where p = (p1, · · · , pm), pj > 0, j = 1, · · · , m and
m
∑

j=1
pj = 1. For the rank of the

covariance matrix, we have:

rank(U(p)) = rank
(

D(p)− ppt) ≥ m− 1

since rank(D(p)) = m and rank
(

ppt) = 1, as follows from, as can be seen in [30],
page 46, that |rank(A) − rank(B)| ≤ rank(A + B). In addition to this, U(p)1 = 0
so rank(U(p)) ≤ m− 1. Thus, rank(U(p)) = m− 1:

Matrix U(p) is a covariance matrix which, as can be seen in, [30], is positive semi-
definite. There is therefore an orthogonal matrix P(p) and a diagonal matrixD(v) whose
principal elements are the eigenvalues v1, · · · , vm of U(p) such that:

U(p) = P(p)D(v)P(p)t (32)

Since rank(U(p)) = m − 1, we may order its eigenvalues to have vj > 0, j =

1, · · · , m − 1, and vm = 0. With D(v)
1
2 , the diagonal matrix with principal elements,

v1/2
1 , · · · , v1/2

m and:

U(p)
1
2 = P(p)D(v)

1
2 P(p)t (33)

we will have:
U(p) = U(p)

1
2 U(p)

1
2 . (34)

We now establish:

Lemma 3. If the m×m matrices M1 · · ·Mw are such that Mt
j Mj′ = 0m×m, when j 6= j′, we have

rank

(
w
∑

j=1
Mj

)
=

w
∑

j=1
rank(Mj).

Proof. With gj = rank(Mj) and Mj =
[
mj,1, · · · , mj,m

]
, j = 1, · · · , w, there will be gj

linearly independent column vectors
{

ṁj,l ; l ∈ Dj

}
of Mj, j = 1, · · · , w. The vectors in

w⋃
j=1

{
ṁj,l ; l ∈ Dj

}
will be linearly independent, since, when j 6= j′, they are orthogonal.

Thus, rank([M1 · · ·Mw]) ≥
w
∑

j=1
gj =

w
∑

j=1
rank(Mj). Moreover, if we join another column

vector of [M1 · · ·Mw], say mj′ ,l′ , to the set
w⋃

j=1

{
mj,l ; l ∈ Dj

}
, it will linearly depend on the{

m′j′ ,l′ ; l′ ∈ Cj′
}

. Thus, the vectors in the extended set will not be linearly independent.

Thus, rank([M1 · · ·Mw]) =
w
∑

j=1
gj =

w
∑

j=1
rank(Mj). �

Consider that
w
∑

j=1
Mj = [M1 · · ·Mw](1w

⊗
Im), with

⊗
indicating the Kronecker ma-

trix product, as can be seen in [31], with rank(1w
⊗

Im) = rank(1m)rank(Im) = m. Thus,
as can be seen in [30]:
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rank

(
w

∑
j=1

Mj

)
≥ rank([M1 · · ·Mw]) + rank

(
1w
⊗

Im

)
−m

= rank([M1, · · · , Mw])

=
w

∑
j=1

rank(Mj).

and:

rank

(
w

∑
j=1

Mj

)
≤ rank([M1, · · · , Mw]) =

w

∑
j=1

rank(Mj) (35)

so:

rank

(
w

∑
j=1

Mj

)
=

w

∑
j=1

rank(Mj), (36)

as we wished to establish.
Let Q1, · · · , Qw now be pairwise orthogonal orthogonal projection matrices (POOPM)

with Q1 =
1
m

1m1t
n. Now, U(p) is m×m with rank m− 1. Thus, its nullity space, N(p) will

have a dimension 1 and since α1 =
1√
m

1m ∈ N(p), α1αt
1 will be the orthogonal projection

matrix on N(p), since U(p) is symmetrical so its range space R(p) will be the orthogonal
complement N(p)⊥ of N(p). The orthogonal projection matrix T(p) on R(p) will then be:

T(p) = Im −Q1. (37)

Thus, if
w
∑

j=1
Qj = Im, we will have T(p) =

w
∑

j=2
Qj as well as

U(p) = T(p)U(p) =
w

∑
j=2

QjU(p) (38)

and, according to Lemma 3:

m− 1 = rank(U(p)) =
w

∑
j=1

rank
(
QjU(p)

)
. (39)

Now:
rank

(
QjU(p)

)
≤ rank

(
Qj
)
, j = 2, · · · , w

and m− 1 =
w
∑

j=1
rank

(
Qj
)
. Thus, we must have:

rank
(
QjU(p)

)
= rank

(
Qj
)
, j = 2, · · · , w (40)

We now highlight that U(p) and U(p)
1
2 have the same eigenvectors associated with

positive eigenvalues. These eigenvectors constitute an orthonormal basis for R(U(p)) =
R(U(p)

1
2 ). Thus:

T(p)U(p)
1
2 = U(p)

1
2 (41)

and, reasoning as above, we obtain:

rank
(

QjU(p)
1
2

)
= rank

(
Qj
)
, j = 2, · · · , w (42)

Matrices Q1, · · · , Qw naturally appear, as can be seen in [32], when there are factors
that cross or groups of nested factors that cross. The sums of squares of effects and
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interactions of these factors are the ‖AjY‖2, j = 2, ..., w, and ‖A1Y‖2 can be associated with
the general mean.

5. Inference
5.1. Chi-Square Tests

According to the PCMT, when:

H0(A) : Ap = 0 (43)

holds, the limit distribution of:

Ln(A) = n(Ap̃n)
t(AU(p̃n)At)+(Ap̃n) (44)

will be that of χ2
r with r = rank

(
AU(p̃n)At), since when H0(A) holds:
√

nAp̃n ∼ N
(
0, AU(pn)At) (45)

and we also have p̃n
p−→ p. We thus have for H0(A) a q limit level test with statistic Ln(A)

and a critical value xr,1−q, the (1− q)− th is a quantile of χ2
r .

Moreover, under any alternative to H0(A):

H1(A) : Ap = q (46)

we have, whatever K > 0:
Pr(Ln(A) > K) −−−→

n→∞
1 (47)

so the chi-square tests will be strongly consistent.
Let us assume that the probabilities p1, · · · , pm correspond to the treatments of a fixed

effects model in which d factors, with h1, · · · , hd levels, cross (for instance, probabilities of
cures for different treatments). We then have:

m =
d

∏
l=1

hl (48)

which, as can be seen in [32], tests the effects and interactions of the factors. These effects
and interactions correspond to subsets of d̄ = {1, · · · , d}. Thus, the null set, φ, will
correspond to the general mean value, if the set has one element, it will be associated with
the effects of the factor whose index belongs to the set. Otherwise, if the set has more than
one element, it will be associated with the interaction between the levels of the factors with
those indices. The sets can be ordered by the indexes:

j(ϕ) = 1 + ∑
l∈ϕ

2l−1 (49)

Putting ϕj to indicate the j − th set, j = 1, · · · , 2d, we have, as can be seen in [30],
the matrices:

A(ϕj) =
d⊗

j=1

Al(ϕj), j = 1, · · · , 2d (50)

where:  Al(ϕj) =
1√
hl

1t
hl

, l /∈ ϕj j = 1, · · · , 2d

Al(ϕj) = Thl
, l ∈ ϕj j = 1, · · · , 2d,

(51)
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we then have, with Aj = A
(

ϕj
)
, j = 1, · · · , 2d:

gj = rank(Aj) = ∏
j=ϕj

(
hj − 1

)
j = 1, · · · , 2d (52)

Thus, for testing the:

H0,j = H0(Aj) : j = 1, · · · , 2d (53)

we have the statistic Ln(Aj), with gj degrees of freedom, j = 1, · · · , 2d.
Another interesting case is that of cross-nesting factors. The factors in the h-th group

have ah,1, · · · , ah, fh
levels, h = 1, · · · , d. There are then bh,v =

v
∏

v′=1
ah,v′ , v = 1, · · · , fh,

combinations of levels of the first v factors in group h, and we also put bh,0 = 1, h = 1, · · · , d.

Each of the combinations contains ch,v =
fh
∏

v′=v+1
ah,v′ , 0 ≤ vs. < fh, or ch, fh

= 1, for

combinations of levels of the remaining factors, and we have the matrices:
Ah,0 =

1
√ch,0

1t
ch,0

, h = 1, · · · , d

Ah,j = Ibh ,j−1
⊗

Tah,j

⊗ 1
√ch,j

1t
ch,j

j = 1, · · · , fh, h = 1, · · · , d,
(54)

where Tr is obtained by deleting the first row equal to
1√
r

1t
r of a r× r orthogonal matrix

and
⊗

indicates the Kronecker matrix product. These matrices have ranks:{
gh,0 = 1, h = 1, · · · , d
gh,j = bh,j − bh,j−1 h = 1, · · · , d, (55)

where bh,0 = 1, h = 1, · · · , d.
The effects and interactions in this cross-nesting are associated with the vectors

j = (j1, · · · , jd) with jh = 0, · · · , fh, h = 1, · · · , d. So j is associated with the matrices:

Aj =
d⊗

h=1

Ah,jh ; j ∈ Γ (56)

with ranks:

gj =
d

∏
h=1

gh,jh ; j ∈ Γ (57)

and where Γ = {j; 0 ≤ jh ≤ fh, h = 1, · · · , d}.
To test the hypothesis:

H0,j = H0,j(Aj); j ∈ Γ (58)

we have the statistic Ln(Aj) with gj degrees of freedom, j ∈ Γ.

5.2. Confidence Regions

According to the continuity of the Moore–Penrose inverses, as can be seen in [30],
pp. 221–224, we have:

U(p̃n)
+ −−−→

n→∞
U(p)+,

so the PCMT gives:
n(p− p̃n)

tU(p̃n)
+(p− p̃n) ∼ χ2

m−1 (59)
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as well as:

n
(

Aj p− Aj p̃n
)t
(

AjU(p̃n)At
j

)+(
Aj p− Aj p̃n

)
∼ χ2

gj
, j ∈ Γ (60)

for models with factors crossing and cross-nesting.
Thus:

Pr
[
n(p− p̃n)

tU(p̃n)+(p− p̃n) ≤ xm−1,1−q

]
−−−→
n→∞

1− q

Pr
[

n
(

Aj p− Aj p̃n
)t
(

AjU(p̃n)At
j

)+(
Aj p− Aj p̃n

)
≤ xr(Aj),1−q

]
−−−→
n→∞

1− q, j = 2, · · · , w

Pr
[

n
(

Aj p− Aj p̃n
)t
(

AjU(p̃n)At
j

)+(
Aj p− Aj p̃n

)
≤ xr(Aj),1−q

]
−−−→
n→∞

1− q, j ∈ Γ

(61)

We can now apply Proposition 6 to obtain:

Pr
[⋂

v

(
|vt p− vt p̃n| ≤

√
xn−1,1−q(vtU(p̃n)v)

)]
−−−→
n→∞

1− q

Pr
[⋂

v

(
|vt Aj p− vt Aj p̃n| ≤

√
xgj ,1−q

(
vt AjU(p̃n)At

jv
))]

−−−→
n→∞

1− q, j = 2, · · · , w

Pr
[⋂

v

(
|vt Aj p− vt Aj p̃n| ≤

√
xgj ,1−q

(
vt AjU(p̃n)At

jv
))]

−−−→
n→∞

1− q, j ∈ Γ

(62)

5.3. Non-Linear Statistics

We assume that the component functions gl(·), l = 1, · · · , w of G(·) have contin-
uous partial derivatives of the second order to apply Proposition 2 and its corollary in
showing that: √

n(G(p̃n)− G(p)) ∼ N
(
0, G(p)U(p)G(p)t). (63)

An interesting application of this result is that to log-linear models, as can be seen in [12],
in which we use: {

G(p̃n) = log(p̃n) = (logp̃n,1, · · · , logp̃n,m)
G(p) = log(p) = (logp1, · · · , logpm)

(64)

We now have:

G(p) = D
(

1
p1

, · · · ,
1

pm

)
= D(p)−1, (65)

so:
G(p)U(p)G(p)t = D(p)−1 − 1m1t

m = W(p), (66)

sinceD(p)−1 p = 1.
Moreover, sinceD(p)−1 is invertible, taking:

U0(p) = D(p)−1U(p)D(p)−1 (67)

we have:
rank

(
U0(p)

)
= rank(U(p)) = m− 1. (68)

Thus:

U0(p)
(

1
‖p‖ p

)
= 0 (69)
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so
1
‖p‖ p belonging to the nullity space N0(p) of U0(p) constitutes an orthonormal basis

for that space. Since U0(p) is symmetrical, its range space R0(p) will be N0(p)⊥, and the
orthogonal projection matrix on R0(p) will be:

T0(p) = Im −
1
‖p‖ ppt (70)

Let A0 have row vectors that constitute an orthonormal basis for a sub-space ∇0.
Putting: {

l0(p) = log(p)
l0(p̃n) = log(p̃n)

(71)

We have, according to the PCMT:

√
n
[

Al0(p̃n)− Al(p)
]
∼ N

(
0, AU0(p)At

)
.

Thus, to test:
H0(A) : Al0(p) = 0 (72)

we have the limit q level chi-square test with the statistic nl0(p̃n)t(AU0(p)At)+l0(p̃n) and
the critical value xr0(A),1−q with r0(A) = rank

(
AU0(p)At). These tests will be strongly

consistent as follows from l0(p̃n)
p−−−→

n→∞
l0(p).

Moreover, we have the limit level 1− q confidence ellipsoids given by
Pr
[(

l0(p)− l0(p̃n)
)tU0(p̃n)+

(
l0(p)− l0(p̃n)

)
≤ xm−1,1−q

]
−−−→
n→∞

1− q

Pr
[(

Al0(p)− Al0(p̃n)
)t AU0(p̃n At)+

(
Al0(p)− Al0(p̃n)

)
≤ xr0(A),1−q

]
−−−→
n→∞

1− q
(73)

We can now apply Proposition 6 to obtain:
Pr
[⋂

v

(
|vtl0(p)− vtl0(p̃n)| ≤

√
xm−1,1−q(vtU0(p̃n)v)

)]
−−−→
n→∞

1− q

Pr
[⋂

v

(
|vt Al0(p)− vt Al0(p̃n)| ≤

√
xr0(A),1−q(vt AU0(p̃n)Atv)

)]
−−−→
n→∞

1− q, j = 2, · · · , w

(74)

5.4. Numerical Example

In this section, we apply our results, for non-linear statistic, to a dataset on coronary
heart disease analysed by [12,33], with the log-linear model, a non-linear statistic. In
all, a total of 1330 sick patients were categorized with respect to three variables, namely
blood pressure, serum cholesterol and whether they had a coronary heart disease or not.
The Blood pressure, which was the first variable had four categorical levels. The second
variable, which was, Serum cholesterol, also had four categorical levels while the third
variable, which indicated the presence of coronary heart disease, had two levels. So in
all, the data had 32 classes with a total of 1330 sick patients. Kindly refer to Section 5.6
of [12] for details on the variables and their levels as well as a cross-classification of the
frequencies for each category.

To proceed with the analysis by the application of our method, as can be seen in
Equation (63), we firstly estimate the probabilities of each of the 32 classes. In order to
apply the non-linear statistics, we calculated the logarithms of those estimates. As in
Equation (63), the composite functions of the estimates were normally distributed with
a null mean vector and a certain covariance matrix. We proceeded by evaluating our
covariance matrix—firstly by determining the Jacobian matrix of the gradient of our
composite function, as in Equation (65) and by Equation (66), and then determining the
covariance matrix for our composite function.
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To test the hypothesis of the absence of effects and interactions, we started by obtaining
matrices A using orthogonal matrices.

The first orthogonal matrix we considered is:

P2 =


1√
2

1√
2

1√
2
− 1√

2

 (75)

Since we have 32 classes, we build the P matrices up to P32 with Kronecker matrix
products:

P4 = P2
⊗

P2

P8 = P2
⊗

P4

P16 = P2
⊗

P8

P32 = P2
⊗

P16, where
⊗

is the Kronecker product.
After getting the orthogonal matrix P32, we determined our A matrices. Since we have

three factors, we have eight A matrices defined as follows.
Let the set containing the factors indexes be ϕ = {1, 2, 3}, then the subsets of ϕ and

the corresponding factor effects and interactions are:

j = 1, ϕ = ∅ : overall or general mean effect

j = 2, ϕ = {1} : effects of the first factor

j = 3, ϕ = {2} : effects of the second factor

j = 4, ϕ = {1, 2} : interactions between the first and second factors

j = 5, ϕ = {3} : effects of the third factor

j = 6, ϕ = {1, 3} : interactions between the first and third factors

j = 7, ϕ = {2, 3} : interactions between the second and third factors

j = 8, ϕ = {1, 2, 3} : interactions between all factors

Now, the Aj, j = 1, · · · , 8 are obtained from P32 as follows: A1 is the first row; A2
is the second to fourth rows; A3 is the fifth, ninth and thirteenth rows; A4 is the sixth,
seventh, eighth, tenth, eleventh, twelfth, fourteenth, fifteenth and sixteenth rows. Similarly,
A5 is the seventeenth row; A6 is the eighteenth, nineteenth and twentieth rows; A7 is the
twenty-first, twenty-fifth and twenty-ninth rows; and A8 is the twenty-second, twenty-
third, twenty-forth, twenty-sixth, twenty-seventh, twenty-eight, thirtieth, thirty-first and
thirty-second rows.

Now, according to Equation (44), we have the covariance matrices:

Vj(p) = At
jW(p)Aj, j = 1, · · · , 8, (76)

where W(p) is defined in Equation (66), for the:

Zj(p) = AjG(p), j = 1, · · · , 8, (77)

where G(p) is given by Equation (64). The sum of squares (SS) for the statistic Zj(p), j =
1, · · · , 8 are given by

SSj = nZj(p)tVj(p)+Zj(p), j = 1, · · · , 8 (78)

where n is the total number of our observations, and + indicates the Moore–Penrose
inverses of the Vj(p), j = 1, · · · , 8. The SSj, j = 1, · · · , 8 are chi-squares with degrees of
freedom the rank(Aj), j = 1, · · · , 8.
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Table 1 is an ANOVA-like table that presents the results of our analysis of the coronary
heart disease data. This gives the sources of variation of the general mean, the main effects
and the interaction effects. It also presents the degrees of freedom and the sum of squares for
these effects. The significance level of these effects are indicated in *. From Table 1, we see
that the general mean is highly significantly different from 0. Moreover, the factors blood
pressure, serum cholesterol and coronary heart disease as well as both interactions between
the first and second factors with the third factor were highly significant. The interactions in
which the first and second factors did partake were not significant. We pointed out that
we were able to consider the interaction between the three factors by using our approach.
In the classical analysis of the data, as can be seen in [12] (Section 5.6), this would not
be possible.

Table 1. ANOVA-like table for the coronary heart disease data.

Sources of Variation Degree of Freedom Sum of Squares

General mean, µ 1 4752.504 ***
1 3 30.289 ***
2 3 20.915 ***

1 × 2 9 5.623
3 1 365.871 ***

1 × 3 3 24.204 ***
2 × 3 3 22.284 ***

1 × 2 × 3 9 4.568
*** indicates “significance” at 0.005 levels. Source: author’s own calculations.

Again, we applied our method to analyse the General Social Survey (GSS 2008).
The General Social Survey (GSS) is a survey which conducts basic scientific research on the
structure and development of American society with a data-collection program designed
to both monitor societal change within the United States and to compare the United
States with other nations [34]. We considered three categorical variables, “Education”,
“Political party affiliation” and “Gender”. The “Education” variable had 5 categorical levels,
while “Political party affiliation” and “Gender” has 7 and 2 categorical levels respectively,
as analyzed by [7] in Section 3.2.4.

Just as in Tables 1 and 2, an ANOVA-like table, presents the results of our analysis.
It gives the sources of variation of the general mean, the main effects and the interaction
effects for our GSS (2008) data. It also presents the degrees of freedom and the sum of square
for these effects. The significance level of these effects is indicated in *. From the table, both
factors 1 and 2 have significant effects as well as a significant interaction. The interactions
between factors 2 and 3 is also significant. Factor 3 had neither significant effects nor
interactions with the exception of its interaction with factor 2.

We can thus conclude that the core of significance was in factors 1 and 2 (education
and political party affiliation) and that both genders behave similarly.

Table 2. ANOVA-like table for the GSS 2008 data.

Sources of Variation Degree of Freedom Sum of Squares

General mean, µ 1 49,387.730 ***
1 4 860.829 ***
2 6 84.692 ***

1 × 2 24 89.636 ***
3 1 1.943

1 × 3 4 1.624
2 × 3 6 17.466 **

1 × 2 × 3 24 27.902 ***
*** and ** indicate “significance” at 0.005 and 0.01 levels respectively. Source: author’s own calculations.
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Comparing Procedures

Our procedure is based on the asymptotic distribution given by
√

n(p̃n − p) ∼ N (0, U(p)) (79)

and by √
n(l(p̃n)− l(p̃)) ∼ N

(
0, J(p)U(p)J(p)t) (80)

where J(·) is the Jacobian matrix of the gradients of l(·) (the row vectors of J(·) are the
gradients of the components of l(·)):

This enabled us to, given an orthogonal partition:

Rm = �d
j=1∇j, (81)

where m is the number of probabilities, test the hypotheses:

H0,j : l(p) ∈ ∇⊥j . (82)

In our numerical example, we have:

∇(∅) : general mean

∇({1}) : null effect of the first factor

∇({2}) : null effect of the second factor

∇({3}) : null effect of the third factor

∇({1, 2}) : null interaction of the first and second factors

∇({1, 3}) : null interaction of the first and third factors

∇({2, 3}) : null interaction of the second and third factors

∇({1, 2, 3}) : null interaction of the three factors

(83)

This way, we overcame the requirement of using hierarchical models.

6. Conclusions

Multinomial models having their limit distribution given by
√

n(p̃n − p) ∼ N (0, U(p))
with rank(U(p)) = m − 1 and p belonging to a compact set led us to establish the
parametrized continuous mapping theorem (PCMT) to carry out inference for them.
Namely, we obtained the confidence ellipsoids and confidence intervals. Moreover, we
obtained chi-square tests for the hypothesis:

H0(A) : Ap = 0

which led to ANOVA-like inference for both multinomial and log-linear models. We
pointed out that now hierarchical assumptions made on log-linear models are no longer
necessary and all effects and interactions can be tested without any restrictions. Actually,
this was used in the two numerical examples we presented. In addition to this, the
replacement of F-tests by chi-square ones increases the power of our inference by replacing
a finite number of degrees of freedom for the error by an infinity of them.
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