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Abstract: Based on the principle of energy variation, a calculation model for the free vibration
characteristics of a cylindrical shell with a finite submerged depth considering the influence of the
free liquid surface is established in this paper. First, the Euler beam function is used instead of the
shell axial displacement function to obtain the shell kinetic energy and potential energy. Then, by
using the mirror image method, the analytical expression of the fluid velocity potential considering
the free surface is obtained, and the flow field is added to the system energy functional in the form
of fluid work. Then the energy functional is changed to obtain the shell–liquid coupled vibration
equation. Solving the equation can obtain the natural frequencies and modes of the structure. The
comparison with the finite element calculation results verifies the accuracy of the calculation model in
this paper. The research on the influence of the free liquid surface shows that compared to the infinite
domain, the free liquid surface destroys the symmetry of the entire system, resulting in a difference in
the natural frequency of the positive and negative modes of the shell, and the circumferential mode
shapes are no longer mutually uncoupled trigonometric functions. The existence of free liquid surface
will also increase the natural frequency of the same order mode, and the closer to the free surface, the
natural frequency is greater. As the immersion depth increases, the free vibration characteristics will
quickly tend to the result of infinite domain. Additionally, when the immersion depth is equal to
or greater than four times the radius of the shell structure, it can be considered that the free liquid
surface has no effect. These law and phenomena have also been explained from the mechanism. The
method in this paper provides a new analytical solution pattern for solving this type of problem.

Keywords: free surface; cylindrical shell; image method

1. Introduction

Cylindrical shell structures coupled with heavy fluids are widely used in many en-
gineering fields such as underwater vehicles, pipelines, and submarine cables. Due to
the existence of heavy fluid, the vibration and acoustic characteristics of the cylindrical
shell structure coupled with it will change significantly. As a classic fluid–solid coupling
problem, how to accurately predict the acoustic and vibration characteristics of a shell struc-
ture under heavy fluid loading has received extensive attention from predecessors [1–7].
Although when dealing with heavy fluids, some researchers regard it as a compressible
acoustic medium [8], and some scholars regard it as an incompressible fluid medium [9],
the heavy fluid can be regarded as an additional mass load on the structure when cal-
culating the low-frequency free vibration characteristics of a cylindrical shell structure.
The influence of fluid compressibility is very weak, and the difference between the fluid
medium and the acoustic medium is negligible.
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If the heavy fluid and the elastic shell are regarded as completely two-way coupled,
the calculation of the shell mode under heavy fluid loading (wet mode) and the calculation
of the shell mode in vacuum (dry mode) are two completely independent problems [10].
Therefore, it is necessary to find a solution to this type of fluid–solid problem. With the
development of numerical calculation methods, numerical methods that combine finite
element and boundary elements have also been used to solve the acoustic and vibration
characteristics of elastic shells immersed in infinite domains [11–14]. However, the mixed
numerical method also has the disadvantage of high computational cost, so there are still
many scholars who are committed to using (semi-)analytic methods to solve this problem.
Due to the good axisymmetric properties of the rotating shell immersed in the infinite
domain, its circumferential displacement function can be expanded into a Fourier series
that is not coupled with each other. Therefore, the integration of the sound (flow) field
can be simplified to a one-dimensional integration problem along the shell generating line,
which greatly reduces the computational amount [15–17]. Based on the wave propagation
method (WPA), Li et al. [18] transferred the solution domain to the wavenumber domain
and successfully solved the vibration characteristics of the elliptical shell. Caresta et al. [19]
approximated the surface of the cone shell as a number of cylindrical shells and used a
power series to describe the displacement of the cone shell. The surface sound pressure
of the infinite cylindrical shell was used as a fluid load to calculate the low-frequency
vibration characteristics of the cone shell. Subsequently, Caresta et al. [20] further extended
this method to the calculation of low-frequency vibration characteristics of composite shell
structures. Based on the energy principle and potential flow theory, Kwak [9] added the
mass of water attached to the fluid in the form of a matrix to the free vibration equation of
the cylindrical shell and calculated the natural vibration characteristics of the submerged
cylindrical shell. Qu et al. [21] established the structural energy equation of the composite
shell based on the modified variational principle and calculated the Helmholtz integral
on the surface of the structure by using the collocation method, and the vibro-acoustic
characteristics of underwater structures are well predicted. Similarly, Jin et al. [22] used
an improved Fourier series to describe the shell displacement, combined with an artificial
spring system, and integrated the sound pressure term along the shell surface generation
line to calculate the acoustic and vibration characteristics of the underwater composite shell.
Wang et al. [23] combined the wave superposition method (WSM) and the fine transfer
matrix method (PTMM) to establish a semi-analytical calculation model for the vibration
characteristics of an underwater composite shell. Xie et al. [24] regarded the cyclotron shell
as a combination of several conical shell elements and assembled them as a whole through
structural continuity conditions. The sound pressure terms were treated as a three-node
element uniformly and met the condition that is velocity continuity at the joint surface of
the shell. Additionally, the sound–structure coupling governing equation of the rotating
shell structure is finally obtained.

Although the above publications have presented considerable research results, when
the shell structure is close to the free liquid surface or the seabed, it is obviously not
appropriate to assume that the flow field is infinite. A common method to deal with
the free surface of a completely submerged structure is the mirror image method. The
mirror image method was first used to study the radiation characteristics of simple sound
sources near the plane boundary and showing Lloyd’s mirror behavior for near-surface
monopoles [25–27]. The common finite element–boundary element coupling calculation
method can also be combined with the mirror image method to modify the basic solution of
the three-dimensional acoustic Helmholtz equation, and then realized the fluid–structure
coupling vibration performance calculation considering the influence of the free liquid
surface [28,29]. Ergin et al. [30] analyzed the vibration characteristics of cylindrical shells
under finite immersion depth based on experiments and three-dimensional hydroelastic
software and found that the closer the structure is to the free liquid surface, the greater
the natural frequency of the same order. The above studies are of considerable value, but
the numerical method a will require a greater computational cost with considering the
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free liquid surface. Therefore, Li et al. [31–34] have done a lot of work in this field. Their
research results show that when the immersion depth of the structure is greater than or
equal to four times the radius of the structure, the vibro-acoustic characteristics of the
cylindrical shell tend to be in an infinite domain.

Different from the previous method used by our research team [31–34], this article will
obtain the shell–liquid coupled vibration equation based on the energy variation principle,
which is a new pattern of solution. First, based on the assumption of no rotation of the shell
and the Love shell theory, the Euler beam function is used to replace the axial displacement
function of the cylindrical shell, then the kinetic energy and potential energy of the shell
are obtained. Subsequently, based on the theory of potential flow, combined with the
mirror image method, the potential distribution of the fluid velocity considering the free
surface is obtained. Then, according to the continuous condition of the velocity of the
shell–liquid junction, the migration matrix of the velocity vector of the flow field and the
displacement vector of the shell is obtained, and the flow field is added to the entire system
in the form of work. Finally, the energy functional is changed to obtain the shell–liquid
coupled vibration equation, solve it, and obtain the free vibration characteristics of the shell.
By comparing with the finite element calculation results, the correctness of the method in
this paper is verified. Through an in-depth study of the problem, considering the influence
of the free liquid surface, the natural frequencies change law and the mode shape coupling
phenomenon of the coupled system were discovered and the mechanism was explained.

2. Theoretical Analysis

The cylindrical shell with finite submerged depth considering the influence of the free
liquid surface is shown in Figure 1. The length of the cylindrical shell is L, the radius of
the middle surface is R, and the thickness of the shell is h. The material parameters of the
cylindrical shell are elastic modulus E, Poisson’s ratio µ, density ρ. The density of the fluid
is ρf. The immersion depth H is defined as the distance between the free liquid surface and
the horizontal half-transverse surface of the shell. Take the center of the left end surface of
the cylindrical shell as the coordinate origin O, and take the cylindrical coordinate system
(r, θ, x) shown in Figure 1 as the coordinate system. Among them, r, θ, x represent radial
direction, circumferential direction, and axial direction, respectively. Additionally, u, v,
w are, respectively, the displacements of the middle surface of the shell in all directions.
At the same time, it is assumed that there are virtual sealing plates at both ends of the
cylindrical shell, that is, the internal space of the cylindrical shell is vacuum and fluid-free.
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2.1. Shell Kinetic Energy and Potential Energy

The research object of this paper is an isotropic thin-walled cylindrical shell and the
midplane displacement of the shell can be assumed as the following form [35]:

u =
+∞
∑

m=1

+∞
∑

n=−∞
UmnX′m(ηx) exp(inϕ) cos(ωt)

v =
+∞
∑

m=1

+∞
∑

n=−∞
VmnXm(ηx) exp(inϕ) cos(ωt)

w =
+∞
∑

m=1

+∞
∑

n=−∞
WmnXm(ηx) exp(inϕ) cos(ωt)

(1)

In Equation (1), ω is the circular frequency; m is the order of the axial mode; n is
the order of the circumferential mode; Umn, Vmn, and Wmn are three-way displacement
amplitude coefficients; Xm(ηx) is the deflection function of Euler beam. “’” represents the
derivative of the deflection function with respect to x. For any boundary condition, the
deflection function of the beam can be taken as:

Xm(ηx) = C1sin(ηx) + C2cos(ηx) + C1sinh(ηx) + C1cosh(ηx) (2)

In this equation, C1, C2, C3, and C4 are undetermined coefficients determined by
boundary conditions. η is usually called the axial half-wave number km and there are
corresponding expressions under different boundary conditions. Since trigonometric
functions and hyperbolic functions are different in the subsequent treatment of fluid–
structure coupling conditions, it is assumed that:

Xm(kmx) = Xm1(kmx) + Xm2(kmx)

Xm1(kmx) = C1 sin(kmx) + C2 cos(kmx)

Xm2(kmx) = C3sinh(kmx) + C4 cosh(kmx)

(3)

As mentioned earlier, this article will study the free vibration characteristics of a
finite-length cylindrical shell at a finite submerged depth based on the energy functional
variational principle. Therefore, the specific expression form of each part of the energy
should be clarified.

The kinetic energy expression of the thin shell ignoring the rotation effect is as fol-
lows [36]:

T =
ρhω2

2

y

V
(

.
u2

+
.
v2

+
.

w2
)dV (4)

In Equation (4), “˙” represents the derivative of the displacement component with
respect to time. V and dV represent the volume division and volume microelement of the
cylindrical shell, respectively.

Substituting Equations (1)–(3) into Equation (4), and due to the orthogonality of the
displacement function, the integral shell kinetic energy can be expressed as:

T =
1
2

+∞

∑
m=1

+∞

∑
n=−∞

{ξmn}[Mmn]{ξmn}T (5)

In Equation (5), {ξmn} is composed of unknown displacement amplitude coefficient,
{ξmn} = {Umn, Vmn, Wmn}. The mass matrix [Mmn] is a third-order diagonal matrix.

The expression of the strain energy of thin shells [36] (this article is based on Love
shell theory) is as follows:

U =
1
2

y

V
εTσdV (6)
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In Equation (6), ε is the strain vector; σ is the stress vector. The specific forms of strain
and stress vector are not listed here, and they can be found in various related documents.

Similarly, the integrated shell strain energy can be expressed as:

U =
1
2

+∞

∑
m=1

+∞

∑
n=−∞

{ξmn}[Kmn]{ξmn}T (7)

In this equation, the stiffness matrix [Kmn] is the third-order Hermite matrix.

2.2. Fluid–Structure Coupling Condition

In this paper, the fluid–solid coupling effect will be added to the energy functional of
the system in the form of fluid work. First, it is necessary to determine the expression of
the velocity potential function at a finite immersion depth (considering the influence of the
free surface).

Based on the theory of potential flow, and assuming that the fluid is an incompressible,
non-rotational, and inviscid ideal fluid, the velocity potential function φ(r,x,θ,t) in the
cylindrical coordinate system needs to satisfy the Laplace equation in the cylindrical
coordinate system:

1
r

∂

∂r

(
r

∂φ

∂r

)
+

1
r2

∂2φ

∂θ2 +
∂2φ

∂x2 = 0 (8)

The condition of the velocity potential function at infinity is that the velocity potential
is zero.

∂φ

∂r

∣∣∣∣
r=∞

= 0 (9)

The free liquid surface can be processed by the principle of image, that is, the velocity
potential can be divided into the real source velocity potential directly generated by
structural vibration and the virtual source velocity potential generated by the reflection of
the free surface. As shown in Figure 2, the virtual source coordinate system (r’, x’, θ’) and
the real source coordinate system (r, x, θ) are symmetric about the free liquid surface.
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Assuming a random point P in the flow field, its velocity potential can be expressed as:

φP(r, x, θ, t) = φP
r(r, x, θ, t) + φP

i(r′, x′, θ′, t) (10)

In Equation (10), φP
r(r,x,θ,t) is the real source fluid velocity potential; φP

i(r’,x’,θ’,t) is
the virtual source fluid velocity potential.

The velocity potential function that satisfies Equations (8) and (9) is expressed as follows:

φP
r(r, x, θ, t) =

∞
∑

m=1

+∞
∑

n=−∞

(
φm1,n

rKn(kmr)Xm1(kmx)
+φm2,n

r Hn
(2)(kmr)Xm2(kmx)

)
exp(inθ) sin(ωt)

φP
i(r′, x′, θ′, t) =

∞
∑

m=1

+∞
∑

n=−∞

(
φm1,n

iKn(kmr′)Xm1(kmx′)
+φm2,n

r Hn
(2)(kmr′)Xm2(kmx′)

)
exp(inθ′) sin(ωt)

(11)

In Equation (11), Kn() is a modified Bessel function of the second kind of order n;
Hn

(2)() is a Hankel function of the second kind of order n.
When point P is above the free liquid surface, it has the following positional relation-

ship under the coordinates of the two sets of coordinate systems:

r = r′, x = x′, θ + θ′ = π (12)

If ignores gravity waves and other factors are not considered, the conditions for zero
velocity potential at the free liquid surface are as follows:

φP
r(r, x, θ, t) + φP

i(r′, x′, θ′, t) = 0 (13)

By substituting Equations (11) and (12) into Equation (13) and orthogonalizing it, the
following formulas are obtained:{

φm1,n
r + (−1)nφm1,n

i = 0
φm2,n

r + (−1)nφm2,n
i = 0

(14)

The analytical expression of the velocity potential function at any point in the flow
field is:

φP(r, x, θ, t) =

∞
∑

m=1

+∞
∑

n=−∞


φm1,n

r

(
Kn(kmr) exp(inθ)

−(−1)nK−n(kmr′) exp(−inθ′)

)
Xm1(kmx)

+φm2,n
r

(
Hn

(2)(kmr) exp(inθ)

−(−1)n H−n
(2)(kmr′) exp(−inθ′)

)
Xm2(kmx)

 sin(ωt)
(15)
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According to the Graf plus theorem:

K−n(kmr′) exp(−inθ′) =

+∞
∑

a=−∞
(−1)aKa+n(2km H)Ia(kmr) exp(iaθ) r < 2H

+∞
∑

a=−∞
(−1)a Ia+n(2kmH)Ka(kmr) exp(iaθ) r ≥ 2H


H−n

(2)(kmr′) exp(−inθ′) =

+∞
∑

a=−∞
(−1)aHa+n

(2)(2km H)Ja(kmr) exp(iaθ) r < 2H

+∞
∑

a=−∞
(−1)a Ja+n(2km H)Ha

(2)(kmr) exp(iaθ) r ≥ 2H



(16)

In the formula, Ia() is the first-kind modified Bessel function of order a; Ja() is the
first-kind Bessel function of order a.

For a cylindrical shell structure with a finite submerged depth, the radius rc ≈ R < 2H
at the outer surface of the structure, so Equation (15) can be further expressed as the
following form:

φP(r, x, θ, t) =

∞
∑

m=1

+∞
∑

n=−∞



φm1,n

 Kn(kmr) exp(inθ)

−
+∞
∑

a=−∞
(−1)a+nKa+n(2kmH)Ia(kmr) exp(iaθ)

Xm1(kmx)

+φm2,n

 Hn
(2)(kmr) exp(inθ)

−
+∞
∑

a=−∞
(−1)a+nHa+n

(2)(2km H)Ja(kmr) exp(iaθ)

Xm2(kmx)


sin(ωt)

(17)

The coefficient a is equivalent to the coefficient n, so the summation order of the series
can be exchanged, and Equation (17) can be further rewritten as:

φP(r, x, θ, t) =

∞
∑

m=1

+∞
∑

n=−∞



 φm1,nKn(kmr)

−
+∞
∑

a=−∞
(−1)a+nφm1,aKa+n(2km H)In(kmr)

Xm1(kmx)

+

 φm2,nHn
(2)(kmr) exp(inθ)

−
+∞
∑

a=−∞
(−1)a+nφm2,a Ha+n

(2)(2kmH)Jn(kmr) exp(iaθ)

Xm2(kmx)


exp(iaθ) sin(ωt)

(18)

The junction of the cylindrical shell wall and the flow field needs to meet the velocity
continuity condition as follows:

− ∂φP
∂r

∣∣∣∣
r=R

=
∂w
∂t

∣∣∣∣
r=R

(19)

Equation (18) is substituted into Equation (19) and it is assumed that the cutoff number
of the circumferential wave number is N. After orthogonalization, the relationship of the
velocity potential amplitude vector {ξMN} and the cylindrical shell radial displacement
amplitude vector {WMN} can be obtained as:

{ξMN} = [Q]{WMN} (20)
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In Equation (20), [Q] is the migration matrix, {ξMN} = {φm1,-N, φm1,-N + 1, . . . , φm2,N}T,
{WMN} = {Wm,-N, Wm,-N + 1, . . . , Wm,N}T.

From the Bernoulli equation, the hydrodynamic pressure Pf at the wall of the cylindri-
cal shell is:

Pf = ρ f
∂φP
∂t

∣∣∣∣
r=R

(21)

Fluid work can be expressed as:

W f = −
1
2

∫ L

0

∫ π

−π
Pf wRdθdx (22)

So far, the energy functional expression of the entire fluid–structure coupling system is:

Π = U −W f − T (23)

Since the axial functions of the coupled system are orthogonal in the domain, it is
only necessary to take different axial half-wave numbers M in sequence. According to the
principle of energy variation, the partial derivative of the unknown amplitude coefficient
of the displacement is obtained as:

∂Π
∂q

= 0 (24)

In Equation (24), q = [UM,-N, . . . ,WM,N].
The matrix form of the vibration equations of the coupled system under any axial

half-wave number is as follows: (
[K]−ω2[M]

)
{q} = 0 (25)

In Equation (25), [K] is the coupling system stiffness matrix, [M] is the coupling system
mass matrix.

3. Validation of the Theoretical Method

The calculation model in this paper is the same as that in the literature [32], and the
specific parameters are shown in Table 1.

Table 1. Coupling system parameters.

Length L 1.284 m

Shell Geometry Mean radius R 0.18 m
Thickness h 0.003 m

Shell Material
Density ρ 7850 kg/m3

Poisson’s ratio µ 0.3
Elastic modulus E 2.06 × 1011 Pa

Fluid Density ρf 1025 kg/m3

The beam function can be used to simulate the axial displacement function of a finite-
length cylindrical shell under different boundary conditions [35]. This article will take a
cylindrical shell with the shear diaphragm boundary condition (SD-SD) at both ends as an
example for research. The axial displacement function of the shell under this boundary
condition is as follows: {

Xm(ηx) = sin(kmx)

km = mπ/L m = 1, 2, 3 . . .
(26)

3.1. Convergence of the Theoretical Method

When the cylindrical shell is in the infinite domain, the migration matrix [Q] is a
diagonal matrix. That is to say, the circumferential modes of the coupled system are also in
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a decoupled state. At this time, the cut-off number N of the circumferential wave number
only affects whether certain modes appear and does not affect the modal results that have
already appeared. However, when considering the influence of the free surface, [Q] is
no longer a diagonal matrix, that is, there may be a coupling relationship between the
circumferential modes of the coupled system, and the cutoff number N will have an impact
on the natural frequency calculation results. In order to discuss the convergence of the
method in this paper, taking the working condition of latent depth H = 0.2 m as an example,
the first 10 natural frequencies of the coupled system are calculated, and the results are
shown in Table 2.

Table 2. The first 10 natural frequencies of the coupled system under different cutoff numbers N
when H = 0.2 m.

Order N = 4 N = 6 N = 8 N = 10 N = 12 N = 14

1 103.41 103.40 103.40 103.40 103.40 103.40
2 103.47 103.47 103.47 103.47 103.47 103.47
3 117.55 117.29 117.26 117.26 117.26 117.26
4 117.68 117.41 117.39 117.38 117.38 117.38
5 210.36 209.69 209.60 209.59 209.59 209.59
6 210.43 209.76 209.67 209.65 209.65 209.65
7 223.95 223.77 223.76 223.76 223.76 223.76
8 224.04 223.86 223.85 223.85 223.85 223.85
9 251.61 250.63 250.51 250.50 250.50 250.50

10 251.62 250.64 250.53 250.51 250.51 250.51

It can be seen from Table 2 that the method in this paper has good convergence.
When the cutoff number N reaches about 10, the first 10 natural frequency values of the
coupled system have converged. Unless otherwise specified, the cutoff number is 10 for all
calculation examples in this paper.

3.2. Accuracy of the Theoretical Method

In order to verify the accuracy of the method in this paper, the calculation results
in this paper and the FEM calculation results under different diving depth conditions
are compared, as shown in Table 3. The finite element software Nastran is used for FEM
numerical simulation, and the fluid part of the coupling system will be simulated by the
virtual mass module. When the virtual mass module is used for calculation, the effect of
fluid on the structure is equivalent to additional water mass, so there is no need to build
fluid element additionally, and the diving depth can be set according to the draught. The
number of elements is 2400. This number of elements can meet the requirements for the
number of nodes at any wavelength in the vibration calculation of the structure below
1000 Hz to be greater than or equal to 6, so as to ensure the calculation accuracy. The finite
element mesh model is shown in Figure 3.

The error percentage of the calculation results of these two methods is defined as:

∆ =
| fF − fP|

fF
× 100 (27)

In Equation (27), fF and fP represent the finite element and the natural frequency
calculation results of the method in this paper, respectively.

It can be seen from Table 3 that under different immersion depths, the calculation
results of the method in this paper and the result of FEM are in good agreement, and the
maximum percentage error does not exceed 1, which shows that the method in this paper is
accurate and reliable. In addition, as the immersion depth increases, the natural frequency
of the same order of the coupled system gradually decreases, and eventually it will tend to
the calculation result under infinite domain conditions, that is to say, the influence of the
free liquid surface will disappear. In addition to the influence of the frequency value, the
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free liquid surface will also make the natural frequency of the positive and negative modes
different, which is also different from a cylindrical shell under a vacuum or an infinite
flow field.

Table 3. Comparison of the method in this paper and the natural frequency of FEM at different depths.

Mode
H = 0.21 m H = 0.45 m Infinite Domain

Present FEM ∆ Present FEM ∆ Present FEM ∆

1 103.05 103.12 0.07 99.10 99.09 0.01 98.86 98.83 0.03
2 103.11 103.14 0.03 99.13 99.11 0.02 98.86 98.84 0.02
3 115.26 115.71 0.39 109.30 109.87 0.52 109.26 109.83 0.52
4 115.36 115.77 0.35 109.30 109.87 0.52 109.26 109.83 0.52
5 207.40 209.30 0.91 202.46 204.45 0.97 202.45 204.44 0.97
6 207.43 209.33 0.91 202.46 204.45 0.97 202.45 204.44 0.97
7 222.65 223.83 0.53 217.02 218.16 0.52 216.98 218.10 0.51
8 222.74 223.90 0.52 217.03 218.16 0.52 216.98 218.11 0.52
9 247.66 249.60 0.78 241.57 243.63 0.85 241.56 243.62 0.85

10 247.68 249.61 0.77 241.57 243.64 0.85 241.56 243.63 0.85
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4. Numerical Examples and Discussion
4.1. Influence of Free Liquid Surface on Free Vibration Characteristics

The foregoing qualitatively gives the influence of the free liquid surface on the natural
frequency based on the content of Table 3. To further clarify the quantitative change law
of natural frequency and immersion depth, the following takes the previous four-order
natural frequencies as an example, and plots the natural frequency change curves under
different dimensionless immersion depths (the ratio of immersion depth to structure radius
H/R), and the results are shown in Figure 4.

It can be seen from Figure 4 that the first four-order natural frequency of the shell is
significantly affected by the immersion depth when the dimensionless immersion depth
H/R is less than 2, and the closer the free liquid surface is, the natural frequency of the
shell will increase sharply. After that, the curve changes smoothly, indicating that the
influence of the free liquid surface on the coupling system is weakened, and the vibration
characteristics of the shell tend to be stable.
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In order to determine the specific value of the dimensionless immersion depth H/R
in which the flow field can be regarded as an infinite domain, the percentage deviation
of the natural frequency of the shell at any immersion depth from the same order natural
frequency of the shell in the infinite domain is defined as κ = (fH − f∞)/f∞ × 100, fH is the
natural frequency of the shell at any immersion depth, and f∞ is the same order natural
frequency of the shell in the infinite domain. This paper takes the first 10 natural frequencies
of the shell and analyzes the magnitude of the deviation κ of the natural frequency of
each order when the dimensionless immersion depth H/R changes. The results are shown
in Table 4.

Table 4. Percent deviations κ of natural frequencies of each order of the shell and infinite domain
natural frequencies under different immersion depths.

Order H/R = 1 H/R = 2 H/R = 3 H/R = 4 H/R = 5

1 5.27 0.67 0.10 0.02 0.01
2 5.25 0.70 0.12 0.03 0.01
3 12.46 0.15 0.01 0.00 0.00
4 12.63 0.15 0.01 0.00 0.00
5 7.09 0.03 0.00 0.00 0.00
6 7.21 0.03 0.00 0.00 0.00
7 4.11 0.10 0.00 0.00 0.00
8 4.15 0.11 0.00 0.00 0.00
9 7.32 0.03 0.00 0.00 0.00

10 7.35 0.03 0.00 0.00 0.00

It can be seen from Table 4 that when the dimensionless immersion depth H/R is
greater than or equal to 2, the relative percentage deviation κ is all within 1; when H/R
is greater than or equal to 4, the relative percentage deviation κ is further reduced to
within 0.1. Therefore, it can be considered that when the immersion depth of the cylindrical
shell is four times or more than its structural radius, the influence of the free liquid surface



Symmetry 2021, 13, 2162 12 of 16

on the vibration characteristics of the system can be ignored. That is to say, it can be
regarded as a fluid–solid coupling system of a cylindrical shell under an infinite flow field.

In fact, this phenomenon has a clear physical meaning. As the immersion depth
increases, the distance between the virtual source and the actual structure will increase by
twice the distance away. Therefore, the virtual source fluid load acting on the outer surface
of the structure is also rapidly reduced, and the vibration characteristics of the coupled
system will naturally tend to the characteristics in infinite domain.

The above research is aimed at the influence of the natural frequency of the free liquid
surface. However, the free liquid surface will increase the corresponding natural frequency
and will also cause the difference between the positive and negative modal frequencies
of the shell that originally appeared in pairs in the infinite domain. In order to explain
the reason for this phenomenon, it is also necessary to analyze the mode vibration of
the shell. By taking the first four modal circumferential modes in infinite domain or in
infinite domain obtained by the method in this paper and FEM as an example, the result is
as follows:

It can be seen from Figure 5 that the coupling system still maintains strictly circum-
ferential symmetry in the infinite domain, and the shell circumferential mode is a regular
circumferential mode that appears in pairs. The first four circumferential modes are cos(2ϕ),
sin(2ϕ), cos(3ϕ), and sin(3ϕ), the circumferential modes are orthogonal to each other and
are not coupled to each other, and with the same circumferential wavenumber n, the natural
frequencies of different modes are the same. When the immersion depth is small and the
influence of the free liquid surface is not negligible, there is a clear difference of shell mode
shape between small immersion depth and the infinite domain, and the circumferential
symmetry of the coupled system is broken, so the shell shape is no longer a regular cir-
cumferential wave shape. The circumferential mode will become a linear superposition of
the mode of different circumferential wave numbers n. However, the non-coupling of the
positive and negative modes still exists, that is, the cos system function and the sin system
function will not be coupled, so the natural frequencies of the positive and negative modes
are different. In addition, the calculation method in this paper is in good agreement with
the mode shape of FEM, which further verifies the correctness of the method in this paper.

4.2. The Influence of Shell Parameters on Free Vibration Characteristics

In the analysis of the vibration characteristics of a cylindrical shell structure, the
dimensionless axial wave number kmR is a sensitive physical quantity, and the variable of
kmR can be further defined as the length–diameter ratios L/R. The above conclusion that
the watershed can be regarded as infinite when the dimensionless immersion depth H/R
is greater than or equal to 4 needs to be verified under different length–diameter ratios
L/R. Then, keeping the cylindrical shell radius R = 0.18m and the dimensionless immersion
depth H/R = 4 unchanged, and when the aspect ratio L/R is 5, 10, 15, 20, we calculated
and obtained the percentage deviation κ of first four natural frequencies of the cylindrical
shell and the corresponding natural frequencies in infinite domain; the results are shown
in Table 5.

It can be seen from Table 5 that for different aspect ratios, the percentage relative
deviations of the first four natural frequencies of the shell and the corresponding natural
frequencies in infinite domain are all less than 0.1. Therefore, it can be considered that
for any finite submerged-depth cylindrical shell structure, when the immersion depth is
four times or more the radius of the structure, the influence of the free liquid surface can
be ignored.
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Table 5. The relative percentage deviation κ of the first four natural frequencies of the shell under
different length–diameter ratios L/R.

Order L/R = 5 L/R = 10 L/R = 15 L/R = 20

1 0.00 0.04 0.05 0.03
2 0.01 0.04 0.05 0.03
3 0.01 0.00 0.05 0.00
4 0.01 0.00 0.05 0.00
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5. Conclusions

Based on the energy variation principle and the image method, this paper proposed
an analytical method for solving the natural vibration characteristics of a cylindrical shell
with finite submerged depth. First, assuming that the shell is an isotropic thin-walled
shell, the Euler beam function under arbitrary boundary conditions was used as the axial
displacement function of the shell under the same boundary, and the expression form of
each displacement component of the shell was determined. Subsequently, based on the
Irrotational hypothesis and the Love shell theory, the kinetic energy and potential energy
of the shell structure were obtained, respectively. For the flow field with free liquid surface,
assuming that the flow field is non-rotational and non-viscous, the image method was used
to derive the fluid velocity potential function considering the influence of the liquid surface.
Then, according to the continuous condition of the velocity at the fluid–solid interface,
the transformation matrix of the velocity potential function and the shell displacement
function was established, and the flow field was added to the entire system in the form of
fluid work. According to the comparison with the finite element simulation calculation
results, the accuracy of the method in this paper was verified. Further research can draw
the following conclusions:

1. The existence of the free liquid surface will increase the natural frequency of the shell
in the same order mode, and the smaller the immersion depth, that is, the closer the
shell is to the free liquid surface, the more obvious the increase in natural frequency.

2. When considering the influence of the free liquid surface, due to the destruction of
symmetry, there is a clear difference between the shell mode shape and the result in
infinite domain. On the one hand, the circumferential waves are coupled, and the
shell vibration shape is no longer regular; on the other hand, the natural frequency of
the shell’s positive and negative modes is different.

3. The influence of free liquid on the shell will quickly diminish as the immersion depth
increases. Additionally, when the immersion depth is four times or more than the
radius of the shell structure, the influence of the free liquid surface can be ignored.

The structural material studied in this paper is the positive isotropic homogeneous
material. In the future, structural materials can be replaced with other materials such as
composite materials, functionally graded materials, or carbon nanotubes materials. The
method in this paper has a broad application prospect.
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