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Abstract: Recently in the paper [Mediterr. J. Math. 2016, 13, 1535–1553], the authors introduced and
studied a new operator which was defined as a convolution of the three popular linear operators,
namely the Sǎlǎgean operator, the Ruscheweyh operator and a fractional derivative operator. In the
present paper, we consider an operator which is a convolution operator of only two linear operators
(with lesser restricted parameters) that yield various well-known operators, defined by a symmetric
way, including the one studied in the above-mentioned paper. Several results on the subordination
of analytic functions to this operator (defined below) are investigated. Some of the results presented
are shown to involve the familiar Appell function and Hurwitz–Lerch Zeta function. Special cases
and interesting consequences being in symmetry of our main results are also mentioned.
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1. Introduction, Motivation and Preliminaries

Let H(U) denote a class of all analytic functions defined in the open unit disk U =
{z ∈ C : |z| < 1}. For a ∈ C, k ∈ N = {1, 2, . . .}, let

H[a, k] =
{

f ∈ H(U) : f (z) = a + akzk + ak+1zk+1 + . . .
}

.

We denote a subclass ofH[0, 1] by A whose members are of the form:

f (z) = z +
∞

∑
k=2

akzk, z ∈ U. (1)

Additionally, let K denote a subclass of A whose members are convex (univalent) in
U which is equivalent to

f ∈ A, <
{

1 +
z f ′′(z)
f ′(z)

}
> 0, z ∈ U. (2)

Further, let S∗ denote a subclass of A of starlike functions, which is symmetric to K
by relation f ∈ K ⇔ z f ′ ∈ S∗.

For two functions p, q ∈ H(U), we say p is subordinate to q, or q is superordinate to
p in U and write p(z) ≺ q(z), z ∈ U, if there exists a Schwarz function ω, analytic in U
with ω(0) = 0, and |ω(z)| < 1, z ∈ U such that p(z) = q(ω(z)), z ∈ U. Furthermore, if the
function q is univalent in U, then we have following symmetry:

p(z) ≺ q(z)⇔ p(0) = q(0) and p(U) ⊂ q(U). (3)
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A convolution (or Hadamard product) ∗ of the functions g1(z) and g2(z) of the form:

g1(z) =
∞

∑
k=0

akzk and g2(z) =
∞

∑
k=0

bkzk (4)

is defined by

g1(z) ∗ g2(z) = (g1 ∗ g2)(z) =
∞

∑
k=0

akbkzk = (g2 ∗ g1)(z). (5)

For m ∈ Z = {. . . ,−2,−1, 0, 1, 2, . . .} and for µ > −1, λ > 0, a linear operator
J m

λ,µ : A → A is defined in [1] (see also [2–4]) by
J m

λ,µ f (z) = f (z), m = 0,

J m
λ,µ f (z) = µ+1

λ z1− µ+1
λ

z∫
0

t
µ+1

λ −2J m+1
λ,µ f (t)dt, m = −1,−2, . . . ,

J m
λ,µ f (z) = λ

µ+1 z2− µ+1
λ d

dt

(
z

µ+1
λ −1J m−1

λ,µ f (z)
)

, m = 1, 2, . . . .

(6)

We note that the operator J m
λ,µ is a multiplier operator and the series expansion of

J m
λ,µ f (z) for f of the form (1) is given symmetrical by

J m
λ,µ f (z) = z +

∞

∑
k=2

(
1 +

λ(k− 1)
µ + 1

)m
akzk. (7)

Without any loss of generality, we may replace µ > −1 and λ > 0 by one parameter
δ = λ/(µ + 1) ∈ C in (7), we then obtain (with complex m)

J m
λ,µ f (z) =: J m

δ f (z) = z +
∞

∑
k=2

[1 + δ(k− 1)]makzk, (8)

where only principal branch of powers is considered.
In [5], the authors defined an operator, in a symmetry to J m

λ,µ, called the Srivas-
tava–Attiya operator Gµ,b which for f of the form (1) is given as

Gµ,b f (z) = z +
∞

∑
k=2

{
b + 1
b + k

}µ

akzk, (9)

where b, µ ∈ C (b 6= −2,−3, . . .).
It is easy to see that for δ = 1/1 + b and m = −µ, the operator given by (8) becomes

the Srivastava–Attiya operator given by (9), and we have

Gµ,b = J −µ
1/1+b.

In [6], Carlson and Schaffer defined a linear operator L(a, c) : A → A by

L(a, c) f (z) = φ(a, c; z) ∗ f (z), (10)

where

φ(a, c; z) =
∞

∑
n=0

(a)n

(c)n
zn+1 (z ∈ U; a, c ∈ C(c 6= 0,−1,−2, . . .)), (11)

and (a)n is the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
=

{
1 for n = 0, a 6= 0,
a(a + 1) . . . (a + n− 1) for n ∈ N = {1, 2, 3, . . .},
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where Γ is the Gamma function. The Carlson-Schaffer operator L(a, c) contains the
Ruscheweyh operator [7] given by

Dλ f (z) :=
z

(1− z)λ+1 ∗ f (z) (λ > −1; z ∈ U),

because L(λ + 1; 1) f (z) = Dλ f (z). If λ = n ∈ 0, 1, 2, . . . , then

Dn f (z) =
z(zn−1 f (z))(n)

n!
,

and Dn is then the Ruscheweyh differential operator.
For the purpose of this paper, we consider a generalized form of operator F which is

defined by
F f (z) := Fm

δ (a, c) f (z) = φ(a, c; z) ∗ J m
δ f (z),

where J m
δ and φ(a, c; z) are, respectively, given by (8) and (11). For the function f of the

form (1), we have

F f (z) := Fm
δ (a, c) f (z) = z +

∞

∑
k=2

(a)k−1
(c)k−1

[1 + δ(k− 1)]makzk, (12)

(a, c ∈ C(c 6= 0,−1,−2, . . .), m, δ ∈ C),

which is in symmetry to the Carlson-Schaffer operator L(a, c) given in (10), (11).
By putting a = 2, c = 2− λ and δ = 0 in (12), we have the series representation

Ωλ
z f (z) := Fm

0 (2, 2− λ) f (z) = z +
∞

∑
k=2

Γ(2− λ)Γ(1 + k)
Γ(1 + k− λ)

akzk

(λ 6= 2, 3, . . . ; z ∈ U),

which also arises by the application of the differintegral operator Ωλ
z defined in [8], (see

also [3]) to the function f ∈ A. The operator in [3] does not yield the Srivastava–Attiya
operator (9), and therefore the operator defined above by (12) is not symmetric to the
operator defined in [3].

Observe that for <(a) > 0, m ∈ C and f ∈ A, the operator defined by (1.12) satisfies
the relation

Fm
1/a(a + 1, c) f (z) = Fm+1

1/a (a, c) f (z). (13)

For m ∈ Z and δ > 0, the operator Fm
δ (a, c) in (12) is the one that was used in [1,9]

in slightly varied forms. Furthermore, the operator Fm
δ (a, c) generalizes various known

operators used in Geometric Function Theory and we exhibit such relationships here :

Fm
λ (c, c) = Dm

λ (m ∈ N0),

Al-Oboudi [10],
Fm

1 (c, c) = Dm (m ∈ N0),

Sălăgean [11],

Fm
λ/(µ+1)(c, c) = Im(λ, µ) (µ > −1, λ > 0; m ∈ N0),

Cătaş [12],

Fm
λ/(µ+1)(c, c) f (z) = J m

λ,µ f (z) (µ > −1, λ > 0; m ∈ Z),

Sharma et al. [4],

Fm
1/(1+b)(c, c) f (z) = G−m,b f (z) (b > −1),
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Srivastava and Attiya [5],
F 0

δ (a, c) = L(a, c),

Carlson and Schaffer [6],

F−α
1/2(c, c) = Pα (α ∈ Z+,

Jung et al. [13].
For appropriate values of the parameters in (12) when a = 1 + ν (ν > −1), b =

2− λ (λ < 2), δ = 1 and m = n + 1 (n ∈ N0), we can obtain the operator defined in [14,15].
It is interesting to note that one requires the convolution of only two known linear operators
as defined in (12) to define the various operators discussed above including a symmetric
operator introduced recently in [14] which is a convolution of three well-known operators.
Our aim in this paper is to study some subordination properties of the generalized operator
F = Fm

δ (a, c). Several results are established using well-known lemmas and some of the
results also involve the Appell function and the Hurwitz–Lerch Zeta function. Special
cases and interesting consequences of our main results are also mentioned.

Let P [A, B],−1 ≤ B ≤ 1,−1 ≤ A ≤ 1, denote a class of functions p ∈ H(U) satisfying
p(0) = 1 and

p(z) ≺ 1 + Az
1 + Bz

, z ∈ U. (14)

The class P [A, B] was introduced and studied by Janowski [16] and, in particular, we
denote

P [1− 2α,−1] = P(α), (α ≤ 1).

2. Key Lemmas

To obtain our results, we need the following lemmas.

Lemma 1 (Hallenbeck and Ruscheweyh [17] ([18], Thm. 3.1b, p.71). Let h be convex univalent
in U with h(0) = a, γ 6= 0 and <(γ) ≥ 0. If p ∈ H[a, n] and

p(z) +
1
γ

zp′(z) ≺ h(z),

then
p(z) ≺ q(z) ≺ h(z),

where
q(z) =

γ

nzγ/n

∫ z

0
h(t) t(γ/n)−1dt (z ∈ U).

The function q is convex univalent and is the best (a, n)-dominant in the sense that if p(z) ≺
q1(z), then q(z) ≺ q1(z).

The Gaussian hypergeometric function 2F1(a, b; c; z) is an analytic function in U and is
defined for a, b, c ∈ C (c 6= 0,−1,−2, . . .) by

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n
(c)n

zn

n!
(z ∈ U).

Following results for the function 2F1(a, b; c; z) are well-known.

Lemma 2 ([19,20]). Let a, b, c ∈ C (c 6= 0,−1,−2, . . .), then the Gaussian hypergeometric func-
tion 2F1(a, b; c; z) satisfies the following identities:

(i) 2F1(a, b; c; z) = Γ(c)
Γ(b)Γ(c−b)

∫ 1
0 tb−1(1− t)c−b−1(1− tz)−adt (<(c) > <(b) > 0),

(ii) 2F1(a, b; c; z) = (1− z)−a
2F1
(
a, c− b; c; z

z−1
)
.
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Lemma 3 ([21] ). Let F, G ∈ H(U) be any convex univalent functions in U. If f ≺ F and g ≺ G,
then

f ∗ g ≺ F ∗ G in U.

Lemma 4 ([22]). If
pi ∈ P(αi) (i = 1, 2; αi ≤ 1),

then
p1 ∗ p2 ∈ P(α3),

where α3 = 1− 2(1− α1)(1− α2).

Lemma 5 ([23]). Let p ∈ P(α). Then for given α, 0 ≤ α < 1, we have

<(p(z)) > 2α− 1 +
2(1− α)

1 + |z| (z ∈ U).

Lemma 6. Let 0 < α ≤ β. If β ≥ 2 or α + β ≥ 3, then the function in (11)

φ(α, β; z) =
∞

∑
n=1

(α)n−1

(β)n−1
zn (z ∈ U) (15)

is convex univalent.

Lemma 6 is a special case of Theorem 2.12 or Theorem 2.13 contained in [7].
Making use of Lemma 4, we proved the following result.

Lemma 7 ([4]). Let −1 ≤ Bi < Ai ≤ 1 and pi ∈ P [Ai, Bi] (i = 1, 2, . . . , n), then (for n ≥ 2)

p1 ∗ p2 ∗ . . . ∗ pn ∈ P [A, B], (16)

where

B = (−1)n+1
n

∏
i=1

Bi, A− B =
n

∏
i=1

(Ai − Bi). (17)

Furthermore,
p1 ∗ p2 ∗ . . . ∗ pn ∈ P(α), (18)

where

α = 1− 2n−1
n

∏
i=1

(
1− 1− Ai

1− Bi

)
< 1.

3. Main Results

We begin by finding a subordination property of the operator F which is contained in
the following theorem.

Theorem 1. Assume that a function f ∈ A, l ∈ (0, 1] and −1 ≤ D < C ≤ 1. If the operator
Fm+1

δ (a, c) satisfies (
Fm+1

δ (a, c) f (z)
)′
≺
(

1 + Cz
1 + Dz

)l
(z ∈ U),

then for the operator F defined in (12),

(F f (z))′ ≺ q(z), (19)

where
q(z) = F1[1/δ;−l, l; 1/δ + 1;−Cz,−Dz] (<(δ) > 0)
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is the best dominant in (19) and F1 is the Appell function (([24] pp. 22–23); see also ([25], Section
1.6) defined by

F1[a; b, c; d; x, y] =
∞

∑
m=0

∞

∑
n=0

(a)m+n(b)m(c)n

(d)m+n

xm

m!
yn

n!
(20)

=
∞

∑
k=0

(a)k(b)k
(d)k

2F1[a + k, c; d + k; y]
xk

k!
(max{|x|, |y|} < 1).

Proof. Let p(z) = (F f (z))′, then p ∈ H[1, 1] and with the use of the identity:

Fm+1
δ (a, c) f (z) = (1− δ)F f (z) + δz(F f (z))′,

we have (
Fm+1

δ f (z)
)′

= p(z) + δzp′(z) ≺
(

1 + Cz
1 + Dz

)l
, (21)

which is a subordination by a convex univalent function. Applying Lemma 1, changing
suitably the variables and making use of the identities (i) and (ii) of Lemma 2, we obtain
that

p(z) ≺ q(z)

=
1
δ

z−1/δ
∫ z

0
t1/δ−1

(
1 + Ct
1 + Dt

)l
dt

=
1
δ

∫ 1

0
s1/δ−1

(
1 + Csz
1 + Dsz

)l
ds (22)

and the function q(z) is the best dominant.
Using now the series expansion:

(1− x)−α =
∞

∑
k=1

(α)k
xk

k!
(|x| < 1)

for each of the binomial factors occurring in the last integrand of (22) and changing the
order of summation and integration (permissible under the assumed conditions mentioned
above) and interpreting the resulting series in terms of the Appell function defined above
by (20), we get

p(z) ≺ q(z) = F1[1/δ;−l, l; 1/δ + 1;−Cz,−Dz].

This proves the result that
(F f (z))′ ≺ q(z),

where q(z) is a convex univalent function.

On using the relation (13), we obtain the following result from Theorem 1 provided
that <(a) > 0.

Corollary 1. Let a function f ∈ A and l ∈ (0, 1], −1 ≤ D < C ≤ 1. If <(a) > 0 and the
operator Fm

1/a(a + 1, c) satisfies

(
Fm

1/a(a + 1, c) f (z)
)′ ≺ ( 1 + Cz

1 + Dz

)l
(z ∈ U),

then (
Fm

1/a(a, c) f (z)
)′ ≺ r(z), (23)
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where
r(z) = F1[a;−l, l; a + 1; 1 + Cz, 1 + Dz],

is the best dominant in (23) and F1 is the Appell function defined by (20).

Theorem 2. Let a function f ∈ A and −1 ≤ F < E ≤ 1. If for <(a) > 0, the operator
Fm

δ (a + 1, c) satisfies

(Fm
δ (a + 1, c) f (z))′ ≺ 1 + Ez

1 + Fz
(z ∈ U), (24)

then for the operator F defined in (12), we have

(F f (z))′ = (Fm
δ (a, c) f (z))′ ≺ Q(z) (z ∈ U), (25)

where

Q(z) =
2F1

(
1, 1; a + 1; Fz

1+Fz

)
+ a

a+1 Ez 2F1

(
1, 1; a + 2; Fz

1+Fz

)
1 + Fz

is the best dominant in (25).

Proof. Let P(z) = (F f (z))′, then P ∈ H[1, 1] and with the use of the identity:

Fm
δ (a + 1, c) f (z) =

(
1− 1

a

)
F f (z) +

1
a

z(F f (z))′, (26)

we have
(Fm

δ (a + 1, c) f (z))′ = P(z) +
1
a

zP′(z) ≺ 1 + Ez
1 + Fz

,

which by Lemma 1, and by the change of variables followed by the use of the identities (i)
and (ii) of Lemma 2 gives

P(z) ≺ Q(z)

= az−a
∫ z

0
ta−1 1 + Et

1 + Ft
dt

= a
∫ 1

0
sa−1 1 + Esz

1 + Fsz
ds (27)

= a
[∫ 1

0

sa−1

1 + Fsz
ds + Ez

∫ 1

0

sa

1 + Fsz
ds
]

=
2F1

(
1, 1; a + 1; Fz

1+Fz

)
+ a

a+1 Ez 2F1

(
1, 1; a + 2; Fz

1+Fz

)
1 + Fz

;

and the function Q is the best dominant. This proves the result that

(F f (z))′ ≺ Q(z),

where Q is a convex univalent function.

Applying the cases when F 6= 0 and F = 0 to the expression (27), we obtain the
following result (28) with the use of (i) and (ii) of Lemma 2. Furthermore, if we write the
expression (27) as

Q(z) =
∫ 1

0
G(s, z)dµ(s),

where G(s, z) = 1+Esz
1+Fsz (0 ≤ s ≤ 1) and dµ(s) = asa−1ds, so that

∫ 1
0 dµ(s) = 1, we obtain

for |z| ≤ r < 1,

<(Q(z)) ≥
∫ 1

0

1− Esr
1− Fsr

dµ(s) = Q(−r).



Symmetry 2021, 13, 2141 8 of 13

Since, for |z| ≤ r < 1, we have <
(

1+Ez
1+Fz

)
≥ 1−Er

1−Fr , therefore letting r → 1−, we obtain
the following result from Theorem 2.

Corollary 2. Let a function f ∈ A and−1 ≤ F < E ≤ 1. If <(a) > 0, the operator Fm
δ (a + 1, c)

satisfies the condition (24), then

(F f (z))′ ≺ Q(z) =

{
1+Ez
1+Fz −

( E
F−1) [2F1(1,1;a+1; Fz

1+Fz )−1]
1+Fz , F 6= 0,

1 + a
a+1 Ez, F = 0,

z ∈ U. (28)

Furthermore,
<(Q(z)) > ρ, (29)

where

ρ =

{
E
F +

(1− E
F ) 2F1(1,1;a+1; F

F−1 )
1−F , F 6= 0,

1− a
a+1 E, F = 0.

The result is best possible.

Additionally, on applying a special case when a = 1, we obtain from the expression
(27), the following result involving the Sălăgean operator Dm for m ∈ N0 with the use of
the identity:

2F1

(
1, 1; 2;

Fz
1 + Fz

)
=

(1 + Fz) log(1 + Fz)
Fz

(F 6= 0).

Corollary 3 ([4], Corollary 2.2, p. 54). If for −1 ≤ F < E ≤ 1,(
Dm+1 f (z)

)′
≺ 1 + Ez

1 + Fz
, z ∈ U,

then

(Dm f (z))′ ≺
{

1+Ez
1+Fz − (F− 1)

{
log(1+Fz)

Fz − 1
1+Fz

}
, F 6= 0,

1 + 1
2 Ez, F = 0,

z ∈ U.

The result is best possible.

We next prove the following theorem using Lemma 5.

Theorem 3. Let a function f ∈ A and −1 ≤ F < E ≤ 1. If <(a) > 0 and the operator
Fm

δ (a + 1, c) satisfies the condition (24), then

(F f (z))′ ∈ P(γ),

where

γ = 1 +
E− F
1− F

[
2F1

(
1, 1; a + 1;

1
2

)
− 2
]

. (30)

Proof. Let
(
Fm

δ (a + 1, c) f (z)
)′ ≺ 1+Ez

1+Fz (z ∈ U), then we have

<
{
(Fm

δ (a + 1, c} f (z))′
)
>

1− E
1− F

:= α (z ∈ U), (31)

where 0 ≤ α < 1. Using the identity (26), we write

za−1(Fm
δ (a + 1, c) f (z))′ = za−1(F f (z))′ +

za

a
(F f (z))′′

=

(
za

a
(F f (z))′

)′
,
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which yields the result

(F f (z))′ =
a
za

∫ z

0
ta−1(Fm

δ (a + 1, c) f (t))′dt (z ∈ U).

Hence, on putting t = uz (z ∈ U) and on using Lemma 5 with the condition (31), we
obtain that

<
(
(F f (z))′

)
= a

∫ 1

0
ua−1<

(
(Fm

δ (a + 1, c) f (uz))′
)

du

≥ a
∫ 1

0
ua−1

(
2α− 1 +

2(1− α)

1 + u|z|

)
du

> a
∫ 1

0
ua−1

(
2α− 1 +

2(1− α)

1 + u

)
du

= 1− 2(1− α)

[
1− a

∫ 1

0

ua−1

1 + u
du
]

= 1 + (1− α)

[
2F1

(
1, 1; a + 1;

1
2

)
− 2
]
= γ,

where 0 ≤ γ < 1. This proves Theorem 3 on putting the value of α from (31).

Before stating and proving our next result, we recall the Hurwitz–Lerch Zeta function
Φ(z; s; a) defined by

Φ(z, s, a) =
∞

∑
n=0

zn/(n + a)s, z ∈ U, (32)

for some s ∈ C \Z−0 , a > 0, [26]. We consider Φ(z, s, a) also for |z| = 1 when <s > 1.

Theorem 4. Let fi ∈ A (i = 1, 2, . . . , n) and if

(F fi(z))
′ ≺ 1 + Aiz

1 + Biz
(−1 ≤ Bi < Ai ≤ 1; i = 1, 2, . . . , n; z ∈ U), (33)

then
(F f1 ∗ F f2 ∗ . . . ∗ F fn)

′(z) ≺ h(z) (z ∈ U), (34)

where

h(z) = 1 + (A− B)
∞

∑
k=1

(−B)k−1zk

(k + 1)n−1 = 1− A− B
B

(Φ(−Bz, n− 1, 1)− 1) (35)

is convex in U, and A, B are given by (17) in Lemma 7. The function Φ(−Bz, n− 1, 1) is the
Hurwitz−Lerch Zeta function defined above by (32).

Proof. Observe that if n = 1, the result is trivial. For n ≥ 2 and for i = 1, 2, . . . , n, let

ωi(z) =
F fi(z)

z
.

Then ωi are analytic in U with ωi(0) = 1. Using (33), we obtain

ωi(z) + zω′i(z) = (F fi(z))
′ ≺ 1 + Aiz

1 + Biz
(−1 ≤ Bi < Ai ≤ 1; i = 1, 2, . . . , n; z ∈ U).

Hence, by Lemma 1 (for the case when n = γ = 1), we have

F fi(z)
z

≺ qi(z) =
1
z

∫ z

0

1 + Ait
1 + Bit

dt (z ∈ U), (36)
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where qi is convex in U and is the best dominant. Applying now Lemma 3 to the subordi-
nation (36) for i = 1, 2, . . . , n− 1, and to the subordination (33) for i = n, we obtain

F f1(z)
z

∗ . . . ∗ F fn−1(z)
z

∗ (F fn(z))
′ (37)

≺ 1
z

∫ z

0

1 + A1t
1 + B1t

dt ∗ . . . ∗ 1
z

∫ z

0

1 + An−1t
1 + Bn−1t

dt ∗ 1 + Anz
1 + Bnz

(38)

=

(
1 + (A1 − B1)

∞

∑
n=1

(−B1)
n−1zn

n + 1

)
∗ · · · ∗

(
1 + (An−1 − Bn−1)

∞

∑
n=1

(−Bn−1)
n−1zn

n + 1

)

∗
(

1 + (An − Bn)
∞

∑
n=1

(−Bn)
n−1zn

)
= h(z),

where h is convex in U being the convolution of functions which are convex in U and is
given by (35) in terms of the Hurwitz–Lerch Zeta function (32). The left-hand side of the
above subordination in (37) is evidentially

(F f1(z) ∗ F f2(z) ∗ . . . ∗ F fn(z))
′.

This proves Theorem 4.

Results on the convolution of finite number of analytic functions have also been
investigated earlier by considering a different operator in [27] (see also [4,28,29]).

Theorem 5. Let a function f ∈ A and assume that |A|, |B|, |C|, |D| ≤ 1. If

{L(a, c) f (z)}′ ≺ 1 + Az
1 + Bz

(39)

and
1
z
J m

δ f (z) ≺ 1 + Cz
1 + Dz

, (40)

then

{F f (z)}′ ≺ 1− (AD + BC− AC)z
1− BDz

. (41)

Proof. We first observe that we have subordination under a convex univalent function in
both (39) and in (40). Therefore applying Lemma 3, we obtain

{L(a, c) f (z)}′ ∗
{

1
z
J m

δ f (z)
}
≺ 1 + Az

1 + Bz
∗ 1 + Cz

1 + Dz
.

In view of (12), the left-hand side turns out to be the operator {F f (z)}′, while the
right-hand side is

1 + Az
1 + Bz

∗ 1 + Cz
1 + Dz

=

{
1− (B− A)z

1 + Bz

}
∗
{

1− (D− C)z
1 + Dz

}
= {1− (B− A)(z− Bz2 + B2z3 − B3z4 + · · · )} ∗ {1− (D− C)(z− Dz2 + D2z3 − D3z4 + · · · )}

= 1 + (B− A)(D− C)
z

1− BDz

=
1− (AD + BC− AC)z

1− BDz
.
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This gives (41).

From Theorem 5 and from the assertion that f ′ ∗ (g/z) = ( f /z) ∗ g′ = ( f ∗ g)′, we
directly obtain the following corollary.

Corollary 4. Assume that |A|, |B|, |C|, |D| ≤ 1, and let

{J m
δ f (z)}′ ≺ 1 + Az

1 + Bz

and
1
z

L(a, c) f (z) ≺ 1 + Cz
1 + Dz

,

then

{F f (z)}′ ≺ 1− (AD + BC− AC)z
1− BDz

.

Again on using the relation (13), we obtain the following result from Theorem 5
provided that <(a) > 0.

Corollary 5. Let a function f ∈ A and assume that |A|, |B|, |C|, |D| ≤ 1. If for <(a) > 0,

{L(a + 1, c) f (z)}′ ≺ 1 + Az
1 + Bz

(42)

and
1
z
J m−1

1/a f (z) ≺ 1 + Cz
1 + Dz

, (43)

then {
Fm

1/a(a, c) f (z)
}′ ≺ 1− (AD + BC− AC)z

1− BDz
. (44)

Theorem 6. Let a function f ∈ A and assume that |A|, |B|, |E|, |F| ≤ 1. If the function f satisfies
the condition (39) and

(J m
δ f (z))′ ≺ 1 + Ez

1 + Fz
, (45)

then
{F f (z)}′ ≺ θ(z), (46)

where

θ(z) = 1 +
(A− B)(E− F)

BF

∞

∑
k=1

(BFz)k

k + 1
= 1 +

(A− B)(E− F)
BF

(Φ(BFz, 1, 1)− 1) (z ∈ U) (47)

is convex in U and the function Φ(BFz, 1, 1) is the Hurwitz−Lerch Zeta function defined above
by (32).

Proof. Let

ω(z) =
J m

δ f (z)
z

,

which is analytic in U with ω(0) = 1, and on using now (45), we obtain

ω(z) + zω′(z) = (J m
δ f (z))′ ≺ 1 + Ez

1 + Fz
(−1 ≤ F < E ≤ 1; z ∈ U).

Hence, by Lemma 1 (for the case when n = γ = 1), we obtain

J m
δ f (z)

z
≺ q(z) =

1
z

∫ z

0

1 + Et
1 + Ft

dt (z ∈ U), (48)
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where q is convex in U and is the best dominant. Now on applying Lemma 3 to the
subordination conditions (45) and (39), we obtain

{L(a, c) f (z)}′ ∗
J m

δ f (z)
z

≺ 1 + Az
1 + Bz

∗ 1
z

∫ z

0

1 + Et
1 + Ft

dt.

The left-hand side simplifies to {F f (z)}′, while the right-hand side is

1 + Az
1 + Bz

∗ 1
z

∫ z

0

1 + Et
1 + Ft

dt

=

{
A
B
+

(B− A)/B
1 + Bz

}
∗
{

E
F
+

F− E
F

log(1 + Fz)
Fz

}
=

(
1 + (A− B)

∞

∑
n=1

(−B)n−1zn

)
∗
(

1 + (E− F)
∞

∑
n=1

(−F)n−1zn

n + 1

)
= θ(z),

where θ is given by (47). This proves the result (46).

Lastly, we prove the following result.

Theorem 7. Let a function f ∈ A and assume that ν(z) is convex univalent and 0 < c ≤ a. If
a ≥ 2 or a + c ≥ 3 and operator F defined in (12) satisfies

F f (z) ≺ ν(z), (49)

then operator J m
δ defined in (8) satisfies

J m
δ f (z) ≺ ν(z) ∗

∞

∑
n=0

(c)n

(a)n
zn+1. (50)

Proof. Because (49) is a subordination under a convex univalent function and by Lemma 6

∞

∑
n=0

(c)n

(a)n
zn+1

is a convex univalent too. Therefore applying Lemma 3. we obtain

F f (z) ∗
∞

∑
n=0

(c)n

(a)n
zn+1 ≺ ν(z) ∗

∞

∑
n=0

(c)n

(a)n
zn+1,

where on the left-hand side we have J m
δ f (z). This gives (50).
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