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Abstract: For personalized recommender systems, matrix factorization and its variants have be-
come mainstream in collaborative filtering. However, the dot product in matrix factorization does
not satisfy the triangle inequality and therefore fails to capture fine-grained information. Metric
learning-based models have been shown to be better at capturing fine-grained information than
matrix factorization. Nevertheless, most of these models only focus on rating data and social in-
formation, which are not sufficient for dealing with the challenges of data sparsity. In this paper,
we propose a metric learning-based social recommendation model called SRMC. SRMC exploits
users’ co-occurrence patterns to discover their potentially similar or dissimilar users with symmetric
relationships and change their relative positions to achieve better recommendations. Experiments on
three public datasets show that our model is more effective than the compared models.

Keywords: recommender systems; social recommendation; metric learning

1. Introduction

With the rapid development of the internet, information overload [1] has become a
common problem. To help users find truly valuable information better and faster, recom-
mender systems have been widely applied in recent decades. Traditional recommender
systems are mainly divided into two categories: content-based recommendation and col-
laborative filtering recommendation [2]. In collaborative filtering-based recommendation
models, matrix factorization (MF) plays an important role due to its efficiency and scal-
ability. In MF, each user or item is represented by a user or item latent vector, and the
dot product between them is used to capture known ratings and predict unknown rat-
ings. Since the dot product does not satisfy the triangle inequality, the MF model cannot
reliably capture the item–item or user–user similarity, nor can it capture the fine-grained
preferences present in user feedback, as Hsieh has proved [3].

Metric learning-based models produce distance functions that both satisfy the triangle
inequality and capture important relationships among data. They have been widely used
in various tasks for classification and clustering [4]. Accordingly, some works [3,5,6] utilize
metric learning to overcome the disadvantages of the MF models. These works project
users and items into a low-dimensional metric space, where user preferences are measured
by the distance between the user and the item. Specifically, Hsieh’s CML [3] minimizes the
distance between the users and their positively rated items, making them closer to their
preferred items. Tay’s LRML [6] incorporates a memory network to further learn relations
between users and items in metric space. Yu’s SocialFD [5] changed users’ spatial location,
bringing users closer to their positively rated items and trusted friends.

Existing metric learning-based models have achieved satisfactory results, but these
models still face the challenge of data sparsity. To alleviate this problem, they have
introduced social information and achieved a certain degree of success [7]. However,

Symmetry 2021, 13, 2158. https://doi.org/10.3390/sym13112158 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13112158
https://doi.org/10.3390/sym13112158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112158
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112158?type=check_update&version=1


Symmetry 2021, 13, 2158 2 of 15

all of these models overlook an important issue: social information is often as sparse
as rating data, and most users’ social information is still very sparse. An exploratory
work in matrix factorization models is Liang’s Cofactor [8], which jointly decomposes the
user–item rating matrix and the item–item co-occurrence matrix with shared item latent
factors. The Cofactor considers that the items that users often consume in tandem have
some similarities, effectively enhancing the recommendation model. Tran’s RME [9] further
extends the Cofactor with the co-occurrence patterns of users and successfully proves the
effectiveness of the co-occurrence pattern for the matrix factorization model.

Although the co-occurrence pattern of users or items effectively improves the matrix
factorization model, the way to utilize this co-occurrence pattern information in a metric
learning-based model is still a problem that needs to be solved. Refs. [10,11] inspired our
work and we propose a metric learning-based social recommendation model called SRMC.
SRMC exploits information about the users’ co-occurrence patterns to discover users with
symmetric relationships, whose consumption behavior is extremely similar or dissimilar
and changes their relative positions in the metric space to achieve better recommendations.
Our main contributions are shown as follows:

1. We propose a metric learning-based social recommendation model (SRMC), which
provides a new idea of how to exploit users’ co-occurrence pattern information in a
metric learning-based model.

2. We provide an idea of how to exploit the user’s co-occurrence pattern information to
discover their potentially similar or dissimilar users with symmetric relationships.

3. We conducted extensive experiments on three datasets to demonstrate the superiority
of SRMC over comparative algorithms for rating prediction tasks.

2. Related Work
2.1. Social Recommender System

Traditional recommender systems have been facing the problem of data sparsity.
With the development of social network platforms, social recommender systems have
emerged and effectively alleviated this problem. Social recommender systems assume
that users are influenced by users with social relationships, resulting in some similarity in
their preferences [12]. Specifically, if a user interacts with only a few items, we can infer
his preferences based on his friends’ interactions and then generate better recommenda-
tions. Early explorations of this idea focused on matrix factorization (MF) and achieved
satisfying results. Ma’s SoRec [13] model utilized users’ social networks to alleviate the
data sparsity problem and improve the recommendation effect. Mohsen [14] introduced
the trust propagation principle into the matrix factorization model. Guo exploited the
implicit information and proposed TrustSVD [15]. Zhao introduced social information
into the Bayesian personalized ranking algorithm and proposed SBPR [16]. However, the
above methods only utilize the sparse social network and ignore the additional auxiliary
information hidden in the rating data, limiting the recommendation effectiveness.

2.2. Metric Learning in Recommender System

The goal of metric learning is to learn a suitable distance metric under the condition of
a given set of constraints to ensure that the distribution of similar samples is more compact
and the distribution of different samples is more spread out [17]. There are many distance
functions that can be utilized, such as Euclidean distance and Mahalanobis distance. The
Mahalanobis distance between any two points xi and xj can be expressed by:

dA
(
xi, xj

)
=‖ xi − xj ‖A=

√(
xi − xj

)
A(xi − xj)

T (1)



Symmetry 2021, 13, 2158 3 of 15

In Equation (1), AεRm×m has to be a positive semidefinite matrix to keep the distance
non-negative and symmetric. The global optimization problem with constraints can be
stated as:

min
AεRm×m ∑

(xi ,xj)εS
d2

A
(
xi, xj

)
s.t. ∑

(xi ,xj)εD
d2

A
(
xi, xj

)
≥ θ, A ≥ 0 (2)

where S denotes the set of equivalent constraints in which xi and xj belong to the same class,
and D denotes the set of inequivalent constraints in which xi and xj belong to different
classes. θ is the minimum distance between two different classes of data points.

Heish’s proposed CML closes the spatial distance between users and their positively
rated item by minimizing the loss function, and pushes the spatial distance between users
and other items. In this process, users who share a common liking for the same item also
gather together. Tay’s proposed LRML learns the latent relations of each user–item pair
instead of a simple push-pull mechanism, mitigating the potential geometric inflexibility
of existing metric learning models. Yu’s SocialFD introduces social networks to change
the spatial location of users and items, which alleviates the data sparsity problem to some
extent. Although all these works have achieved satisfactory results, none of them has
considered how to exploit the co-occurrence patterns of users in a metric-based learning
model. It has been proven that co-occurrence patterns of users or items can effectively
alleviate the data sparsity problem in the matrix factorization-based models [9].

Compared to the dot product in matrix factorization, the metric learning-based model
reflects the user’s preferences more accurately. For example, let user u be at u = (1, 1) in the
matrix factorization model and let user v be at v = (1, 1) in the metric learning-based model.
Next, we are going to recommend the most suitable items for both users. Obviously, for
user v, we only need to recommend the closest item in the metric space, i.e., the closest
space point to v = (1, 1). However, we cannot recommend the most suitable item for user u,
but it is certain that q = (1, 1) will be worse than q = (2, 2) to recommend for user u.

2.3. Co-Occurrence Pattern in Matrix Factorization

It is well known that Word2vec [18] has achieved substantial success in NLP tasks.
Essentially, Word2vec uses word vectors to represent semantic information in a massive
corpus, making similar words closer in the word vector space. Word2vec has two main
models: Skip-Gram to predict context words from input words and CBOW to predict input
words from given context words. In the Skip-Gram model, Pointwise mutual informa-
tion (PMI) values measure the association between a word w and its context word c by
calculating the log of the ratio between their joint probabilities P(w, c) and their marginal
probabilities P(w) and P(c). The formula of PMI is shown as:

PMI(w, c) = log
P(w, c)

P(w)P(c)
(3)

It can also be written as:

PMI(w, c) = log
#(w, c)·|D|
#(w)#(c)

(4)

Here #(i, j) is the number of times word j appears in the context of word i. #(w) =

∑c #(w, c) and #(c) = ∑w #(w, c). |D| is the total number of word-context pairs.
Liang’s Cofactor suggested that items that were frequently consumed by users in

tandem also have some similarities. It utilized the PMI formula to measure the similarity of
two items, where w and c denoted these two items, P(w) and P(c) denote the probability
of these two items being purchased separately, and P(w, c) denoted the probability of
these two items being purchased together. After the calculation is completed, the Cofactor
created a matrix for all item–item pairs, where the values in the i-th row and j-th column
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were the PMI values of item i and item j. After that, Liang jointly decomposed the rating
matrix and the item–item co-occurrence matrix, making them share the same item latent
factors, achieving satisfactory results. Similar to Cofactor, Nguyen [19] utilizes items’ co-
occurrence patterns to extract relationships between items and embeds them into the latent
vectors of the factorization model. Although these works provide some enhancements to
matrix factorization-based models, the drawback that the dot product does not satisfy the
triangle inequality still limits these models’ performance.

3. Proposed Methodology

Traditional metric learning-based social models ignore the potential relationships
between users. With the rapid development of recommender systems, more and more aux-
iliary information can be used to enhance the recommendation model. Users’ co-occurrence
pattern information has been successfully enhanced by the matrix factorization-based
model. However, the dot product in matrix factorization does not satisfy the triangle
inequality and therefore fails to capture fine-grained information. To make the recommen-
dations reliable, we consider that the influence of potential relationships between users
should be considered in the metric learning-based model. In this section, we propose
a social recommender that combines metric learning and users’ co-occurrence patterns,
called SRMC.

3.1. Motivation

The inspiration for SRMC is that RME can effectively enhance matrix factorization
models. Different from the RME which jointly decomposes the user–item rating matrix
and the user–user co-occurrence matrix, we utilize the users’ co-occurrence patterns to
distinguish sets of users with extremely similar or dissimilar consumption behaviors and
combine social information to change their relative positions in the metric space. It is worth
mentioning that negative sampling is not usually used when calculating the similarity of
users’ consumption behavior, but several works [20,21] have studied the implications of
negative sampling as well as various methods to improve the quality of recommendation.
Contrary to previous studies [8,9] which only used the PMI formula to capture the positive
similarity between users, we consider negative sampling of user similarity and find the list
of users with extremely dissimilar consumption behavior for each user.

In a metric learning-based model, distance reflects preference or similarity, and two
users with very dissimilar consumption behavior should be further apart. When construct-
ing the two types of constraints for metric learning, we add user–user pairs with relatively
low PMI values to the inequality constraint and keep them at an appropriate distance.
This helps to make the distribution of data points in the metric space more reasonable and
makes the recommendation results more interpretable. Specifically, the set of users with
extremely similar consumption behaviors will be added to the set of equality constraints in
metric learning, while the set of users with extremely dissimilar consumption behaviors
will be added to the set of inequality constraints. This means that even if user u has only a
few ratings, his historical behavior can help determine his location, pull him near his poten-
tially similar users and keep him away from users with extremely dissimilar consumption
behavior. Then, items liked by users with extremely similar consumption behavior will be
recommended to user u, and items liked by users with extremely dissimilar consumption
behavior will not be recommended to user u.

Finally, each user moves closer to trusted friends, preferred items and potentially
similar users and away from disliked items and potentially dissimilar users in the space.
After that, SRMC will generate more reasonable recommendation results based on the
changed distance.

3.2. Model Definition

In SRMC, we construct two constraints in metric learning by this approach: given a
user u with several potentially similar users and several potentially dissimilar users and an
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item i, if user u gives a positive rating to item i, then we add that user u and item i, user u
and its potentially similar users to the set of equivalent constraints; otherwise we add user
u and item i, user u and its potentially dissimilar users to the set of inequality constraints.
The framework of the SRMC model is shown in Figure 1.
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Figure 1. The framework of SRMC.

The calculation process of SRMC is shown below (Algorithm 1).

Algorithm 1 The calculation process of SRMC

Algorithm: The Proposed SRMC Algorithm
Input: the user–item rating matrix
Output: the predicted user–item rating matrix

Step 1
Filter the user–item rating matrix R separately, with matrix A retaining
only the positive ratings and matrix B retaining only the negative ratings.

Step 2
Calculate Positive PMI values between any two users in matrix A and
Negative PMI values between any two users in matrix B.

Step 3
Generate a list of potentially similar users and potentially dissimilar
users for each user based on the results of step 2.

Step 4

Map each user and item into the metric space. During the training
process, SRMC closes the spatial distance between each user and its
positively rated items, trusted users and potentially similar users. At the
same time, SRMC pushes away the spatial distance between each user
and its negatively rated items and potentially dissimilar users.

Step 5
After several rounds of training, SRMC places each user and item into
the suitable spatial location and utilizes the distance between them to
predict ratings in the testing set.
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The predicted rating of user u and item i is determined by the distance between them
and can be defined as:

r̂ui = µ + bu + bi− ‖ xu − yi ‖2
A (5)

where µ is the global mean, bu is user bias, bi is item bias and xu and yi are point vectors
of user u and item i in the metric space. ‖ xu − yi ‖2

A is the squared Mahalanobis distance
between user u and item i. The reason why we utilize squared Mahalanobis distances is
that they are cheaper to calculate than Mahalanobis distances and the impact on accuracy
is minimal. A is a positive semi-definite matrix that can be calcalated by A = HHT . The
loss function of the SRMC is shown below:

L = 1
2 ∑
(u,i)∈Rm×n

ωui(rui − r̂ui)
2 + η

2 ∑
(u,v)∈Su∪Tu

‖ xu − xv ‖2
A + η

2 ∑
(u,v)∈Du

[
θ− ‖ xu − xv ‖2

A
]
+

+ α
2 ∑
(u,i)∈Pu

‖ xu − yi ‖2
A + α

2 ∑
(u,i)∈Nu

[
θ− ‖ xu − yi ‖2

A
]
+ + λ

2

(
m

∑
u=1

b2
u +

n

∑
i=1

b2
i

) (6)

where Su and Tu denote the potentially similar users and trusted users of user u. Du is the
potentially dissimilar users of user u. Pu and Nu are the sets of positively and negatively
rated items of user u, respectively. [Z ]+ = max(Z , 0) is the standard hinge loss. λ controls
the magnitudes of biases. η and α control the magnitude of two constraints. With these
two constraints, users are guaranteed to be closer to their trusted users, positively rated
items and potentially similar users, but further away from their negatively rated items and
potentially dissimilar users.

ωui = 1 + ϕ

∣∣∣∣rui −
Rmax

2

∣∣∣∣ (7)

ωui indicates the confidence level. For extremely high or extremely low ratings, we
will assign greater weights. ϕ controls the size of the confidence level, and Rmax/2 indicates
the median rating of the current dataset.

SRMC optimizes the loss function using stochastic gradient descent and updates, xu,
yi, H, bu, bi by:

eui = rui − r̂ui = rui −
(

µ + bu + bi− ‖ xu − yi ‖2
A

)
W = H·HT + HT ·H (8)

∂L
∂xu

= eui(xu − yi)W ± η(xu − xv)W ± α(xu − yi)W (9)

∂L
∂yi

= −eui(xu − yi)W ± α(xu − yi)W (10)

∂L
∂H

= eui H(xu − yi)
T(xu − yi)± ηH(xu − xv)

T(xu − xv)± αH(xu − yi)
T(xu − yi) (11)

∂L
∂bu

= λbu − eui (12)

∂L
∂bi

= λbi − eui (13)

where eui is the difference between the true rating and the predicted rating.

3.3. Discover Potentially Similar and Dissimilar Users

Considering that our aim is to find potentially similar or dissimilar users, we first
filter the ratings in the rating matrix by a threshold, and any rating below the threshold
will be removed. For different datasets, the threshold is also different. The first purpose
of filtering is to ensure that both user u and user v have positively or negatively rated the
items they have jointly rated, rather than just rated them. The second purpose is to ensure
that the found users’ consumption behavior is extremely similar or extremely dissimilar.
For instance, for item i, user u has a positive rating and user v has a negative rating. It is
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obvious that for item i, user u and user v do not have the same preference. However, if
the PMI value between user u and user v is calculated directly without filtering the rating
matrix, the wrong situation of considering user u and user v. as potentially similar users
may occur.

After filtering the rating matrix, the PMI values between users are calculated as follows:

PMI
(
ui, uj

)
= log

#
(
ui, uj

)
·|D|

#(ui)#
(
uj
) . (14)

where |D| indicates all user–user pairs for which a rating is in the filtered rating ma-
trix. #(ui) and #

(
uj
)

represent the number of interactions between user i and user j,
respectively. #

(
ui, uj

)
represents the number of items that are positively rated by both ui

and uj. For instance, if ui and uj both have positive ratings for [i1, i2, i3] and they have no
common ratings for other items in all item sets, then #

(
ui, uj

)
= 3.

The higher the PMI(u, v) is, the more positive the rated items that both user u and
user v have rated, and the more similar the consumption behavior of user u and user v is.
Conversely the lower PMI(u, v) is, the less relevant and less similar user u and user v are.

Previous studies such as Cofactor, RME only focused on the case where the PMI value
was positive, but we think it is necessary to consider when the PMI value is negative. When
calculating PMI values in the Skip-Gram model, there are cases where PMI values are
negative or even negative infinity. This means that the (w, c) word-context pairs rarely or
never appear together in the sliding window. In SRMC, the above case can be interpreted
as the number of items with positive ratings from both user u and user v being very few or
even zero. In other words, the consumption behaviors of user u and user v are extremely
dissimilar. Previous studies tend to ignore the situation when PMI is negative and filter the
PMI values by:

SPPMI(u, v) = max(PMI(u, v)− log(k), 0) (15)

where k is the parameter that controls the size of the SPPMI matrix. Later, those models
based on matrix factorization will jointly decompose the rating matrix and the SPPMI
matrix. When PMI(u, v) is negative, SRMC considers user u and user v to be extremely
dissimilar and increases their distance in metric space. Therefore, we filter the PMI values
by the following equation:

Positive PMI(u, v) = max(PMI(u, v)− log(k1), 0) (16)

Negative PMI(u, v) = max(PMI(u, v) + log(k2),σ) (17)

When the PMI value between user u and user v is positive, SRMC uses Formula (16)
to determine whether user v is a potentially similar user to user u. Similarly, when the PMI
value between user u and user v is negative, SRMC uses the Formula (17) to determine
whether user v is a potentially dissimilar user for user u. σ is a small negative number,
and the value of σ varies depending on the datasets. k1 and k2 are also two constants
that change with the datasets, ensuring that the users have extremely similar or extremely
dissimilar consumption behaviors.

After calculating the PMI values among all of the users in the filtered rating matrix,
we can obtain the set of potentially similar or dissimilar users for each user. The process of
discovering potentially similar or dissimilar users is shown in Figure 2.
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4. Experiments

In this section, we present the experimental results of the SRMC on three public
datasets and conduct two main experiments: (1) the first experiment includes the recom-
mendation quality of SRMC compared to other algorithms and (2) the second experiment
examines the effect of parameters on SRMC.

4.1. Datasets and Evaluation Metrics

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

We used three public datasets that provide user–item ratings and trust relationships
to validate SRMC’s recommendation effect (Table 1). FilmTrust’s [22] data were obtained
from the FilmTrust website, containing 1508 users and 2071 movies. The sparsity of its
data is 98.86%. FilmTrust’s rating range is [0.5, 4], and the step size is 0.5. The Douban [23]
dataset has a data sparsity of 99.21% and contains 2848 users, 39,586 items and 894,887
ratings. Douban’s rating range is [1, 5], and the step size is 1. The Epinions [24] dataset
has a data sparsity of 99.98% and contains 49,286 users, 139,738 items and 664,824 ratings.
Epinions’ rating range is [1, 5], and the step size is 1.

Table 1. Dataset Information.

Datasets Users Items Ratings Relations

FilmTrust 1508 2071 35,497 1853
Douban 2848 39,586 894,887 35,770
Epinions 49,290 139,738 664,824 487,181

We use root mean square error (RMSE) and mean absolute error (MAE), the two most
commonly used evaluation metrics in recommender systems, as our evaluation criteria.

RMSE is defined as:

RMSE =

√
∑u,i(rui − r̂ui)

2

N
(18)

We use root mean square error (RMSE) and mean absolute error (MAE), the two most
commonly used evaluation metrics in recommender systems, as our evaluation criteria.

MAE =
∑u,i|rui − r̂ui|

N
(19)

where N indicates the number of ratings in the test set, rui is the true rating and r̂ui is
the predicted rating. A lower RMSE/MAE indicates that missing ratings are predicted
more precisely. Lower values of RMSE and MAE indicate more accurate rating predictions
of SRMC.
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4.2. Algorithm Comparisons

To demonstrate the performance improvement of SRMC, we conducted a series of
experiments to test our proposed SRMC. We chose several representative and relatively
new models incorporating social relationships as our comparison algorithms. These models
are shown below:

SoRec: This model shares the same user latent space to factorize the user–item rating
matrix and the user–user social matrix based on the probability matrix factorization (PMF).

SocialMF [14]: This introduces a trust propagation mechanism based on matrix factor-
ization to alleviate the cold start problem.

SoReg [25]: This model uses social regularization to denote social constraints, making
two potentially similar users more similar in terms of latent feature vectors.

UE-SVD++ [26]: This method is a matrix factorization-based model that jointly de-
composes the rating matrix and the user–user co-occurrence matrix.

SocialFD: In the metric space, SocialFD brings users closer to their preferred items,
pushes them farther away from their disliked items, and brings them closer to their friends
in space.

4.3. Model Parameter Selection

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

The selection of model parameters has a substantial impact on the recommendation
performance of SRMC. In this section, we investigate the impact of several important
parameters (α, η, λ, lr) on SRMC. In our experiments, we used the 5-fold cross validation
method to process the dataset. The whole dataset was randomly divided into five parts,
with 80% of the data as the training set and the remaining 20% as the testing set.

In this section, we utilize the control variables method to determine the most suitable
parameters for SRMC. First, we determined the range of values for each parameter based
on previous work, fixed the other three parameters and continuously adjusted the current
parameter α until the optimal value was found. Then, we proceeded in a similar manner
to find the optimal values for other parameters of SRMC.

From Figures 3–5, we can see that the variation of rating prediction accuracy is mainly
affected by α, η and λ, because these three parameters control the distribution of data points
in the space. When α is too small, SRMC cannot effectively reduce the spatial distance from
the preferred items and increase the spatial distance from the disliked items for each user.
Conversely, when α is too large, SRMC reduces the distance that should not be reduced
smaller and increases the distance that should not be increased larger, which impacts the
recommendation effect. Similarly, when η is too small, SRMC cannot effectively reduce the
spatial distance for each user with trusted users and potentially similar users, as well as
increase the spatial distance with potentially dissimilar users, and vice versa. λ ensures
that the biases and the distance between two points in the space are in a suitable range. If
either too large or too small λ will affect the recommendation effect.

It is also worth mentioning how SRMC defines preferred and undesired items and how
it defines potential similar users and potential dissimilar users. For these two questions,
we conducted many experiments; for the question asking whether users like an item, we
made a judgment based on the ratings given by users; and for the question asking whether
users are potentially similar or dissimilar to each other we made a judgment based on the
PMI values from users to users.

In the FilmTrust dataset, if a user gives a rating of 3.0, 3.5 or 4.0, we assume that the
user likes the item; if a user gives a rating of 0.5, 1.0 or 1.5, we assume that the user does
not like the item. In the following, we consider how to distinguish potentially similar users
from dissimilar users. If the PMI value between users is higher than 4.5, we consider these
two users to be potentially similar users. If the PMI value between users is less than −0.6,
we consider these two users to be potentially dissimilar users.
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In the Douban dataset, if a user gives a rating of 4 or 5, we assume that the user prefers
the item, and if the user gives a rating of 1 or 2, we assume that the user does not prefer
the item. In the following, we consider how to distinguish potentially similar users from
dissimilar users. If the PMI value between users is higher than 2.5, we consider these two
users to be potentially similar users. If the PMI value between users is less than −1.7, we
consider these two users to be potentially dissimilar users.

In the Epinions dataset, if a user gives a rating of 4 or 5, we assume that the user likes
the item, and if the user gives a rating of 1 or 2, we assume that the user does not like
the item. In the following, we consider how to distinguish potentially similar users from
dissimilar users. If the PMI value between users is higher than 6, we consider these two
users as potentially similar users. If the PMI value between users is less than −0.7, we
consider these two users as potentially dissimilar users.

4.4. Performance Comparison

Table 2 shows the experimental results of SRMC and other baseline algorithms. After
extensive experiments, we determined the most suitable parameters for SRMC on different
datasets. The parameters of SRMC on FilmTrust are: α = 0.3, η = 0.4, λ = 0.05 and lr = 0.005,
while the parameters on Douban are: α = 0.3, η = 0.1, λ = 0.05 and lr = 0.005 and the
parameters on Epinions are: α = 0.3, η = 0.2, λ = 0.05 and lr = 0.005.

Compared with the baseline algorithm, SRMC has the best recommendation results
among all of the datasets. Compared with the suboptimal algorithm SocialFD, SRMC
improves RMSE by 1.34% and MAE by 3.35% in the FilmTrust dataset and improves RMSE
by 2.15% and MAE by 4.72% in Epinions. It is worth noting that similar to SRMC, SocialFD
maps all users and items into the metric space and brings users closer to trusted users and
user-preferred items, and pushes users further away from unpreferred items. Nevertheless,
SRMC is more effective than SocialFD. In addition, we control the relative distance between
data points in the regularization term, which makes the data distribution in the whole
metric space more compact and achieves a better recommendation effect. The comparison
chart between SRMC and other algorithms is shown in Figure 6.
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Table 2. Experimental Results.

Dataset FilmTrust Douban Epinions

Metrics RMSE MAE RMSE MAE RMSE MAE
SoRec 0.8368 0.6485 0.7714 0.6158 1.2452 0.9369

SocialMF 0.8317 0.6482 0.7737 0.6171 1.2904 0.9638
SoReg 0.8445 0.6432 0.7741 0.6128 1.2803 0.9608

UE-SVD++ 0.8145 0.6338 0.7567 0.5951 1.0694 0.8293
SocialFD 0.8065 0.6265 0.7533 0.5945 1.0650 0.8287

SRMC 0.7957 0.6055 0.7425 0.5754 1.0421 0.7896
Improved 1.34% 3.35% 1.43% 3.21% 2.15% 4.72%
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4.5. Performance for Predicting Ratings

The prediction of missing ratings in the rating matrix is an important task for recom-
mender models. In this section, we compare the performance of SRMC with the baseline
models. To ensure the reliability and fairness of the experimental results, we compare
them with the optimal performance of each model based on the authors’ recommended
parameters. From Table 2, we can see that the performance of SRMC is the best in all
three public datasets and shows a significant advantage on the Epinions dataset. It is
worth noting that UE-SVD++ also exploits the user’s co-occurrence model and extends the
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matrix factorization-based model. In addition, UE-SVD++ outperforms most traditional
recommendation models such as SVD++ [27], MFC [28], FUNK-SVD, etc. Different from
our work, UE-SVD++ only filters the high rating data in the user–item rating matrix. It then
generates a user co-occurrence matrix by calculating the PMI values among these positively
rated users and jointly decomposes the user co-occurrence matrix and the rating matrix.
The filtering of high rating data by UE-SVD++ can be seen as only filtering out users with
similar consumption behaviors but ignoring users with dissimilar consumption behaviors,
which limits its performance. SocialFD is similar to SRMC, but it only brings the user closer
to its trusted friends and positively rated items, and only pushes the user further away from
the negatively rated items. By utilizing users’ co-occurrence patterns to discover potentially
similar users and potentially dissimilar users, SRMC more reasonably adjusts the relative
position of each user and item in the metric space. Thus, SRMC outperforms SocialFD in all
three public datasets. By comparing with other social recommendation models, we validate
the effectiveness of SRMC compared with other matrix factorization-based models.

5. Conclusions and Future Work

This paper is inspired by RME’s effective enhancement for matrix factorization mod-
els. Considering the limitations of the matrix factorization model, we propose a new
recommendation model, called SRMC, which is based on metric learning and users’ co-
occurrence patterns. SRMC not only utilizes the traditional auxiliary information such
as social networks, but also utilizes the neighborhood effect in the rating data to explore
the user’s consumption behavior and find a list of users who are not necessarily socially
related but have extremely similar and extremely dissimilar users for each user. During
the training process, SRMC constructs two types of constraints in metric learning as such:
(user-preferred items), (user-trusted friends) and (user-potentially similar users) will be
used as the set of equivalent constraints; (user-disliked items), (user-potentially dissim-
ilar users) will be used as the set of inequivalent constraints. The position of users and
items is jointly determined by ratings, social relationships, potentially similar users and
potentially dissimilar users, which can help to alleviate the data sparsity problem in the
recommendation system. At the end of training, the obtained distances are used to generate
understandable and reliable recommendations.

Most of the recommendation models based on metric learning, including SRMC, rely
on a fixed margin θ. The margin θ in SRMC is similar to the user bias in matrix factorization
models. Different users tend to have different criteria, and the number of items interacted
by each user also varies greatly. If the fixed margin is too large, the user will be surrounded
by too many positively rated items, and the items that should be recommended will most
likely be negative samples. If the fixed margin is too small, the positive and negative
rated items will be too close together for them to be distinguished, resulting in a false
recommendation. Adopting a fixed margin may limit the expressiveness of the model,
especially when the data distribution is complex. Therefore, different users should have
adaptive margins. We will explore this potential direction in the future. In addition, how
to identify potentially similar users and potentially dissimilar users more effectively will
also be our future work.
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