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Abstract: Recent work showed that κ-deformations can describe the quantum deformation of several
relativistic models that have been proposed in the context of quantum gravity phenomenology.
Starting from the Poincaré algebra of special-relativistic symmetries, one can toggle the curvature
parameter Λ, the Planck scale quantum deformation parameter κ and the speed of light parameter
c to move to the well-studied κ-Poincaré algebra, the (quantum) (A)dS algebra, the (quantum)
Galilei and Carroll algebras and their curved versions. In this review, we survey the properties and
relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes,
emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed
of light parameters.

Keywords: quantum groups; Poincaré group; (Anti)-de Sitter; Galilei group; carroll symmetries;
curvature; deformation; Planck scale; noncommutative spacetimes; quantum gravity; phenomenology

1. Introduction

Deformations of relativistic symmetries have been playing a prominent role in the
study of phenomenologically relevant effects of quantum gravity in a “non-quantum” and
“non-gravitational” regime, such that both the Planck constant h̄ and the Newton constant

G are negligible, but their ratio is not, thus leaving the Planck energy EP =
√

c5 h̄
G finite [1,2].

In this context, a much studied formalism that provides a rigorous mathematical
framework for the deformed symmetry models is that of κ-deformations [3–10], which
turn the Lie algebra describing the Poincaré symmetries of special relativity into a Hopf
algebra and where the quantum deformation parameter κ is assumed to be of the order
of the Planck energy [11]. Despite these models being originally derived as a contraction
of the quantum (Anti-)de Sitter algebra in the limit of vanishing cosmological constant Λ,
the great majority of the subsequent work focussed exclusively on the Λ = 0 case.

Nevertheless, some preliminary analyses [12–17] pointed out that nontrivial effects
are to be expected due to the interplay between the cosmological constant Λ and the quan-
tum deformation parameter κ, and these effects might have significant implications for
phenomenological analyses that focus on an astrophysical setup where the cosmological
expansion is non-negligible [18]. This interplay emerges because the two parameters gov-
ern two kinds of deformation of the Poincaré algebra, respectively, a classical deformation,
turning the Poincaré algebra into a new Lie algebra describing (Anti-)de Sitter symme-
tries [19], and a quantum deformation, turning the Poincaré algebra into a deformed Hopf
algebra (see Figure 1). When both deformations are present, the Poincaré algebra turns into
a κ-deformed (Anti-)de Sitter Hopf algebra, and novel features emerge that are governed
by products of the two deformation parameters, so that they disappear in both the flat
Λ→ 0 and the classical κ−1 → 0 limits [20–25].
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Figure 1. The various algebras of relativistic symmetries emerging in the regimes set by different
combinations of the cosmological constant Λ and the quantum deformation parameter κ. The arrows
point in the direction where the indicated parameter becomes nonzero. We see that the (Anti)-de
Sitter algebra and the κ-Poincaré algebra are both deformations of the Poincaré algebra, one being a
classical deformation and the other a quantum deformation, respectively.

Very recent work analyzed yet another direction of classical deformation, this time
governed by the speed of light c (see Figures 2 and 3). The novel feature of this deforma-
tion, with respect to the classical deformation governed by Λ, is that it can work in two
different directions: starting from the Poincaré Lie algebra, one can perform two kinds
of contractions, one where c−1 → 0 and one where c → 0, which lead to the Galilei and
Carroll Lie algebras and groups, respectively [26–29]. These two contractions can also be
performed in the presence of the cosmological constant Λ and of the quantum deformation
parameter κ, as was shown very recently [30], thus providing us with a quite rich structure
of possible algebras of relativistic symmetries, shown in Figure 3. We recall that Galilean
symmetries with Λ 6= 0 are known in the literature as Newton–Hooke algebras [27].

In this review, we survey the properties and relations of all of these algebras, emphasiz-
ing the different effects the three deformation parameters have and how they interact with
one another. While the technical results on which we base our discussion have appeared in
previous works, which are referenced to in the appropriate sections; this is the first time
that a systematic picture of the properties and relations of these algebras is provided.

The plan of this review is the following. In Section 2, we revisit the quantum de-
formation procedure, turning the Poincaré Lie algebra into the κ-Poincaré Hopf algebra.
In Section 3, we revisit the classical deformation procedure that turns the Poincaré algebra
into the (Anti-)de Sitter algebra with non-vanishing cosmological constant and show how
the quantum deformation procedure applies to the latter. The interplay between the effects
of curvature and of quantum deformation are discussed. In Section 4, we perform the two
classical contraction procedures governed by the speed of light, leading to the Galilean and
Carrollian limits of the classical (Anti-)de Sitter algebra. Here, we discuss how the two
classical deformations, governed by the speed of light and curvature, interact. Section 5
looks at the full picture, where all of the three parameters are in play. The different features
of the various algebras are revisited from the noncommutative spacetime point of view in
Section 6. Final remarks are provided in Section 7.
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Figure 2. The various algebras of relativistic symmetries emerging in the regimes set by different
combinations of the cosmological constant Λ, the speed of light c and the quantum deformation
parameter κ. The arrows point in the direction where the indicated parameter becomes nonzero.
In addition to those shown in the previous picture, here we also see the classical deformation
direction governed by the speed of light c, linking special-relativistic-like symmetries and Galilean-
like symmetries.
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Figure 3. The various algebras of relativistic symmetries emerging in the regimes set by different
combinations of the cosmological constant Λ, the speed of light c and the quantum deformation
parameter κ. The arrows point in the direction where the indicated parameter becomes nonzero.
In addition to those shown in the previous pictures, here we also see a new direction in which the
classical deformation governed by the speed of light c can work, linking special-relativistic-like
symmetries and Carrollian-like symmetries.

2. The κ-Poincaré Model

We start by briefly reviewing the classical (3 + 1)-dimensional Poincaré Lie algebra
p(3 + 1), using a language that will prove useful for discussing its quantum deformation.
This algebra is defined by the commutation relations:

[Ja, Jb] = εabc Jc , [Ja, Pb] = εabcPc , [Ja, Kb] = εabcKc ,
[Ka, P0] = Pa , [Ka, Pb] = δabP0 , [Ka, Kb] = −εabc Jc ,
[P0, Pa] = 0 , [Pa, Pb] = 0 , [P0, Ja] = 0 ,

(1)
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where in the so-called kinematical basis {P0, Pa, Ka, Ja} (a = 1, 2, 3) are the generators of
time translations, space translations, boosts and rotations, respectively. The sum over
repeated indices is assumed and, for the moment, the speed of light c is set to 1. As for any
Lie algebra, the universal enveloping algebra U(p(3 + 1)) of the Poincaré algebra is a Hopf
algebra endowed with a primitive (non-deformed) coproduct:

∆(X) = X⊗ 1 + 1⊗ X, ∀X ∈ p(3 + 1) . (2)

For the generators of spacetime translations, this coproduct algebraically encodes the
linear addition law for momenta that characterize the usual special relativistic kinematics.

In this group-theoretical setting, Minkowski spacetime M3+1 can be constructed from
the Poincaré Lie group as the homogeneous space:

M3+1 ≡ ISO(3, 1)/SO(3, 1) , (3)

where the isotropy subgroup is the Lorentz group SO(3,1). Explicitly, a 5-dimensional
faithful representation ρ for a generic element X of the Poincaré Lie algebra is given by:

ρ(X) = xαρ(Pα) + ξaρ(Ka) + θaρ(Ja) =


0 0 0 0 0
x0 0 ξ1 ξ2 ξ3

x1 ξ1 0 −θ3 θ2

x2 ξ2 θ3 0 −θ1

x3 ξ3 −θ2 θ1 0

. (4)

If we parametrize an element G of the Poincaré group ISO(3,1) in the form:

G = exp (x0ρ(P0)) exp (x1ρ(P1)) exp (x2ρ(P2)) exp (x3ρ(P3))

× exp (ξ1ρ(K1)) exp (ξ2ρ(K2)) exp (ξ3ρ(K3)) exp (θ1ρ(J1)) exp (θ2ρ(J2)) exp (θ3ρ(J3)) ,
(5)

the (3 + 1)-dimensional Minkowski spacetime M3+1 can be constructed as a coset space
(note that the Lorentz subgroup is located at the rightmost side in the exponentials above),
whose points are labeled by the usual Minkowski coordinates xα associated to translations.
From a Hopf-algebraic point of view, this means that there is a pairing:

〈xα, Pβ〉 = δα
β , (6)

between Poincaré translation generators and the Minkowski coordinates xα.
The representation theory of the Poincaré Lie algebra is characterized by its Casimir

operators (see, for instance [31]): the quadratic one:

C = P2
0 − P2 , (7)

whose realization on momentum space gives rise to the energy-momentum dispersion
relation, and the quartic one W , constructed in terms of the components of the Pauli–
Lubanski four vector in the form:

W = W2
0 −W2 , where (8)

W0 = J · P Wa = −JaP0 + εabcKbPc .

2.1. The κ-Poincaré Quantum Algebra

The κ-Poincaré algebra [3] (see also [4,5]) is a quantum Poincaré algebra, that is, a
Hopf algebra deformation (see [32,33]) of the Poincaré algebra in terms of a quantum defor-
mation parameter κ−1. The essential feature of quantum deformations is that, in general,
the deformation affects both the defining commutation rules of the algebra (which turn
out to be nonlinear) and the coproduct map (for which the linear rule of superposition of
generators is broken).
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The deformed commutation rules and the deformed coproducts have to be compatible
in the sense that the latter have to be a homomorphism map for the former. Moreover,
quantum deformations are smooth in the sense that in the vanishing deformation parameter
limit, the quantum algebra reduces to the initial Lie algebra. All these conditions restrict the
number of possible inequivalent quantum deformations of a Lie algebra. For the Poincaré
case, the classification of all its possible quantum deformations was presented in [34],
and the analogue classification in the quantum group setting was given in [35].

The κ-Poincaré algebra is a very specific Hopf algebra deformation of the Poincaré alge-
bra, which was obtained through quantum group contraction techniques [36–38] from the
so-called Drinfel’d–Jimbo quantum deformation of the (Anti)-de Sitter Lie algebra [39,40].
Explicitly, its commutation rules are given by a non-deformed sector:

[Ja, Jb] = εabc Jc , [Ja, Pb] = εabcPc , [Ja, Kb] = εabcKc ,
[Ka, P0] = Pa , [Ka, Kb] = −εabc Jc ,
[P0, Pa] = 0 , [Pa, Pb] = 0 , [P0, Ja] = 0 ,

(9)

together with the following deformed commutators:

[Ka, Pb] = δab

(
κ

2

(
1− e−2P0/κ

)
+

1
2κ

P2
)
− 1

κ
PaPb . (10)

The deformed coproduct map for the κ-Poincaré algebra reads:

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(Ja) = Ja ⊗ 1 + 1⊗ Ja,

∆(Pa) = Pa ⊗ 1 + e−P0/κ ⊗ Pa,

∆(Ka) = Ka ⊗ 1 + e−P0/κ ⊗ Ka +
1
κ

εabcPb ⊗ Jc .

(11)

We stress that the κ−1 → 0 limit of all these expressions leads to the non-deformed
Hopf algebra structure of the Poincaré algebra.

It is also worth emphasizing that this is an “essential" deformation in the sense that
the theory of quantum universal enveloping algebras ensures that there does not exist
any change of basis that transforms the deformed coproduct (11) into the non-deformed
one (2). On the other hand, it is possible to find a (nonlinear) change of basis transforming
the deformed commutation rules (9) and (10) into the non-deformed ones (1). As expected,
this transformation to the so-called “classical basis” [41] for κ-Poincaré provides a (quite
cumbersome) deformed coproduct and shows that, in order to prevent inconsistencies,
all models defined through quantum deformations have to accommodate the full Hopf
algebra structure (commutation rules + coproduct) as their underlying symmetry.

Some features of this quantum deformation of the Poincaré algebra deserve some
attention. Firstly, the existence of deformed commutation rules (10) implies that Casimir
operators have to also be κ-deformed. In particular, the deformed quadratic Casimir is
found to be:

Cκ = 4κ2 sinh2(P0/2κ)− eP0/κP2 , (12)

and obviously its κ → ∞ limit leads to (7). When the corresponding momentum space
representation of the κ-Poincaré algebra is considered [41–43], this Casimir gives rise to
a deformed dispersion relation, which is the cornerstone of the quantum gravity phe-
nomenology of the κ-Poincaré model (see [44] for a review on the role of κ-Poincaré in
Doubly Special Relativity models).

The deformation of the Pauli-Lubanski Casimir (8) reads (see [23] and references
therein):
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Wκ =

(
cosh(P0/κ)− 1

4κ2 eP0/κP2
)

W2
κ,0−W2

κ , where

Wκ,0= eP0/(2κ)J · P, Wκ,a = −Ja κ sinh(P0/κ) + eP0/κεabc

(
Kb +

1
2κ

εbkl JkPl

)
Pc . (13)

Similar to what happens in the non-deformed Poincaré case, Casimir operators label
the irreducible representations of the κ-Poincaré Hopf algebra. The spin zero representation
was already given in [3], where the corresponding κ-Klein–Gordon equation was proposed.
Irreducible representations for arbitrary spin were constructed in [4] for both the massive
and the massless cases, and the κ-Dirac equation was introduced in [5,45,46].

Secondly, the deformed coproduct of the κ-Poincaré algebra provides a non-primitive
addition law for momenta:

∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(Pa) = Pa ⊗ 1 + e−P0/κ ⊗ Pa , (14)

which encodes in algebraic terms the nontrivial properties of the geometry of the associated
momentum space. These expressions imply that the momentum sector of the κ-Poincaré
algebra is a Hopf subalgebra, since the coproducts of momenta generators depend only
on themselves. As we will see in the following Section, this is no longer the case when
the spacetime curvature Λ is considered. Finally, it is worth to mention that the Lorentz
generators do not close a Hopf subalgebra, since the coproducts (11) for the boost generators
include translations. Quantum Poincaré and (A)dS algebras endowed with quantum
Lorentz subgroup have recently been characterized in [47].

2.2. The κ-Poincaré Lie Bialgebra and κ-Minkowski Spacetime

The ambiguity in the selection of the basis of quantum algebra does not affect the
Lie bialgebra structure δ associated to the κ-Poincaré algebra. In fact, this is an object
that characterizes any quantum deformation in a unique way since it does not depend on
changes of basis of the type

X′ = X′(P0, Pa, Ja, Ka, κ) with lim
κ→∞

X′ = X, for X ≡ {P0, Pa, Ja, Ka}. (15)

This Lie bialgebra structure is obtained by taking the skew-symmetric part of the first
order in 1/κ of the deformed coproduct (11), and reads:

δ(P0) = δ(Ja) = 0,

δ(Pa) =
1
κ

Pa ∧ P0,

δ(K1) =
1
κ
(K1 ∧ P0 + J2 ∧ P3 − J3 ∧ P2),

δ(K2) =
1
κ
(K2 ∧ P0 + J3 ∧ P1 − J1 ∧ P3),

δ(K3) =
1
κ
(K3 ∧ P0 + J1 ∧ P2 − J2 ∧ P1).

(16)

This cocommutator map δ: p(3 + 1) → p(3 + 1)⊗ p(3 + 1) is defined on the unde-
formed Poincaré algebra, and can be obtained from the classical r-matrix that characterizes
the κ-deformation:

r =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) , (17)

through δ(X) = [1⊗ X + X ⊗ 1, r], where r is a solution of the modified classical Yang–
Baxter equation. From this perspective, the r-matrix is the “minimal” object that defines a
given quantum deformation: from it, the first order deformation of the coproduct can be
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obtained, and the semiclassical counterpart of the associated quantum group (a Poisson–Lie
group) is uniquely defined. In the approach presented here, Lie bialgebra structures are
used as the defining objects for quantum deformations, and the type of interplay among
all the parameters arising in them can be already studied at the Lie bialgebra level (in
particular, the theory of quantum group contractions is based on the contraction theory
for Lie bialgebras [38]). A detailed description of Lie bialgebras and their role in quantum
group theory can be found in [32], and a complete presentation of kinematical Lie bialgebras
has been given in [48].

We also stress that the Hopf subalgebra structure of the momentum sector (14) is
reflected at the Lie bialgebra level in the form

δ(P0) = 0, δ(P1) =
1
κ

P1 ∧ P0, δ(P2) =
1
κ

P2 ∧ P0. (18)

This sub-Lie bialgebra structure for the momentum sector can be dualized to give rise
to the so-called κ-Minkowski Lie algebra

[X0, Xa] = −1
κ

Xa, [Xa, Xb] = 0. (19)

This algebra can be identified with the one defining the κ-Minkowski non-commutative
spacetime [3,6–8]. Moreover, the κ-Poincaré momentum space can be constructed as an
orbit of a certain linear action of the κ-Minkowski Lie group [49–51]. Such an orbit turns
out to be (a half of) the (3 + 1) de Sitter space with curvature 1/κ2, and the deformed
dispersion relation of the model can be thought of as the distance to the origin in such
curved momentum space [42].

2.3. Applications

The κ-Poincaré model and its associated quantum geometry has been extensively used
in the literature in order to study different explicit models dealing with both mathematical
and physical features of quantum geometry which are expected to arise at the Planck
scale. Without aiming to be exhaustive, some of the facets of κ-Poincaré algebra and
κ-Minkowski spacetime that have been analyzed in the literature are the following ones
(see also references therein):

• Deformed dispersion relations and Doubly Special Relativity [52–58], in particular the
first paper associating deformed dispersion relations to κ-Poincaré/κ-Minkowski [52]
and the review [54].

• κ-deformed models of Relative Locality [42,43,59–66], see also the first papers defining
the theory of Relative Locality [1,2,67].

• There is an interesting string of works on the representation theory of κ-Minkowski
commutation relations [68–72].

• Another aspect of interest is the differential geometry of κ-Minkowski spacetime
(and generalizations), and its relationship with the κ-Poincaré group and with star
products [73–78].

• There is a vast literature on how to construct classical (in the sense of h̄ = 0) and quan-
tum noncommutative field theories that are symmetric under the κ-Poincaré group
and are based on different versions of κ-Minkowski spacetime. A non-exhaustive list
is [79–104], and references therein.

• A crucial issue is what limits to the spacetime localizability of observables does a
κ-deformed theory imply [71,80,105–107]. Related to this is the possibility of deforma-
tions or the fuzziness of light cones [108,109].

• An important consequence of κ-deformed spacetime symmetries and noncommu-
tative spacetimes is the emergence of a curvature of momentum space and related
deformations of phase space [42,50,110–113].

• Finally, a recent line of research led to the development of a κ-deformed noncommuta-
tive version of the spaces of worldlines [105,114].
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It is worth emphasizing that most of the above-mentioned techniques and models
have been exclusively developed for the κ-Poincaré case. Therefore, the approach that we
summarize in the following sections provides the basis for the generalization of all these
results and models when the cosmological constant parameter Λ is non-vanishing and/or
for the Galilean and Carrollian limits when c→ ∞ and c→ 0, respectively.

3. Interplay between Curvature and Quantum Effects

If one aims to study the effects of quantum-deformed relativistic symmetries in a
cosmological context (as is, e.g., the case in studies of the propagation of signals from
astrophysical sources [54]), the most natural option consists of the generalization of the
κ-Poincaré model to allow for a nonvanishing cosmological constant Λ. This leads to a
quantum-deformed (Anti)-de Sitter (hereafter (A)dS) model.

Works in (1 + 1) and (2 + 1) dimensions already suggested that there is a nontrivial
interplay between the quantum deformation and curvature. In particular, once the quantum
deformation is taken into account, the effects that are classically associated with spacetime
curvature acquire a new energy-dependence. For example, the travel time of massless
particles acquire an energy dependence that depends on the curvature and the quantum
deformation parameter in a nontrivial way [13,15–17]. While the phenomenology of the
κ-(A)dS model in (3 + 1) dimensions still has to be worked out, preliminary studies show
that, in this case, the interplay between quantum deformation and curvature can be even
more virulent, as we will discuss in this section.

Despite the fact that the κ-Poincaré algebra was initially obtained as the quantum
group contraction associated to the flat Λ→ 0 limit of the quantum so(3, 2) algebra [3,115],
neither the relation among the generators of such so(3, 2) quantum deformation and the
kinematical generators {P0, Pa, Ka, Ja} nor the explicit role played by the cosmological
constant Λ in the quantum case were explored. This lack of information prevented any
physical interpretation, as well as the construction of the corresponding quantum (A)dS
spacetimes in terms of local coordinates. This started to change recently, since a series
of papers have filled this gap by constructing the fully explicit κ-(A)dS model [23] and
its associated noncommutative spacetime [25]. The main features of the former will be
summarized in this section following the presentation of the κ-Poincaré model given in the
previous section, while the latter will be presented in Section 6. We stress that, throughout
this construction, the curvature Λ will always be made explicit as a “classical" curvature
parameter whose Λ→ 0 limit leads exactly to the κ-Poincaré model.

3.1. (Anti-)de Sitter Symmetries as a Classical Deformation of Poincaré Symmetries

Before going to the quantum-deformed (A)dS model, we briefly show that the standard
(A)dS algebra can be seen as a classical deformation of the Poincaré algebra. This is based
on writing the (A)dS Lie algebra in (3 + 1)D in the following manner:

[Ja, Jb] = εabc Jc , [Ja, Pb] = εabcPc , [Ja, Kb] = εabcKc ,
[Ka, P0] = Pa , [Ka, Pb] = δabP0 , [Ka, Kb] = −εabc Jc ,
[P0, Pa] = −Λ Ka , [Pa, Pb] = Λ εabc Jc , [P0, Ja] = 0 ,

(20)

where Λ is the cosmological constant parameter. This Lie algebra is just a Λ deformation
of (1), and the latter is obtained in the smooth Λ → 0 limit of (20). In this way, the three
relativistic spacetimes with constant curvature are obtained as the following maximally
symmetric homogeneous spaces:

• For Λ < 0 we have the SO(3, 2) symmetry algebra and the AdS spacetime AdS3+1 is
obtained as the coset space SO(3, 2)/SO(3, 1).

• For Λ > 0 we have the SO(4, 1) symmetry algebra that gives rise to the de Sitter
spacetime dS3+1 ≡ SO(4, 1)/SO(3, 1).

• Finally, for Λ = 0 we recover the Poincaré algebra, and Minkowski spacetime is
M3+1 ≡ ISO(3, 1)/SO(3, 1).
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This approach provides (A)dS Casimir operators as a Λ-deformation of Poincaré
invariants. The quadratic one being:

C = P2
0 − P2 −Λ

(
J2 −K2

)
, (21)

and the quartic one (of Pauli-Lubanski type) reads

W = W2
0 −W2 −Λ(J ·K)2 , (22)

where W0 = J · P and Wa = −JaP0 + εabcKbPc .

Two main features of the (A)dS Lie algebra (20) are worth to be emphasized. Firstly,
that space–time translation generators do not commute when Λ 6= 0:

[P0, Pa] = −Λ Ka , [Pa, Pb] = Λ εabc Jc , (23)

and therefore the translation sector does not define a Lie subalgebra. This reflects the fact
that the (A)dS spacetimes are curved spaces, since spacetime translations are generators of
geodesic motions on them.

Secondly, when Λ 6= 0 the following automorphism interchanges the role of Pa and
Ka (see [116]):

P̃0 = P0, P̃a =
√
−Λ Ka, K̃a = −

1√
−Λ

Pa, J̃a = Ja. (24)

In this sense, translations and boosts play an algebraically equivalent role, although their
physical meaning is indeed different. As we will see, this property will be essential in order
to understand some of the features of the κ-(A)dS model.

3.2. The κ-(A)dS Model in (3 + 1) Dimensions

We recall that the (2 + 1) dimensional κ-(A)dS algebra and deformed Casimir operators
was already presented in [20]. The very same quantum algebra was later rediscovered
in [12] as the algebra containing the cosmological constant that was proposed as a symmetry
for the low energy limit of a quantum theory of gravity (see also [24] for a more recent
approach). The classical r-matrix generating such a (2 + 1) quantum (A)dS deformation is:

r =
1
κ
(K1 ∧ P1 + K2 ∧ P2) . (25)

Surprisingly enough, the cosmological constant parameter Λ is absent in this r-matrix,
which therefore coincides with its Poincaré limit. Nevertheless, the full quantum algebra
does contain Λ explicitly.

The quest for the generalization of (25) to the (3 + 1)-dimensional case was recently
solved in [23], and the unique (modulo automorphisms) solution is:

rΛ =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3 + η J1 ∧ J2) , (26)

where from now on we will use the parameter η2 := −Λ. This is the unique skewsymmetric
r-matrix for the (A)dS algebra fulfilling two conditions: the Λ → 0 limit of (26) is the
κ-Poincaré r-matrix (this guarantees the appropriate flat limit of the model), and the
cocommutator of the P0 generator is primitive δ(P0) = 0 (this enables in the curved case
the interpretation of κ as a mass).
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From the r-matrix (26), the following κ-(A)dS cocommutator map is obtained:

δ(P0) = δ(J3) = 0, δ(J1) =
η

κ
J1 ∧ J3, δ(J2) =

η

κ
J2 ∧ J3,

δ(P1) =
1
κ
(P1 ∧ P0 − ηP3 ∧ J1 − η2K2 ∧ J3 + η2K3 ∧ J2),

δ(P2) =
1
κ
(P2 ∧ P0 − ηP3 ∧ J2 + η2K1 ∧ J3 − η2K3 ∧ J1),

δ(P3) =
1
κ
(P3 ∧ P0 + ηP1 ∧ J1 + ηP2 ∧ J2 − η2K1 ∧ J2 + η2K2 ∧ J1),

δ(K1) =
1
κ
(K1 ∧ P0 + P2 ∧ J3 − P3 ∧ J2 − ηK3 ∧ J1),

δ(K2) =
1
κ
(K2 ∧ P0 − P1 ∧ J3 + P3 ∧ J1 − ηK3 ∧ J2),

δ(K3) =
1
κ
(K3 ∧ P0 + P1 ∧ J2 − P2 ∧ J1 + ηK1 ∧ J1 + ηK2 ∧ J2).

(27)

When comparing these expressions with those that hold for κ-Poincaré (which are
recovered in the η → 0 limit), several features of the new model arise, which are not present
in the κ-Poincaré nor in the classical (A)dS limit, thus being due genuinely to the interplay
between the two deformations. The most striking feature is that the so(3) subalgebra
generated by rotations Ja is deformed, with a deformation governed by the ratio η/κ.
Therefore, the deformation of space isotropy has to be expected as a direct consequence of
the interplay between curvature and quantum effects. Moreover, the cocommutator for
the translations sector does no longer define a sub-Lie bialgebra structure, and involves
the Lorentz sector. Related to this, the expressions for δ(Pi) and δ(Ki) can be interchanged
under the automorphism (24). Therefore, deformed space translations and boosts are
expected to play similar algebraic roles within the κ-(A)dS model.

We recall that the cocommutator (27) provides the first order in the quantum defor-
mation. In [23], by making use of a Poisson version of the so-called “quantum duality
principle” presented in [117], full expressions for the (Poisson) analogue of the full κ-(A)dS
model were explicitly obtained. Here, we recall only some of them in order to illustrate
the previous remarks. In particular, the rotations sector is deformed into a quantum so(3)
algebra with a deformation parameter given by η/κ =

√
−Λ/κ:

∆(J3) = J3 ⊗ 1 + 1⊗ J3,

∆(J1) = J1 ⊗ e
η
κ J3 + 1⊗ J1, ∆(J2) = J2 ⊗ e

η
κ J3 + 1⊗ J2, (28)

and whose deformed brackets read:

{J1, J2} =
e2 η

κ J3 − 1
2η/κ

− η

2κ

(
J2
1 + J2

2

)
, {J1, J3} = −J2, {J2, J3} = J1 . (29)

The coproduct for the translations sector, that in principle would provide the deformed
composition law for momenta in the corresponding DSR model, as seen for the κ-Poincaré
case in the previous section, reads:
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∆(P0) = P0 ⊗ 1 + 1⊗ P0,

∆(P1) = P1 ⊗ cosh(η J3/κ) + e−P0/κ ⊗ P1 − ηK2 ⊗ sinh(η J3/κ)

−η

κ
P3 ⊗ J1 +

η2

κ
K3 ⊗ J2 +

η2

κ2 (ηK1 − P2)⊗ J1 J2e−
η
κ J3

−η2

κ2 (ηK2 + P1)⊗
(

J2
1 − J2

2

)
e−

η
κ J3 ,

∆(P2) = P2 ⊗ cosh(η J3/κ) + e−P0/κ ⊗ P2 + ηK1 ⊗ sinh(η J3/κ)

−η

κ
P3 ⊗ J2 −

η2

κ
K3 ⊗ J1 −

η2

κ2 (ηK2 + P1)⊗ J1 J2e−
η
κ J3 (30)

−1
2

η2

κ2 (ηK1 − P2)⊗
(

J2
1 − J2

2

)
e−

η
κ J3 ,

∆(P3) = P3 ⊗ 1 + e−P0/κ ⊗ P3 +
1
κ

(
η2K2 + ηP1

)
⊗ J1e−

η
κ J3

−1
κ

(
η2K1 − ηP2

)
⊗ J2e−

η
κ J3 .

As we anticipated from the Lie bialgebra structure, the deformed composition law
for momenta involves the full Lorentz sector, which indicates that the construction of the
associated momentum needs to include the Lorentz sector as well [116,118]. Moreover,
the corresponding deformed brackets show that momenta are both non-commuting (due
to η 6= 0) and quantum deformed:

{P1, P2} = −η2 sinh(2 η
κ J3)

2η/κ
− η

2κ

(
2P2

3 + η2(J2
1 + J2

2 )
)
− η5

4κ3 e−2 η
κ J3
(

J2
1 + J2

2

)2
,

{P1, P3} =
1
2

η2 J2

(
1 + e−2 η

κ J3

[
1 +

η2

κ2

(
J2
1 + J2

2

)])
+

η

κ
P2P3 , (31)

{P2, P3} = −
1
2

η2 J1

(
1 + e−2 η

κ J3

[
1 +

η2

κ2

(
J2
1 + J2

2

)])
− η

κ
P1P3 .

Note also here the complicated interplay between curvature and quantum effects
arising in the quantum deformation, which is expressed through products of different
powers of 1/κ and of the cosmological constant parameter η. Nevertheless, we stress that
we have an all-order model at hand, with which all types of DSR predictions could be, in
principle, computed.

Finally, we recall the (Poisson) counterpart of the second-order Casimir:

C = 2κ2
[
cosh(P0/κ) cosh(

η

κ
J3)− 1

]
+ η2 cosh(P0/κ)(J2

1 + J2
2 )e
− η

κ J3

−eP0/κ
(

P2 + η2K2
)[

cosh(
η

κ
J3) +

η2

2κ2 (J2
1 + J2

2 )e
− η

κ J3

]
+2η2eP0/κ

[
sinh( η

κ J3)

η
R3 +

1
κ

(
J1R1 + J2R2 +

η

2κ
(J2

1 + J2
2 )R3

)
e−

η
κ J3

]
, (32)

where Ra = εabcKbPc. As expected, in the κ → ∞ limit we obtain (21) and in the η → 0
limit, we obtain the κ-Poincaré quantum Casimir in the bicrossproduct basis (12). The
Poisson version of the κ-(A)dS analogue of the Pauli–Lubanski fourth order Casimir (22)
was also presented in [23], and the study of the representation theory of the κ-(A)dS Hopf
algebra is still an open problem.

4. Interplay between Curvature and the Speed of Light

So far, the speed of light parameter has been set to c = 1. Therefore, in order to unveil
the coupling between Λ and c, the latter parameter has to be explicitly included in the
formalism. At the classical level, it is well-known [26,27,29] that this gives rise to two
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possible limits: the so-called “non-relativistic” or “Galilean” limit c→ ∞ and the “ultra-
relativistic” or “Carrollian” limit c→ 0. A complete study of the metrics and foliations for
classical Galilei and Carroll spaces (also in the curved cases with Λ 6= 0) can be found in
the literature (see, for instance, [119] and references therein).

4.1. The Galilean Limit of (A)dS

The Galilean limit corresponds to taking small velocities compared to the speed of
light. In this limit, the light-cone opens along t = 0, producing a space with absolute time.

The interplay between the contraction procedure and curvature can be studied by
looking at the contraction of the (A)dS spacetime and its algebra of symmetries. This
is obtained via an Inönü–Wigner contraction procedure, induced by the algebra auto-
morphism P(P0, Pa, Ka, Ja) = (P0,−Pa,−Ka, Ja) (speed-space contraction), see for exam-
ple [119]. Upon the rescaling

Pa →
Pa

c
, Ka →

Ka

c
, (33)

one finds that, when c→ ∞ the following commutators of the (A)dS algebra are modified:

[Ka, Pb] = δab
1
c2 P0 → [Ka, Pb] = 0

[Ka, Kb] = −εabc
1
c2 Jc → [Ka, Kb] = 0

[Pa, Pb] = Λεabc
1
c2 Jc → [Pa, Pb] = 0 ,

(34)

and the Casimir reduces to:
C = P2 −ΛK2 . (35)

We note that the presence of curvature does not affect the appearance of an absolute
space in the Galilean limit, since the commutator between boosts and time translation
vanishes. However, while in the flat Λ → 0 limit the translation sector in unaffected by
the Galilei contraction, when curvature is present one still obtains ‘flat’ spatial slices in
the Galilei limit, since the commutator between spatial translations vanishes (see [119] for
details).

4.2. The Carroll Limit of (A)dS

The Carroll limit corresponds to taking large space intervals. It is relevant in the
strong gravity regime and close to the black hole horizon (see [120] and references therein).
In contrast to the Galilean limit, in this case, the light-cone closes along the t direction.

As done in the Galilean case, we look at the contraction of the (A)dS spacetime and
its algebra of symmetries. This is obtained via an Inönü–Wigner contraction procedure,
induced by the algebra automorphism T (P0, Pa, Ka, Ja) = (−P0, Pa,−Ka, Ja) (speed-time
contraction), see for example [119]. Upon the rescaling:

P0 → cP0 , Ka → cKa , (36)

one finds that when c→ 0 the following commutators of the (A)dS algebra are modified:

[Ka, Kb] = −εabcc2 Jc → [Ka, Kb] = 0
[Ka, P0] = c2Pa → [Ka, P0] = 0 ,

(37)

and the Casimir reduces to:
C = P2

0 + ΛK2 . (38)

Similar to the Galilean case, the most relevant feature of the Carrollian relativity,
namely that of having an absolute time, is preserved in the presence of curvature. Moreover,
the noncommutativity of translations, caused by spacetime curvature, is not affected in
the Carrollian limit, as opposed to what happens in the Galilean case. A summary of
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the different effects that the non-relativistic and the ultra-relativistic limits have on the
symmetries of a given spacetime, with and without curvature, is presented in Table 1.

Table 1. Table with the summary of the interplay between curvature and the speed of light parameter
as seen in the (A)dS algebra and its Galilean and Carrollian limits. Horizontal lines indicate that the
commutator is the same for the three cases.

Galilean Limit (A)dS Carrollian Limit

[Ja, Jb] εabc Jc

[Ja, Pb] εabcPc

[Ja, Kb] εabcKc

[Ja, P0] 0

[Ka, Kb] 0 −εabc Jc 0

[Ka, Pb] 0 δabP0 δabP0

[Ka, P0] Pa Pa 0

[Pa, Pb] 0 Λεabc Jc Λεabc Jc

[Pa, P0] ΛKa ΛKa ΛKa

5. Interplay of the Three Parameters: Curvature, Speed of Light and Quantum Deformation
5.1. Zero Curvature Case: Galilei and Carroll Contraction of κ-Poincaré

In order to study the Galilei and Carroll limits of the κ-Poincaré algebra, we would
like to perform a contraction similar to the one used in the non-quantum case of the
previous section. However, as was discussed in detail in [30], the contraction procedure of
a quantum algebra (Lie bialgebra contraction) might require a rescaling of the quantum
deformation parameter along with the generators in order to obtain meaningful structures.

In general, one can perform two kinds of contractions, either working at the level of
the r-matrix (this is a “coboundary” contraction), or working directly at the level of the
co-commutators (this is the so-called “fundamental” contraction) [38,48]. As was shown
in [30], this distinction is especially relevant in the case of the Galilean limit of κ-Poincaré,
where the two procedures are nonequivalent. In fact, after the rescaling (33), the κ-Poincaré
r-matrix (17) reads:

r =
c2

κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) . (39)

This is well-behaved in the c→ ∞ limit if also the quantum parameter is rescaled as
κ → κ/c2. However, the resulting r-matrix,

r =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) , (40)

produces trivial cocommutators, δ(X) = 0, for all generators X of the algebra. So the
coboundary contraction of the κ-Poincaré algebra produces the classical Galilei algebra.
On the other hand, working directly at the level of the cocommutators (16), one can easily
see that they are invariant under the rescaling (33), so that the c→ ∞ limit is well-defined
without need to rescale the quantum deformation parameter. The resulting κ-Galilei algebra
contains the following modified commutators with respect to the κ-Poincaré algebra, which
corresponds to the left column, and in which the automorphism (33) has been applied:

[Ka, Pb] =
δab
c2

[
κ
2

(
1− e−2P0/κ

)
+ c2 ~P2

2κ

]
− PaPb

κ → [Ka, Pb] = δab
~P2

2κ −
PaPb

κ

[Ka, Kb] = − εabc
c2 Jc → [Ka, Kb] = 0 ,

(41)
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while the coproducts are unmodified with respect to the κ-Poincaré case.
When performing the Carrollian limit of the κ-Poincaré algebra, one finds that the two

procedures outlined above give equivalent results. The rescaled r-matrix reads:

r =
1
cκ

(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) , (42)

which is well-behaved in the c→ 0 limit if the quantum deformation parameter is rescaled
as κ → cκ. Then the r-matrix reads:

r =
1
κ
(K1 ∧ P1 + K2 ∧ P2 + K3 ∧ P3) , (43)

and produces non-trivial co-commutators:

δ(P0) = δ(Ja) = 0 ,
δ(Pa) = 1

κ Pa ∧ P0 ,
δ(Ka) = 1

κ Ka ∧ P0 .
(44)

The resulting κ-Carroll algebra contains the following modified commutators with
respect to the κ-Poincaré algebra:

[Ka, P0] = Pac2 → [Ka, P0] = 0

[Ka, Pb] = cδab

[
κ
2c

(
1− e−2P0/κ

)
+

~P2c
2κ

]
− c PaPb

κ → [Ka, Pb] = δab
κ
2

(
1− e−2P0/κ

)
[Ka, Kb] = −c2εabc Jc → [Ka, Kb] = 0 ,

(45)

while, again, the coproducts are unmodified.
We see that, in both the Galilean and Carrollian limits the commutator between boosts

generators vanishes, as in the classical case. A relevant difference between the two limits
is that, while in the Carrollian limit the presence of the quantum deformation does not
spoil the appearance of an absolute space (signaled by the vanishing of the commutator
between boosts and time translations), in the Galilean limit the mixing between time and
space induced by the quantum deformation prevents the emergence of an absolute time,
since the commutators between boosts and spatial translations remain non-vanishing
in the transition from the κ-Poincaré to the κ-Galilei symmetries. These properties are
summarized in Table 2.

Table 2. Summary of the properties of the κ-Galilei, κ-Poincaré and κ-Carroll algebras.

κ-Galilei κ-Poincaré κ-Carroll

[Ja, Jb] εabc Jc

[Ja, Pb] εabcPc

[Ja, Kb] εabcKc

[Ja, P0] 0

[Ka, Kb] 0 −εabc Jc 0

[Ka, Pb]
δab
2κ
~P2 − Pa Pb

κ δab

[
κ
2

(
1−e−

2
κ P0
)
+

~P2

2κ

]
− Pa Pb

κ δab
κ
2

(
1− e−2P0/κ

)
[Ka, P0] Pa Pa 0

[Pa, Pb] 0

[Pa, P0] 0



Symmetry 2021, 13, 2099 15 of 22

5.2. With Curvature: Galilei and Carroll Contraction of κ-(A)dS

Here, we study the interplay of all of the three parameters that govern different kinds
of deformations of special relativity: the speed of light, the cosmological constant and the
quantum deformation parameter.

In order to do so, we look at the Galilean and Carrollian contraction of the κ-(A)dS
algebra. This is done by following the same procedure discussed in the previous subsection
for the Λ = 0 case. The detailed formulas can be found in [30] and are schematically
represented in Table 3. Here, we discuss the points that are particularly relevant. We
noticed in Section 3 that an important effect of the interplay between curvature and
quantum deformation is that the rotation sector gets deformed. The Galilean contraction
does not spoil this feature, while the Carrollian contraction restores standard isotropy.
As already observed in the Λ = 0 case, the mixing between time and space due to the
quantum deformation prevents the emergence of an absolute time in the Galilean limit,
and the presence of curvature does not affect this result. Finally, one can see effects that
are only relevant when all of the three parameters enter in the deformation of the Poincaré
algebra: in the Galilean limit, when the curvature is non-zero, the commutator between
boosts does not vanish, and is proportional to

√
Λ/κ. In general, the Carrollian limit seems

to be a “milder” deformation, since it is isotropic, preserve the absoluteness of space and
the vanishing commutators between boosts.

Table 3. Summary of the properties of curved κ-Galilei, κ-(A)dS and curved κ-Carroll.

(Curved) κ-Galilei κ-(A)dS (Curved) κ-Carroll

[Ja, Jb]

[Ja, Pb] anisotropy ∼ Λ
κ anisotropy ∼ Λ

κ isotropy

[Ja, Kb]

[Ja, P0] 0

[Ka, Kb] O(
√

Λ
κ ) −εabc Jc + O(

√
Λ

κ ) 0

[Ka, Pb] O(
√

Λ
κ , 1

κ ) δabP0 + O(Λ
κ , 1

κ ) δabP0 + O(Λ
κ , 1

κ )

[Ka, P0] Pa Pa 0

[Pa, Pb] O(
√

Λ
κ ) Λεabc Jc + O(

√
Λ

κ ) Λεabc Jc

[Pa, P0] ΛKa ΛKa ΛKa

6. Noncommutative Spacetimes

Besides looking at the properties of the algebra of quantum-deformed relativistic
symmetries, it is also instructive to study the properties of the associated noncommutative
spacetimes, in which the interplay previously analyzed can be also illustrated. More-
over, since the Poincaré, (A)dS, Galilei and Carroll classical spacetimes are homogeneous
spaces of the corresponding kinematical groups, their noncommutative analogues can
be constructed as quantum homogeneous spaces of the corresponding quantum groups,
although their construction procedure is rather involved from the computational viewpoint
(see, for instance, [121,122]). Nevertheless, the noncommutative algebra defining a given
quantum homogeneous space is just the quantization of the Poisson homogeneous space
that is associated to the r-matrix defining the first-order of the quantum kinematical algebra.
This Poisson homogeneous space is just the classical homogeneous space endowed with
a Poisson algebra structure which can be explicitly obtained as a canonical projection
of the Sklyanin Poisson bracket that is derived from the r-matrix, provided that the so
called coisotropy condition holds (see [123]). In the following, we will present the explicit
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expressions for the Poisson-noncommutative spacetimes corresponding to the quantum
deformations presented in the previous sections. All technical aspects of this construction
as well as appropriate references can be found in [25,30].

We mentioned when introducing the classical homogeneous spacetimes that their
definition requires us to identify the spacetime coordinates as the group parameters of
the spacetime translations Pα. As we have seen in the previous section (see also Table 3),
the algebra of translation generators is especially sensitive to the presence of curvature
(both with and without quantum deformation). For this reason, we expect that the same
happens to spacetime noncommutativity, and indeed this is the case as shown below.

6.1. The κ-(A)dS Spacetime

By computing the Sklyanin bracket for the κ-(A)dS r-matrix (26) we obtain the semi-
classical version of the κ-(A)dS spacetime in terms of the Poisson brackets:

{x0, x1} = −1
κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
,

{x0, x2} = −1
κ

tanh(ηx2)

η cosh2(ηx3)
,

{x0, x3} = −1
κ

tanh(ηx3)

η
,

{x1, x2} = −1
κ

cosh(ηx1) tanh2(ηx3)

η
,

{x1, x3} = 1
κ

cosh(ηx1) tanh(ηx2) tanh(ηx3)

η
,

{x2, x3} = −1
κ

sinh(ηx1) tanh(ηx3)

η
,

(46)

where we defined η2 = −Λ so that the zero-curvature limit, giving the κ-Minkwoski
Poisson homogeneous space (whose quantization is the κ-Minkowski noncommutative
spacetime (19)), is given by the η → 0 limit of (46), namely:

{x0, xa} = −1
κ

xa, {xa, xb} = 0 , (47)

and in this flat case space translations do commute among themselves. Indeed, if we take
the first-order expansion in terms of η we get:

{x0, x1} = −1
κ
(x1 + o[η2]),

{x0, x2} = −1
κ
(x2 + o[η2]),

{x0, x3} = −1
κ
(x3 + o[η2]),

{x1, x2} = −1
κ
(η (x3)2 + o[η2]),

{x1, x3} = 1
κ
(η x2x3 + o[η2]),

{x2, x3} = −1
κ
(η x1x3 + o[η2]).

(48)

Notice that curvature has a more prominent role in the space–space brackets, where it
contributes at the order

√
Λ

κ , while for the time–space brackets curvature only contributes
starting from the Λ

κ order. This behavior is similar (but not completely equal) to the prop-
erties of the algebra of translation generators, schematically described in Table 3. In fact,
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the quantum-curvature effects in the commutators between space–space generators are
governed by O(

√
Λ

κ ) (similar to what happens to the brackets between spatial coordinates),
while for time–space commutators one has no contributions at all from quantum effects
(for the time–space coordinates there is a contribution, even though it is milder than in
the space–space case). The quantization of the κ(A)dS Poisson homogeneous spacetime
was fully given in [25] by choosing a precise ordering of the generators, but the inter-
play between Λ and κ here presented is not modified after quantization. We recall that
other noncommutative (A)dS spacetimes arising from different noncommutative geometry
approaches can be found in [124–127].

6.2. κ-Galilean and κ-Carrollian Spacetimes

The Galilean and Carrollian limits of the κ-(A)dS spacetime (46) are obtained by
appropriately rescaling spacetime coordinates to so keep the products x0P0 and xaPa
invariant under contraction (see [128] for the theory of contractions of Poisson-Lie groups
and [30], where these two limits have been performed on the Snyder noncommutative
spacetime [129]).

Specifically, the Galilean limit is obtained by rescaling:

xa → c xa , (49)

and then taking the c→ ∞ limit of (46). This produces a spacetime algebra which has the
same commutation rules as κ-Minkowski for the space–time sector, and shows the residual
anisotropy discussed above in Section 5.2 in the space sector:

{xa, x0} = 1
κ

xa, {x1, x2} = −η

κ
(x3)2, {x1, x3} = η

κ
x2x3, {x2, x3} = −η

κ
x1x3. (50)

Symplectic leaves for the space sector are just 3-spheres

S = (x1)2 + (x2)2 + (x3)2 , (51)

which reflects the role of the deformed SO(3) sector (28) in both κ-(A)dS and curved
(Newton-Hooke) κ-Galilean algebras and spaces.

The Carrollian limit is obtained as the limit c→ 0 of (46), after the following rescaling
is performed (notice that, as done for the algebra of symmetries, the quantum deformation
parameters has to be also rescaled):

x0 → x0/c , κ → c κ . (52)

In this case, the space–time part of the algebra is not affected by the contraction,
and remains equal to the one of κ-(A)dS. The most important effect of the contraction is the
restoration of isotropy at the level of spatial coordinates, consistently with what found in
Section 5.2 at the level of the algebra of symmetries:

{x1, x0} = 1
κ

tanh(ηx1)

η cosh2(ηx2) cosh2(ηx3)
,

{x2, x0} = 1
κ

tanh(ηx2)

η cosh2(ηx3)
,

{x3, x0} = 1
κ

tanh(ηx3)

η
,

{xa, xb} = 0.

(53)

When the flat Λ→ 0 limit is taken, in both cases one recovers the same κ-Minkowski
Poisson algebra (47). In particular, as seen for the associated algebra of symmetries in
Section 5.2, isotropy is restored also in the Galilean case. As it can be described in [30],
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the quantization of all these Galilean and Carrollian Poisson homogeneous spacetimes
can be fully performed by mimicking the quantization procedure used in the κ-(A)dS case.
In particular, in the curved Galilean case the “quantum spheres":

Ŝη/κ = (x̂1)2 + (x̂2)2 + (x̂3)2 +
η

κ
x̂1 x̂2, [Ŝη/κ , x̂a] = 0, (54)

are obtained as the quantization of the symplectic leaves (51), where the term depending
on η/κ arises from the noncommutativity of the quantum space coordinates x̂a.

7. Concluding Remarks

There exist two more frameworks in which the results here presented for each of
the quantum kinematical algebras and their associated noncommutative spacetimes can
be rephrased.

Firstly, all the models here presented could be analyzed in terms of the associated
curved momentum spaces. These are pseudo-Riemannian manifolds that can be obtained
as orbits of suitable actions of the dual Poisson-Lie group associated to the κ-deformation.
In the case of κ-Poincaré, as was first shown in [49], the geometry one finds is that of one
half of de Sitter space. This analysis can be generalized to more general κ-deformations
of the ISO(p, q) group and its Carrollian contractions, in which the “deformed” direction
is not necessarily the “time” one (the zeroth coordinate). The result is a collection of 4-
dimensional momentum spaces which always have the geometry of a homogeneous space
(dS, AdS or Minkowski) and, in some cases, cover only half of said geometries, in other
cases cover a whole sheet (as in the Euclidean case ISOκ(4) [112]).

In the case of κ-(A)dS, the Lie bialgebra (27) dualizes to a Lie algebra which admits a
7-dimensional solvable Lie subalgebra that includes the duals of the translation and boost
generators. Therefore the smallest generalization of momentum space is 7-dimensional, and
includes three additional coordinates associated to “hyperbolic angular momentum” [116].
The geometry of these momentum spaces is half of the (6 + 1)-dimensional de Sitter space
in the case of κ-dS, and half of a space with SO(4, 4) invariance for κ-(A)dS. The Galilean
and Carrollian limits of these momentum spaces have not been studied yet, and are worth
further investigation.

Secondly, an alternative viewpoint is provided by the construction of the correspond-
ing noncommutative spaces of worldlines associated to all the κ-deformations here pre-
sented. In particular, for the (A)dS and Poincaré cases, the spaces of time-like worldlines
are obtained as homogeneous spaces of cosets of the corresponding Lie group with respect
to the 4D isotropy subgroup of the worldline of a particle located at the origin of the
spacetime and having zero velocity, which is generated by the subalgebra of symmetries
given by h = {J1, J2, J3, P0} (see [114] and references therein).

In the Poincaré case, the classical 6D space of time-like worldlinesW has been explic-
itly constructed, and has been endowed with a Poisson homogeneous structure associated
to the κ-Poincaré r-matrix (17). As was shown in [114], this structure provides a Poisson
algebra on the space of worldlines coordinates, that can be quantized, giving rise to the
quantum space of worldlines associated to the κ-Poincaré symmetry. This noncommutative
space of time-like worldlines provides an alternative (and physically sound) framework
for the description of the spacetime fuzziness encoded in quantum deformations [105].
The construction of the noncommutative spaces of worldlines associated to the κ-(A)dS,
κ-Galilean and κ-Carrollian algebras can be attempted by adopting a similar approach,
thus providing a complementary perspective for the analysis of the interplay between the
quantum deformation parameter κ, the curvature parameter Λ and the speed of light c.
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