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Abstract: In this paper, we present an extension of the truncated positive normal (TPN) distribution
to model positive data with a high kurtosis. The new model is defined as the quotient between
two random variables: the TPN distribution (numerator) and the power of a standard uniform
distribution (denominator). The resulting model has greater kurtosis than the TPN distribution.
We studied some properties of the distribution, such as moments, asymmetry, and kurtosis. Pa-
rameter estimation is based on the moments method, and maximum likelihood estimation uses the
expectation-maximization algorithm. We performed some simulation studies to assess the recov-
ery parameters and illustrate the model with a real data application related to body weight. The
computational implementation of this work was included in the tpn package of the R software.

Keywords: slash distribution; half-normal distribution; EM algorithm; tpn package

1. Introduction

The modeling of non-negative data has grown exponentially, since many datasets
have this characteristic. Distributions with support in the positive line are used widely
in the engineering and reliability fields related to failure time (also known as lifetime
data). The half-normal distribution (HN) is a very well-known model for non-negative
data, discussed extensively in the literature. For instance, Rafiqullah et al. [1] used the HN
model to analyze survival data related to breast cancer in Hispanic black and non-Hispanic
black women. Bosch-Badia et al. [2] studied the applicability of the HN distribution to risk
analysis traditionally performed using risk matrices. Tsizhmovska et al. [3] analyzed the
length of sentences where one of their distributions was the HN.

Olmos et al. [4] generated an extension of the HN distribution, obtaining a distribu-
tion that captures atypical data, but with little flexibility, called the slashed half-normal
distribution (SHN). Cooray and Ananda [5] generalized the HN distribution, obtaining a
new flexible model, which they denominated the generalized half-normal (GHN) distri-
bution, which includes the HN model as a particular case. Despite the flexibility offered,
a major difficulty appears, commonly related to limitations on the use of atypical data.
To solve the obstacle, Olmos et al. [6] proposed an extension of the GHN model, named the
slashed generalized half-normal (SGHN) distribution. The main aim of the authors was
to generate a model with a higher kurtosis that allows better modeling of positive data in
the presence of outliers. Other authors have worked on a similar idea, e.g., Iriarte et al. [7],
Reyes et al. [8], Olmos et al. [9], Segovia et al. [10], and Astorga et al. [11].

Gómez et al. [12] truncated the normal distribution, conditioning it to positive values,
i.e., if X has a normal distribution, the authors studied X|X > 0 (see Jonhson et al. [13]),
creating a distribution that they named the truncated positive normal distribution (TPN).
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A random variable (rv) Z follows a TPN distribution, denoted by Z ∼ TPN(σ, λ), if its
probability density function (pdf) is given by:

f (z; σ, λ) =
1

σΦ(λ)
φ
( z

σ
− λ

)
, z > 0, (1)

where φ denotes the pdf of the standard normal model, σ > 0 is a scale parameter, and
λ ∈ R is a shape parameter.

On the other hand, the slash distribution is defined stochastically as the quotient
between two independent rv, let us say Z and U, as follows:

X =
Z

U
1
q

, (2)

where Z ∼ N(0, 1) and U ∼ U(0, 1) are independent and q > 0 is a shape parameter.
Olmos et al. [6] used this idea to propose an extension to the half-normal generalized

model of Cooray and Ananda [1], called the slashed generalized half-normal distribution
(SGHN). The density function of this rv is as follows:

f (z; σ, α, q) =
q
√

2q/α

π σqΓ( q+α
2α )

zq+1 G
(

z2α,
q + α

2α
,

1
2σ2α

)
, z > 0, (3)

where σ, α, q > 0 and G(·; a) is the cumulative distribution function (cdf) of the gamma dis-
tribution with shape parameter a and rate parameter one. We denote Z ∼ SGHN(σ, α, q).

The objective of this paper is to propose an extension of the model proposed by Gómez
et al. [12] using the “slash” procedure, utilizing a TPN (σ, λ) rv in the numerator. Thus,
the new model, which we call the slash truncated positive normal (STPN), will become a
direct competitor model for SGHN, since it creates heavier tails and, moreover, allows the
fitting of atypical data.

The paper is organized as follows. Section 2 presents the pdf of the STPN distribution
and some properties such as moments, the hazard function, and the kurtosis coefficient.
Section 3 studies the inference for the proposed model. In particular, we discuss the
moments estimator and the expectation-maximization (EM) [14] algorithm to find the
maximum likelihood estimator. In addition, we offer the observed Fisher information using
Louis’ method [15]. Section 4 shows a simulation study to assess the recovery parame-
ters. Section 5 conducts a real data application, where the STPN is compared with other
proposals in the literature. Finally, Section 6 presents the conclusions of the manuscript.

2. The Slash Truncation Positive Normal Model

In this section, we describe the stochastic representation of the STPN model, its pdf,
and some basic properties of the model.

2.1. Stochastic Representation and Particular Cases

Definition 1. An rv Y has an STPN distribution with parameters σ, λ, and q if it can be repre-
sented as the ratio:

Y =
Z

U
1
q

(4)

where U ∼ U(0, 1) and Z ∼ TPN(σ, λ) are independent rvs, σ > 0, λ ∈ R, and q > 0. We
denote it as Y ∼ STPN(σ, λ, q).
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By construction, the following models are particular cases for the STPN distribution:

• STPN(σ, λ, q→ ∞) ≡ TPN(σ, λ);
• STPN(σ, λ = 0, q) ≡ SHN(σ, q);
• STPN(σ, λ = 0, q→ ∞) ≡ HN(σ).

Figure 1 summarizes the relationships among the STPN and its particular cases.

STPN(σ, λ, q)

λ=0

!!

q→∞

}}
λ=0, q→∞

��

TPN(σ, λ)

λ=0

!!

SHN(σ, q)

q→∞

}}
HN(σ)

Figure 1. Particular cases for the STPN distribution.

2.2. Density Function

Proposition 1. Let Y ∼ STPN(σ, λ, q). Then, the pdf of Y is given by:

fY(y; σ, λ, q) =
q

σΦ(λ)

∫ 1

0
wqφ

(yw
σ
− λ

)
dw, y > 0, (5)

where σ > 0 is a scale parameter, λ ∈ R is a shape parameter, and q > 0 is a parameter related to
the kurtosis of the distribution.

Proof. Using the representation in (4) and computing the Jacobian of the transformation
for Y = Z/U1/q and W = U1/q, we obtain:

Z = YW
U = Wq

}
⇒ J =

∣∣∣∣ ∂Z
∂Y

∂Z
∂W

∂U
∂Y

∂U
∂W

∣∣∣∣ = ∣∣∣∣ w z
0 qwq−1

∣∣∣∣ = qwq.

Therefore,

fY,W(y, w) = |J| fZ,U(yw, wq) = qwq fX(yw) fU(wq),

=
q

σΦ(λ)
wqφ

(yw
σ
− λ

)
, 0 < w < 1, z > 0.

Marginalizing with respect to variable W, we obtain the density function correspond-
ing to the rv Y, that is,

fY(y; σ, λ, q) = q
σΦ(λ)

∫ 1

0
wqφ

(yw
σ
− λ

)
dw.

An alternative way to obtain this pdf is by substituting u = yw
σ − λ, obtaining:

fY(y; σ, λ, q) =
qσq

(2π)1/2Φ(λ)yq+1

∫ y/σ−λ

−λ
(u + λ)qe−u2/2du.
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With t = u2

2 in the last expression, we obtain:

fY(y; σ, λ, q) =
qσq

(2π)
1
2 Φ(λ)yq+1

∞

∑
K=0

(
q
k

)
λq−k2

k
2−

1
2 Γ
(

k + 1
2

)[
G
(( y

σ
− λ

)2
,

k + 1
2

, 1
)
− G

(
λ2

2
,

k + 1
2

, 1
)]

.

2.3. Some Properties

In this section, we study some basic properties of the STPN distribution.

Proposition 2. Let Y ∼ STPN(σ, λ, q). Then, the cdf of Y is given by:

FY(y; σ, λ, q) =
q

Φ(λ)

∫ 1

0
wq−1

(
Φ
(yw

σ
− λ

)
+ Φ(λ)− 1

)
dw, y > 0

Proof. It is immediate from the definition.

Proposition 3. Let Y ∼ STPN(σ, λ, q). Then, the hazard function is given by:

HY(y; σ, λ, q) =
q

σΦ(λ)

∫ 1
0 wqφ

( yw
σ − λ

)
dw

1− q
Φ(λ)

∫ 1
0 wq−1

(
Φ
( yw

σ − λ
)
+ Φ(λ)− 1

)
dw

, y > 0

Figure 2 shows the pdf, cdf, and hazard function for the STPN model with different
combinations of parameters.

Proposition 4. Let Y ∼ STPN(σ, λ, q). If q → +∞, then Y strongly converges to the rv
Z ∼ TPN(σ, λ).

Proof. Let Y ∼ STPN(σ, λ, q). Then, Y can be written as Y = Z/U1/q, where Z ∼
TPN(σ, λ) and U ∼ U(0, 1). First, we studied the convergence in the probability of U1/q. It
is clear that W = U1/q, then W ∼ Beta(q, 1), so that E(W − 1)2 = 2

(q+1)(q+2) . If q → +∞,

then E(W − 1)2 → 0. Therefore,

W = U1/q P→ 1, as q→ +∞,

where P→ denotes convergence in probability. Then, applying Slutsky’s theorem [16] to
Y = Z/U1/q, we have:

Y D→ Z, as q→ +∞,

where D→ denotes convergence in the distribution. In other words, for greater q values, Y
strongly converges to the TPN(σ, λ) distribution.

Proposition 5. If Y|T = t ∼ TPN(σt−1/q, λ) and T ∼ U(0, 1), then Y ∼ STPN(σ, λ, q).

Proof. The marginal distribution of Y can be computed as:

fY(y; σ, λ, q) =
∫ 1

0
fY|T(y|t) fT(t)dt =

∫ 1

0

1
σΦ(λ)t−1/q φ

(
y

σt−1/q − λ

)
dt.

With the transformation w = t1/q, we obtain Equation (5).

Remark 1. Proposition 4 implies that for q→ +∞, the pdf of the STPN distribution converges to
the pdf of the TPN model. Proposition 5 shows that the STPN distribution can also be seen as a
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scale mixture of the TPN model. This property is very important for obtaining random values from
this model and for the application of an EM-type algorithm to estimate the parameters of the model.
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Figure 2. pdf, cdf, and hazard function for the STPN(σ = 1, λ = 2, q) model with different com-
binations of q and the STPN(σ = 1, λ, q = 2) model with different combinations of λ. (a) pdf of
STPN(σ = 1, λ = 2, q). (b) pdf of STPN(σ = 1, λ, q = 2). (c) cdf of STPN(σ = 1, λ = 2, q). (d) cdf
of STPN(σ = 1, λ, q = 2). (e) hazard function of STPN(σ = 1, λ = 2, q). (f) hazard function of
STPN(σ = 1, λ, q = 2).
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2.4. Moments

The following proposition provides the moments of the STPN distribution.

Proposition 6. Let Y ∼ STPN(σ, λ, q). Therefore, for r = 1, 2, . . . and q > r, the r-th moment
of Y is given by:

µr = E(Yr) =
qσr

q− r
κr(λ),

where κr(λ) =
1√

2πΦ(λ)
∑t

k=0 (
r
k)λ

r−k2(k−1)/2Γ((k + 1), λ2/2).

Proof. Using the stochastic representation given in Equation (4), we have that:

µr = E(Yr) = E(ZrU−r/q) = E(Zr)E(U−r/q),

where E(U−r/q) = q
q−r , q > r, and E(Zr) = σr

√
2πΦ(λ)

t

∑
k=0

(
r
k

)
λr−k2(k−1)/2Γ((k + 1), λ2/2)

are the moments of the TPN(σ, λ) model.

Corollary 1. If Y ∼ STPN(σ, λ, q), then its first four moments are determined as follows:

1. µ1 = E(Y) = qσ
q−1 κ1(λ), q > 1;

2. µ2 = E(Y2) = qσ2

q−2 κ2(λ), q > 2;

3. µ3 = E(Y3) = qσ3

q−3 κ3(λ), q > 3;

4. µ4 = E(Y4) = qσ4

q−4 κ4(λ), q > 4.

Var(Y) = σ2q
(

1
q− 2

κ2(λ)−
q

(q− 1)2 κ2
1(λ)

)
, q > 2. (6)

Proof. It is immediate from Proposition 6.

Corollary 2. Let Y ∼ STPN(σ, λ, q), then the asymmetry coefficient (
√

β1) and the kurtosis
coefficient (β2) are:

√
β1 =

√
q− 2{(q− 1)3(q− 2)κ3 − 3qκ1κ2(q− 1)2(q− 3) + 2q2(q− 2)(q− 3)κ3

1}√
q(q− 3){(q− 1)2κ2 − q(q− 2)κ2

1}3/2
, q > 3, (7)

β2 =
(q− 1)3(q− 2)2 A + 3(q− 2)(q− 3)(q− 4)q2B

q(q− 3)(q− 4){(q− 1)2κ2 − q(q− 2)κ2
1}2

, q > 4 (8)

where A = (q− 3)(q− 1)κ4 − 4q(q− 1)(q− 4)κ1κ3 and B = 2(q− 1)2κ2
1κ2 − q(q− 2)κ4

1.

Proof. By the definition of the asymmetry and kurtosis coefficients, we have:

√
β1 =

µ3 − 3µ2µ1 + 2µ3
1

(µ2 − µ2
1)

3/2
and β2 =

µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1
(µ2 − µ2

1)
2

.

Replacing µ1, µ2, µ3, and µ4 obtained in Corollary 1, we have the result.

Remark 2. Proposition 6 shows that the moments of the STPN distribution depend essentially on
the moments of the TPN distribution. Equations (6) and (8) show the effect of parameter q on the
model; a lower value of q produces greater variance and kurtosis. Table 1 shows some values of the
kurtosis coefficient of the STPN distribution for different values of λ and q.
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Table 1. Some values for the kurtosis coefficients of the STPN distribution for different values of λ

and q.

q
λ 5 7 10 15 +∞ (TPN)

−5 19.68 10.28 8.58 8.04 7.76
−2 16.63 8.22 6.73 6.26 6.02
−1 14.88 7.02 5.64 5.22 5.00

0 13.19 5.72 4.45 4.06 3.87
1 12.70 4.82 3.54 3.18 3.00
2 15.23 4.93 3.34 2.93 2.76
5 35.37 10.07 4.84 3.44 2.99

Figure 3 shows the mean, standard deviation, asymmetry coefficient, and kurtosis
coefficient for the STPN(σ = 1, λ, q) in terms of λ and q.
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Figure 3. (a) Mean; (b) standard deviation; (c) asymmetry coefficient; (d) kurtosis coefficient for the
STPN(λ, σ = 1, q) model.

3. Inference

In this Section, we discuss a classical approach for the inference for the STPN distri-
bution. In particular, we discuss the moments estimators and maximum likelihood (ML)
estimation based on the EM algorithm.
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3.1. Moments Estimators

The moments estimators result from the solution of the equation E(Y j) = Y j, for
j = 1, 2, 3, where Y j = n−1 ∑n

i=1 yj
i denotes the j-th sample moment. Solving E(Y) = Y, we

have that:

σ = (q−1)Y
q(λ+ξ(λ))

. (9)

Replacing this, we have the following nonlinear equations

Y2 =
Y2

(q− 1)2(λ2 + λξ(λ) + 1)
q(q− 2)(λ + ξ(λ))2 , and

Y3 =
Y3

(q− 1)3(λ3 + λ2ξ(λ) + 3λ + 2ξ(λ))

q2(q− 3)(λ + ξ(λ))3 .

These equations can be solved using different software. For instance, in R [17], we
can use the nleqslv function to obtain the moments estimators λ̂M and q̂M. The moments
estimator σ̂M is obtained by substitution in Equation (9).

3.2. Maximum Likelihood Estimation

Given y1, . . . , yn, a random sample from the STPN(σλ, q) distribution, the log-likelihood
function for θ = (σ, λ, q) is given by:

`(θ) = n log(q)− n log(σ)− n log(Φ(λ)) +
n

∑
i=1

log(G(yi)),

where:

G(yi) = G(yi, σ, λ, q) =
∫ 1

0
wqφ

(yiw
σ
− λ

)
dw.

Deriving in relation to the components of θ, we obtain the following ML equations:

n

∑
i=1

G1(yi)

G(yi)
=

n
σ

,
n

∑
i=1

G2(yi)

G(yi)
= nξ(λ), and −

n

∑
i=1

G3(yi)

G(yi)
=

n
q

,

where G1(yi) =
∂G(yi)

∂σ , G2(yi) =
∂G(yi)

∂λ , and G3(yi) =
∂G(yi)

∂q . For j > 0, we define:

ai(j) = ai(σ, λ, j) =
∫ 1

0
wjφ

(yiw
σ
− λ

)
dw, and

bi(j) = bi(σ, λ, j) =
∫ 1

0
wj ln(w)φ

(yiw
σ
− λ

)
dw.

With those notations, the ML equations can also be written as:

n

∑
i=1

y2
i

σ3
ai(q + 2)

ai(q)
−

n

∑
i=1

yiλ

σ2
ai(q + 1)

ai(q)
=

n
σ

,

n

∑
i=1

yi
σ

ai(q + 1)
ai(q)

− nλ = nξ(λ), and

n

∑
i=1

bi(q)
ai(q)

= −n
q
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Taking xi = yi/σ, ω1(xi) =
ai(q+2)

ai(q)
, ω2(xi) =

bi(q)
ai(q)

, and ω3(xi) =
ai(q+1)

ai(q)
, the equations

are equivalent to:

n

∑
i=1

x2
i ω1(xi)− λ

n

∑
i=1

xiω3(xi) = n,
n

∑
i=1

yi
σ

ω3(xi)− nλ = nξ(λ), and
n

∑
i=1

ω2(xi) = −
n
q

.

The ML estimators can be obtained directly using numerical procedures. However,
to increase the robustness of the procedure for obtaining those estimators, we also discuss
an EM-type algorithm for estimation in the model.

3.3. EM Algorithm

The EM algorithm is a well-known tool for ML estimation in the presence of nonob-
served (latent) data. For this particular problem, the algorithm takes advantage of the
stochastic representation of the STPN model in Equation (4). Let W = U1/q. The represen-
tation of the model can be seen as Yi = Zi/Wi, where Wi ∼ Beta(q, 1).

In this context, the STPN distribution can also be written using the following hierar-
chical representation:

Yi|Wi = wi
ind.∼ TPN

(
σ

wi
, λ

)
,

Wi
ind.∼ Beta(q, 1), i = 1, . . . n.

In our context, y = [y1, . . . , yn]> and w = [w1, . . . , wn]> represent the observed and
nonobserved data, respectively. The complete data are given by yc = [y>, w>]. We also
denote `c(θ|yc) as the complete log-likelihood function, which up to a constant is given by:

`c(θ|yc) = n[log q− log(σ)− log(Φ(λ))]− n
2

λ2 −
n

∑
i=1

y2
i w2

i
2σ2 +

λ

σ

n

∑
i=1

yiwi + q
n

∑
i=1

log(wi).

Note that Q(θ|θ̂(k)) = E(`c(θ|y)|y, θ = θ̂(k)); the expected value of `c(θ) provided the
observed data is given by:

Q(θ|θ̂(k)) = n[log q− log(σ)− log(Φ(λ))]− n
2

λ2 −
n

∑
i=1

y2
i ŵ2

i

(k)

2σ2 +
λ

σ

n

∑
i=1

yiŵi
(k)

+ q
n

∑
i=1

l̂og wi
(k)

,

where ŵi
(k) = E(wi|yi, θ = θ̂(k)), ŵ2

i

(k)
= E(w2

i |yi, θ = θ̂(k)), and l̂og wi
(k)

= E(log wi|yi,

θ = θ̂(k)). In our context, ŵ(k)
i , ŵ2

i
(k) and l̂og wi

(k)
do not have a closed form; they therefore

need to be computed numerically. In short, the k-th step of the EM algorithm is detailed
as follows:

• E-step: For θ̂(k) = (σ̂(k), λ̂(k), q̂(k))>, the value for the vector of parameters at the

k-step, compute ŵ(k)
i , ŵ2

i
(k), and l̂og wi

(k)
, for i = 1, . . . , n;

• CM-Step I: Given λ̂(k) and ŵ(k)
1 , . . . , ŵ(k)

n , update σ as follows:

σ̂(k+1) =
∑n

i=1 yiŵ
(k)
i

nξ
(

λ̂(k)
)
+ nλ̂(k)

;
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• CM-Step II: Given σ̂(k+1) and ŵ(k)
1 , . . . , ŵ(k)

n , update λ since the solution is obtained
from the nonlinear equation.

−∑n
i=1 yiŵ

(k)
i

n
= ξ

(
λ̂(k)

)2
+ 3ξ

(
λ̂(k)

)
λ̂(k) + 2λ̂2(k) ;

• CM-Step III: Given l̂og w1
(k)

, . . . , l̂og wn
(k)

, update q as follows:

q̂(k+1) = − n

∑n
i=1 l̂og wi

(k)
.

The E-, CM-I, CM-II, and CM-III steps are repeated until an ad hoc criterion is satisfied.
For instance, we considered

∣∣∣`(θ̂(k+1))− `(θ̂(k))
∣∣∣ < ε, for a fixed ε. In other words, the dif-

ference in the observed log-likelihood for successive steps is lower than a determined value.
The initial values for the algorithm can be obtained, for instance, using the σ̂M, λ̂M, and
q̂M, moments estimators.

3.4. Observed Fisher Information Matrix

The variance of the estimators can be estimated based on the observed Fisher informa-
tion matrix, say I(θ) = −∂2`(θ)/∂θ∂θ>. In particular, we have that:

√
nI(θ)−1

(
θ− θ̂

) D→ N3(03, I3), as n→ +∞,

where N3(03, I3) denotes the standard trivariate normal distribution. The computation of
I(θ) is not trivial, because it involves the derivation of functions that depend on integrals.
Taking advantage of the complete log-likelihood function, I(θ) can also be approximated
by Louis’ method [14] as follows:

I(θ) =
n

∑
i=1

E
(

Bi(θ)|y, θ = θ̂
)
−

n

∑
i=1

E
(

Si(θ)S>i (θ)|y, θ = θ̂
)

+ ∑ ∑
1≤i,j≤n

i 6=j

E
(

Si(θ) | y, θ = θ̂
)

E>
(

Sj(θ) | y, θ = θ̂
)

.

The details of the components of I(θ) are provided in the Appendix A.

3.5. Computational Aspects

The EM algorithm and Louis’ method to obtain the ML estimators and their standard
errors for the STPN distribution are included in the tpn package [18] from R [17]. The
following function can be used to obtain these results:

est.stpn(y, sigma0=NULL, lambda0=NULL, q0=NULL, prec = 0.001, max.iter = 1000)

where y is the response variable, sigma0, lambda0, q0 are the initial values for the al-
gorithm (they are not defined by default), prec is the precision for the parameters, and
max.iter is the maximum number of iterations to be applied for the algorithm. The tpn
package also includes the functions dstpn, pstpn, and rstpn, which compute the pdf, cdf,
and generation for the STPN distribution.

4. Simulation

In this section, we study the performance of the ML estimators using the EM algorithm
for the STPN distribution under different scenarios. We considered two values for σ: 2 and
10; three values for λ: −1, 1, and 3; two values for q: −1.5 and 3; and four sample sizes:
50, 100, 200, and 500. For each combination of σ, λ, q and n (totaling 48 combinations),
we drew 1000 replicates, and we used the tpn package to estimate the parameters based
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on the EM algorithm and estimated the standard deviations based on Louis’ method to
estimate the observed Fisher information matrix. Table 2 summarizes the mean of the
estimated bias for the 1000 replicates (bias), the mean of the standard errors (SEs), the root
of the estimated mean-squared error (RMSE), and the estimated coverage probability based
on the asymptotic distribution for the ML estimator using a 95% confidence level (CP).
Note that the bias and the RMSE terms are reduced when the sample size is increased,
suggesting that the estimators are consistent even in finite samples. The SE and RMSE
terms are closer when the sample size is increased, suggesting that the standard errors are
also consistently estimated. Finally, the CP terms converges to the nominal value when the
sample size is increased, suggesting that the asymptotic distribution of the ML estimators
also works well in finite samples.

Table 2. Recovery parameters for the STPN distribution based on 1000 replicates for different combinations of parameters
and sample size.

.
True Value n = 50 n = 100 n = 200 n = 500

σ λ q est. bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

2 −1 1.5 σ̂ −0.43 1.98 1.06 0.71 −0.12 1.98 1.09 0.80 0.04 1.64 1.01 0.88 0.19 1.17 0.81 0.92
λ̂ 0.76 2.29 1.40 0.77 0.33 2.10 1.21 0.83 0.11 1.69 1.02 0.90 −0.14 1.20 0.83 0.94
q̂ 0.09 0.57 0.54 0.94 0.08 0.42 0.43 0.93 0.06 0.29 0.32 0.96 0.03 0.18 0.16 0.97

3 σ̂ −0.70 1.28 0.97 0.62 −0.34 1.30 0.86 0.78 −0.09 1.13 0.78 0.86 0.07 0.78 0.66 0.94
λ̂ 0.94 1.64 1.35 0.72 0.45 1.49 1.08 0.83 0.19 1.18 0.85 0.90 −0.05 0.81 0.68 0.94
q̂ −0.30 2.11 2.01 0.81 −0.11 1.50 1.03 0.88 0.08 1.23 0.93 0.93 0.09 0.72 0.67 0.93

1 1.5 σ̂ 0.21 1.18 1.14 0.89 0.20 0.80 0.86 0.94 0.09 0.49 0.50 0.95 0.06 0.29 0.31 0.96
λ̂ 0.06 0.76 0.72 0.94 −0.04 0.53 0.52 0.96 −0.02 0.35 0.35 0.97 −0.02 0.22 0.22 0.95
q̂ 0.23 0.63 0.72 0.96 0.10 0.33 0.39 0.96 0.04 0.21 0.25 0.96 0.03 0.13 0.14 0.95

3 σ̂ −0.01 0.83 0.67 0.88 0.09 0.58 0.53 0.94 0.07 0.39 0.41 0.95 0.03 0.23 0.24 0.95
λ̂ 0.11 0.60 0.56 0.95 0.01 0.41 0.39 0.96 −0.01 0.29 0.30 0.96 −0.01 0.18 0.18 0.96
q̂ 1.07 4.79 5.13 0.92 0.46 1.53 1.36 0.95 0.28 0.81 0.89 0.96 0.11 0.42 0.46 0.97

3 1.5 σ̂ 0.12 0.59 0.83 0.94 0.04 0.37 0.40 0.95 0.02 0.26 0.25 0.96 0.03 0.17 0.17 0.95
λ̂ 0.13 0.70 0.76 0.95 0.07 0.45 0.63 0.95 0.02 0.31 0.30 0.96 −0.02 0.19 0.19 0.95
q̂ 0.14 0.39 0.50 0.96 0.06 0.22 0.23 0.97 0.03 0.16 0.16 0.95 0.02 0.10 0.10 0.95

3 σ̂ 0.01 0.45 0.48 0.95 0.04 0.31 0.31 0.96 0.02 0.21 0.21 0.96 0.01 0.13 0.13 0.95
λ̂ 0.16 0.57 0.63 0.97 0.02 0.37 0.37 0.96 0.02 0.25 0.25 0.95 0.01 0.16 0.16 0.95
q̂ 0.50 1.55 2.01 0.96 0.22 0.67 0.78 0.96 0.11 0.43 0.48 0.96 0.05 0.26 0.25 0.97

10 −1 1.5 σ̂ −2.41 8.09 5.04 0.70 −1.37 7.73 4.63 0.76 −1.00 5.71 3.71 0.83 0.05 4.56 3.03 0.90
λ 0.84 1.89 1.34 0.75 0.52 1.71 1.08 0.81 0.34 1.25 0.85 0.86 0.04 0.97 0.66 0.92
q̂ 0.08 0.56 0.55 0.92 0.07 0.41 0.45 0.93 0.03 0.27 0.27 0.94 0.02 0.17 0.16 0.97

3 σ̂ −3.69 5.49 4.83 0.62 −2.29 5.30 3.86 0.76 −0.93 4.73 3.14 0.85 0.11 3.58 2.87 0.90
λ̂ 0.99 1.45 1.33 0.71 0.58 1.27 0.98 0.82 0.28 1.03 0.74 0.88 0.04 0.75 0.60 0.92
q̂ −0.30 2.05 2.03 0.81 −0.19 1.33 0.95 0.87 0.07 1.18 0.92 0.92 0.15 0.76 0.73 0.94

1 1.5 σ̂ 1.24 6.09 5.89 0.89 0.87 3.89 4.52 0.93 0.37 2.40 2.66 0.93 0.25 1.42 1.49 0.95
λ̂ 0.02 0.77 0.72 0.95 −0.02 0.52 0.52 0.96 −0.00 0.35 0.37 0.95 −0.02 0.21 0.22 0.96
q̂ 0.23 0.59 0.68 0.97 0.12 0.36 0.45 0.95 0.04 0.21 0.23 0.96 0.02 0.13 0.13 0.95

3 σ̂ −0.11 3.87 3.17 0.89 0.26 2.84 2.60 0.92 0.28 1.91 2.02 0.94 0.14 1.14 1.21 0.95
λ̂ 0.12 0.59 0.54 0.95 0.03 0.41 0.39 0.94 0.00 0.28 0.28 0.95 −0.00 0.18 0.18 0.95
q̂ 1.28 5.65 6.16 0.91 0.41 1.55 1.75 0.94 0.30 0.87 1.03 0.96 0.10 0.42 0.45 0.97

3 1.5 σ̂ 0.44 2.74 3.03 0.93 0.22 1.85 1.91 0.95 0.15 1.27 1.36 0.94 0.09 0.81 0.85 0.95
λ̂ 0.14 0.67 0.89 0.96 0.05 0.44 0.47 0.96 0.02 0.30 0.31 0.96 −0.00 0.19 0.20 0.95
q̂ 0.14 0.35 0.42 0.98 0.06 0.23 0.24 0.96 0.03 0.15 0.16 0.96 0.01 0.10 0.10 0.95

3 σ̂ 0.22 2.24 2.36 0.94 0.07 1.50 1.57 0.94 0.00 1.03 1.06 0.95 0.01 0.65 0.65 0.95
λ̂ 0.11 0.55 0.59 0.97 0.07 0.37 0.40 0.97 0.04 0.25 0.26 0.95 0.01 0.16 0.16 0.95
q̂ 0.69 1.98 3.14 0.95 0.21 0.67 0.82 0.96 0.10 0.42 0.45 0.96 0.04 0.25 0.26 0.96

5. Application

In this section, we present a real data application in order to illustrate the perfor-
mance of the STPN model in comparison with other proposals in the literature. For this,
a comparison was conducted utilizing the TPN distribution and the model proposed by
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Gómez et al. [19], which is a generalization of a TPN model, denominated the generalized
TPN (GTPN). The density function of the GPTN model is given by:

f (y; σ, λ, α) =
α

σαΦ(λ)
yα−1φ

(( y
σ

)α
− λ

)
,

with x > 0, σ, α > 0, and λ ∈ R.
A real dataset of body fat was considered, which measured weight and various

body circumferences (see http://lib.stat.cmu.edu/datasets/bodyfat (accessed on 8 October
2021)); for examination purposes, the weight variable (measured in pounds (lbs)) was
chosen to conduct the application. When calculating basic statistics (Table 3 shows basic
statistics), high kurtosis can be observed for the variable, suggesting the use of a distribution
with heavy tails as the STPN.

Table 3. Descriptive statistics for the weight dataset.

Dataset n X S2 √
b1 b2

Weight measured 252 178.9 863.72 1.2 8.14

Table 4 shows the estimated parameters for the three models considered. Based on
the AIC [20] and BIC [21], the STPN model provides a better fit. In addition, Figure 4
shows the histogram for the data and the estimated pdf for all the models, where a better
performance of the STPN model is shown. In order to check the better fit of the STPN
model in comparison with the rest of the models, we also computed the quantile residuals
(QRs). If the model is appropriate for the data, the QRs should be a sample from the
standard normal model. This assumption can be validated with traditional normality tests
such as the Anderson–Darling (AD), Cramér–von Mises (CVM), and Shapiro–Wilkes (SW)
tests. Figure 5 suggests that the STPN model provides a better fit for this dataset.

Table 4. Estimated parameters and their standard errors (in parentheses) for the STPN, TPN, and
GTPN models for the weight dataset. The AIC and BIC are also presented.

Estimated STPN TPN GTPN

σ 20.775 (1.811) 29.331 (1.306) 0.321 (0.088)
λ 7.825 (0.593) 6.100 (0.279) 14.689 (0.636)
q 11.250 (2.132) - -
α - - 0.426 (0.015)

AIC 2394.456 2421.978 2405.15
BIC 2405.044 2429.037 2415.738

weight

D
en

si
ty

100 150 200 250 300 350

0.
00

0
0.

00
5

0.
01

0
0.

01
5

STPN
TPN
GTP

Figure 4. Fit of the distributions for the weight dataset.

http://lib.stat.cmu.edu/datasets/bodyfat
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Figure 5. QRs for the fitted models in the weight dataset. The p-values for the AD, CVM, and SW
normality tests are also presented to check if the QRs came from the standard normal distribution.
(a) qq-plot STPN. (b) qq-plot TPN. (c) qq-plot GTPN.

6. Conclusions

This study presents a new distribution with positive support denominated the slash
truncation positive normal. This distribution serves as a more general model compared
to the TPN model, pursuing the increase of kurtosis in order to improve the modeling of
positive databases with high kurtosis. The basic properties of the model were analyzed,
and a simulation study was conducted implementing the EM algorithm. Finally, an ap-
plication with real data was performed proving that the new model performs better than
competing models.
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Appendix A

In this Appendix, we explain the terms involved in the observed Fisher information

matrix presented in Section 3.4. Let ŵi = E[wi|yi], ŵ2
i = E[w2

i |yi], ŵ3
i = E[w3

i |yi], ŵ4
i =

E[w4
i |yi], ̂log(wi) = E[log(wi)|yi],

̂log2(wi) = E[log2(wi)|yi], ̂log(wi)∗ = E[w log(wi)|yi],

and ̂log(wi)(2∗) = E[w2
i log(wi)|yi].

We also define Bi = E
[

Bi(θ) |y, θ = θ̂
]
, Di = E

[
Si(θ)Si

>(θ) | y, θ = θ̂
]
, and

Fij = E[Si(θ) | y, θ = θ̂]E>[Sj(θ) | y, θ = θ̂].

The elements of Bi are Bi,1,1 = 1
σ2 −

3y2
i ŵ2

i
σ4 + 2λŵi

σ3 , Bi,1,2 = Bi,2,1 = − yiŵi
σ2 , Bi,1,3 =

Bi,3,1 = 0, Bi,2,2 = ξ(λ)[λ + ξ(λ)]− 1, Bi,2,3 = Bi,3,2 = 0, and Bi,3,3 = − 1
q2 .

The elements of Di are:



Symmetry 2021, 13, 2164 14 of 15

Di,1,1 =
1
α
−

2y2
i

σ4 ŵ2
i +

2λ

σ3 yiŵi +
y4

i
σ6 ŵ4

i −
2λy3

i
σ5 ŵ3

i +
λ2y2

i
σ4 ŵ2

i ,

Di,1,2 = Di,2,1 =
1
σ

ξ(λ) +
yi
σ

ŵi(λ
2 − 1 + λξ(λ))−

y2
i

σ3 ŵ2
i (ξ(λ) + λ) +

y3
i

σ4 ŵ3
i −

y2
i λ

σ3 ŵ2
i +

λ

σ
,

Di,1,3 = Di,3,1 = − 1
σq
− 1

σ
̂log(wi) +

y2
i

qσ3 ŵ2
i +

y2
i

σ3
̂log(wi)(2∗) −

λyi
σ2q

ŵi −
λyi
σ2

̂log(wi)∗,

Di,2,3 = Di,3,2 = − ξ(λ)

q
− ξ(λ) ̂log(wi) +

yi
qσ

ŵi +
yi
σ

̂log(wi)∗ −
λ

q
− λ ̂log(wi),

Di,2,2 = ξ2(λ) +
y2

i
σ2 ŵ2

i + λ2 − 2
σ

ξ(λ)ŵi + 2λξ(λ)− 2λyi
σ

ŵi, and

Di,3,3 =
1
q2 +

2
q
̂log(wi) +

̂log2(wi).

Finally, the elements of Fij are given by:

Fi,j,1,1 =
1

σ2 +
y2

i y2
j

σ6 ŵ2
i ŵ2

j +
yiyjλ

2

σ4 ŵiŵj −
y2

i
σ4 ŵ2

i −
y2

j

σ4 ŵ2
j −

λy2
j yi

σ5 ŵ2
j ŵi −

λy2
i yj

σ5 ŵ2
i ŵj +

yiλ

σ3 ŵi +
yjλ

σ3 ŵj,

Fi,j,1,2 =
1
σ

ξ(λ)−
yj

σ2 ŵj +
λ

σ
−

y2
i

σ3 ξ(λ)ŵ2
i +

y2
i yj

σ4 ŵ2
i ŵj −

λy2
i

σ3 ŵ2
i +

yiλ

σ2 ξ(λ)ŵi −
yiyjλ

σ3 ŵiŵj +
λ2yi

σ2 ŵi ,

Fi,j,1,3 = − 1
σq

+
y2

i
qσ3 ŵ2

i −
yiλ

qσ2 ŵi −
1
σ

̂log(wi) +
y2

i
σ3 ŵ2

i
̂log(wj)−

yiλ

σ2 ŵi
̂log(wj),

Fi,j,2,1 =
1
σ

ξ(λ)− yi

σ2 ŵi +
λ

σ
−

y2
j

σ3 ξ(λ)ŵ2
j +

y2
j yi

σ4 ŵ2
j ŵi −

λy2
j

σ3 ŵ2
j +

yjλ

σ2 ξ(λ)ŵj −
yjyiλ

σ3 ŵjŵi +
λ2yj

σ2 ŵj,

Fi,j,2,2 = ξ2(λ) +
yiyj

σ2 ŵiŵj + λ2 − yi

σ
ξ(λ)ŵi −

yj

σ
ξ(λ)ŵj −

yiλ

σ
ŵi −

yjλ

σ
ŵj + 2λξ(λ),

Fi,j,2,3 = − ξ(λ)

q
− ξ(λ) ̂log(wj) +

yi

qσ
ŵi +

yi

σ
ŵi

̂log(wj)−
λ

q
− λ ̂log(wj),

Fi,j,3,1 = − 1
σq

+
y2

j

qσ3 ŵ2
j −

yjλ

qσ2 ŵj −
1
σ

̂log(wj) +
y2

j

σ3 ŵ2
j
̂log(wi)−

yjλ

σ2 ŵj
̂log(wi),

Fi,j,3,2 = − ξ(λ)

q
− ξ(λ) ̂log(wi) +

yj

qσ
ŵj +

yj

σ
ŵj

̂log(wi)−
λ

q
− λ ̂log(wi), and

Fi,j,3,3 =
1
q2 + ̂log(wj) ̂log(wi) +

1
q

̂log(wi) +
1
q

̂log(wj).

Appendix B

In this section, we present the codes in R used to estimate the parameters for the STPN
model in the real data application presented in Section 5.

require(tpn)
y<-c(154.25, 173.25, 154.00, 184.75, 184.25, 210.25, 181.00, 176.00, 191.00, 198.25,
186.25, 216.00, 180.50, 205.25, 187.75, 162.75, 195.75, 209.25, 183.75, 211.75,
179.00, 200.50, 140.25, 148.75, 151.25, 159.25, 131.50, 148.00, 133.25, 160.75,
182.00, 160.25, 168.00, 218.50, 247.25, 191.75, 202.25, 196.75, 363.15, 203.00,
262.75, 205.00, 217.00, 212.00, 125.25, 164.25, 133.50, 148.50, 135.75, 127.50,
158.25, 139.25, 137.25, 152.75, 136.25, 198.00, 181.50, 201.25, 202.50, 179.75,
216.00, 178.75, 193.25, 178.00, 205.50, 183.50, 151.50, 154.75, 155.25, 156.75,
167.50, 146.75, 160.75, 125.00, 143.00, 148.25, 162.50, 177.75, 161.25, 171.25,
163.75, 150.25, 190.25, 170.75, 168.00, 167.00, 157.75, 160.00, 176.75, 176.00,
177.00, 179.75, 165.25, 192.50, 184.25, 224.50, 188.75, 162.50, 156.50, 197.00,
198.50, 173.75, 172.75, 196.75, 177.00, 165.50, 200.25, 203.25, 194.00, 168.50,
170.75, 183.25, 178.25, 163.00, 175.25, 158.00, 177.25, 179.00, 191.00, 187.50,
206.50, 185.25, 160.25, 151.50, 161.00, 167.00, 177.50, 152.25, 192.25, 165.25,
171.75, 171.25, 197.00, 157.00, 168.25, 186.00, 166.75, 187.75, 168.25, 212.75,
176.75, 173.25, 167.00, 159.75, 188.15, 156.00, 208.50, 206.50, 143.75, 223.00,
152.25, 241.75, 146.00, 156.75, 200.25, 171.50, 205.75, 182.50, 136.50, 177.25,
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151.25, 196.00, 184.25, 140.00, 218.75, 217.00, 166.25, 224.75, 228.25, 172.75,
152.25, 125.75, 177.25, 176.25, 226.75, 145.25, 151.00, 241.25, 187.25, 234.75,
219.25, 118.50, 145.75, 159.25, 170.50, 167.50, 232.75, 210.50, 202.25, 185.00,
153.00, 244.25, 193.50, 224.75, 162.75, 180.00, 156.25, 168.00, 167.25, 170.75,
178.25, 150.00, 200.50, 184.00, 223.00, 208.75, 166.00, 195.00, 160.50, 159.75,
140.50, 216.25, 168.25, 194.75, 172.75, 219.00, 149.25, 154.50, 199.25, 154.50,
153.25, 230.00, 161.75, 142.25, 179.75, 126.50, 169.50, 198.50, 174.50, 167.75,
147.75, 182.25, 175.50, 161.75, 157.75, 168.75, 191.50, 219.15, 155.25, 189.75,
127.50, 224.50, 234.25, 227.75, 199.50, 155.50, 215.50, 134.25, 201.00, 186.75,
190.75, 207.50)
est.stpn(y)
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