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Abstract: Ischemic stroke lesion (ISL) is a brain abnormality. Studies proved that early detection
and treatment could reduce the disease impact. This research aimed to develop a deep learning (DL)
framework to detect the ISL in multi-modality magnetic resonance image (MRI) slices. It proposed
a convolutional neural network (CNN)-supported segmentation and classification to execute a
consistent disease detection framework. The developed framework consisted of the following phases;
(i) visual geometry group (VGG) developed VGG16 scheme supported SegNet (VGG-SegNet)-based
ISL mining, (ii) handcrafted feature extraction, (iii) deep feature extraction using the chosen DL
scheme, (iv) feature ranking and serial feature concatenation, and (v) classification using binary
classifiers. Fivefold cross-validation was employed in this work, and the best feature was selected
as the final result. The attained results were separately examined for (i) segmentation; (ii) deep-
feature-based classification, and (iii) concatenated feature-based classification. The experimental
investigation is presented using the Ischemic Stroke Lesion Segmentation (ISLES2015) database.
The attained result confirms that the proposed ISL detection framework gives better segmentation
and classification results. The VGG16 scheme helped to obtain a better result with deep features
(accuracy > 97%) and concatenated features (accuracy > 98%).

Keywords: ischemic stroke; brain MRI; VGG16; VGG-SegNet; segmentation; classification

1. Introduction

Recent developments in the healthcare sector helped to employ several improvements
in disease diagnosis. Even though the healthcare sector is equipped with modern facilities,
disease detection, treatment planning, and patient recovery still pose challenges to the
doctors; the hospitals execute a mass screening of the disease. Due to various reasons, the
disease occurrence rates in humans are gradually increasing irrespective of gender and
race [1–3].

Stroke is one of the common abnormalities in people’s brains irrespective of age and
gender, and the major cause of stroke is the reduced/irregular blood supply. Stroke is
classified as ischemic stroke (caused due to blockage in the blood vessels) and hemorrhagic
stroke (HS) [4–6]. When a brain section does not receive sufficient blood/oxygen, it leads
to stroke, which may create a temporary or permanent disability in humans, and the un-
treated stroke could cause death. Compared with HS, ischemic stroke has more occurrence
rate, and hence, a considerable number of stroke diagnostic methods are suggested by
researchers using biosignals [7] and bioimages [8].

The biosignal (electroencephalogram)-supported detection needs complex preprocess-
ing and computation techniques due to its nonlinear nature. The earlier research on stroke
diagnosis confirmed that bioimage (MRI)-supported detection provides vital information
compared with biosignal-supported stroke detection. The MRI-supported detection can
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be implemented using two-dimensional (2D) or 3D images, and it also has the flexibility
to choose the image registering modalities, such as T1, flair, and diffused weight (DW).
Furthermore, the MRI-supported diagnosis will help to obtain details such as the severity,
location, and volume of the affected brain section, which playmajor roles in treatment
planning and execution. Furthermore, the modality fusion also helps to obtain an enhanced
diagnosis, when the MRI is considered.

This research proposed a DL framework to support the segmentation and classification
of the ischemic stroke lesion (ISL) from 2D MRI slices. The proposed research implements
the following phases to achieve better disease detection:

i. Segmentation of ISL using VGG-SegNet;
ii. Extraction of handcrafted features, such as Hu moments, gray-level co-occurrence

matrix (GLCM), and local-binary-pattern (LBP);
iii. Deep feature extraction with pretrained DL schemes;
iv. Feature ranking and serial concatenation;
v. Classification and validation.

In this work, the necessary test images (normal/stroke) were collected from the
benchmark Ischemic Stroke Lesion Segmentation (ISLES2015) challenge dataset.

The ISLES2015 includes3D brain MRI of T1, Flair, and DW modalities, and every
volunteer image is assorted with two ground-truth (GT) images provided by the disease
experts. In this work, initially, the performance of the VGG-SegNet was confirmed with a
qualified assessment between GT and segmented ISL. Every MRI slice was examined using
the proposed approach, which helps to detect the symmetry in features among the normal
and the stroke-infected section. When a normal region is considered, the feature value is
almost the same in every part of the slice. However, in the ISL case, these features will have
random variation around the image pixel group, which belongs to the stroke section. By
simply evaluating the symmetry in features, it is possible to classify the normal and stroke
class MRI slices.

In the literature, a number of early stroke detection procedures are implemented
by researchers using biomedical data. The work by Johnson et al. (2016) [4] confirmed
that cerebrovascular accidents (stroke) are the second chief reason for death and the third
principle reason of disability in humans. This research also pointed out that the occurrence
rate of stroke is gradually rising in low- and middle-income countries. Furthermore, this
article confirmed that >85% of stroke-caused deaths and disabilities occur in low- and
middle-income countries.

The earlier research work also confirmed that MRI-supported stroke detection is widely
recommended to detect the location and harshness accurately. The work of Maier et al. [9]
presented a detailed assessment of the mining of ISL in multispectral MRI using SVM. Similar
work by the researchers presents a comparison of semi-automated/automated segmentation
procedures for ISL using the images of the ISLES2015 database. The related works of
Maier et al. [10–12] presented segmentation of stroke lesion in MRI of chosen modality
using different techniques. Subbanna et al. [13] demonstrated the evaluation of ISL in
Flair MRI using the modifier Markov random field. Zhang et al. [14] presented multiplane
information fusion-based segmentation from various MRI modalities. Singh et al. [15]
discussed deep learning (DL)-supported ISL detection. The work by Rajinikanth and
Satapathy [16] presented joint thresholding and segmentation-based ISL assessment, and
a similar attempt was presented in the research by Lin et al. [17]. The recent work by
Hemanth et al. [18] implemented a multi-modality fusion-based ISL examination. The
review by Zhang et al. [19] confirmed the following limitations in earlier works: (i) modality-
specific detection, (ii) in most of the modalities, automated extraction and evaluation are
quite difficult, and (iii) less detection accuracy for T1 modality case.

To overcome the limitations in the existing works, this proposed research aimed to
implement DL-based segmentation and classification tasks on the brain MRI recorded using
Flair/DW/T1 modalities. In this research, vital features were extracted from each image,
and the classifier performance was separately tested with DL features and concatenated
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features. The performance of the binary classifier was confirmed using fivefold cross-
validation, and the best result attained among the trials was chosen as the final result.

The remaining section of this research is organized as follows: Section 2 presents
the employed methodology, and Sections 3 and 4 present the experimental results and
conclusion, respectively.

2. Materials and Methods

In the literature, several AI schemes are proposed to examine the ISL from the brain
MRI slices and the merit of the proposed scheme depends mainly on the stages we em-
ployed. In this work, VGG16-supported segmentation and classification were proposed to
detect the ISL with better accuracy. This section of the research demonstrates the methodol-
ogy employed.

2.1. DeepLearning Framework

This feature considered in this research is associated with image symmetry. Figure 1
depicts the structure of the proposed ISL diagnostic scheme. In this work, a pretrained
VGG16 was considered to examine the stroke section in the brain MRI. Initially, the segmen-
tation was implemented using the pretrained VGG-SegNet scheme. This pipeline consists
of an encoder (traditional VGG16) and a decoder section, as depicted in the figure. The
SoftMax layer employs the final part of the VGG, with a binary classifier to separate the
identified ISL from the background.
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Figure 1. Proposed framework to segment and classify brain MRI slices.

The outcome of this scheme is the binary image in which its background is depicted
as a binary zero (0), and ISL is presented as a binary one (1). The encoder section obtains
the features from the image, and the decoder section rebuilds the image from features.
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Hence, the deep features are extracted from the final layer of the encoder, and the existing
features are reduced by using three numbers of fully connected (FC) layers, such as
FC1, FC2, and FC3, with 50% dropout in every stage. During the first task, the available
deep features were then considered to train, test, and validate the binary classifier. After
assessing the classification performance of DL with deep features, the classification task was
repeated once again using the concatenated features, as shown in the figure. To obtain the
concatenated feature, the handcrafted features, such as GLCM, Hu moments, and LBP were
combined with the existing deep features. The proposed work was separately executed for
every MRI modality (Flair/DW/T1), and the outcomes were individually assessed.

2.2. Image Database

The performance of the developed disease detection system must be evaluated using
real clinical images or benchmark images. Clinical images are limitedly available for
research, and most of these images are protected due to ethical constraints. Hence, in
this work, ISLES2015 challenge benchmark images were considered for the examination.
ISLES2015 is one of the widely adopted datasets in the literature to test the performance
of the proposed computerized algorithms [19]. For every patient, this dataset consists of
the 3D reconstructed images of Flair/DW/T1 modalities, and every patient’s image is
assorted with two ground truths, such as ground-truth low (GTL) and as ground-truth high
(GTH), to confirm the segmentation result of the computer algorithm. The conversion from
3D to 2D is achieved with ITK-Snap [20,21], and in this study, only the axial view of the
brain was considered for the examination. The 2D test image was available in a dimension;
pixels and image resizing were employed to obtain pixels. Other related information on
ISLES2015 can be found in [17–19]. Figure 2 depicts the employed procedure to extract
and resize the 2D MRI in axial view. In this work, brain MRIs of Flair/DW/T1 modalities
with pixel dimension 224 × 224 × 3 was considered for evaluation. In each modality, a
considerable number of images (600 training and 200 testing images in the normal case,
and 1200 training and 400 testing images in stroke class) were used to demonstrate the
performance of the proposed scheme.
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Figure 3 presents the sample test images (Flair/DW/T1) considered for experimental
investigation. Every image was separately examined using the proposed framework, and
the performance was confirmed.
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2.3. VGG-SegNet

Recently, the convolutional neural network (CNN)-supported segmentation is pro-
posed and implemented to extract the region of interest (RoI) from a range of images,
and based on the area under the curve (AUC), its merit is verified [22]. SegNet is a CNN
scheme proposed in 2015 [23], and due to its merit, researchers widely adopted traditional
and modified schemes [24,25]. In this research, a CNN scheme called VGG-SegNet was
employed to extract the RoI in brain MRI slices. The VGG-SegNet has an encoder–decoder
assembly, as shown in Figure 1, to extract the RoI from the test image. In this work, the
first five layers (encoder) are the pretrained VGG16 scheme, and pretuning of this archi-
tecture for brain MRI was achieved separately using Flair, DW, and T1 slices. A twofold
pretraining process was executed to improve the segmentation performance. The initial
parameters of VGG-SegNet were consigned as follows: an identical batch dimension for the
encoder–decoder unit was assigned, initialization was executed using standard weight, the
learning rate was fixed as 1e-5, linear dropout rate (LDR) was allocated, and the stochastic
gradient descent (SGD) adaptive learning was selected. The final layer of the decoder was
equipped with a SoftMax with a sigmoid activation function, which finally provided the
segmented binary ISL.
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The merit of the VGG-SegNet was confirmed with a comparison between the RoI with
existing GTs. A pixel-level comparison was executed during this task, and the necessary
quality measure (QM) was computed. Based on the eminence of the QM, the performance
of the VGG-SegNet was confirmed.

2.4. Image Features

Image feature-supported medical data classification is one of the approved method-
ologies among researchers, and the performance depends mainly on the features extracted
from the test images. In this proposed work, deep features were extracted using the
pretrained schemes, such as AlexNet, VGG16, VGG19, ResNet18, and ResNet50, and clas-
sification was performed using the SoftMax unit. The initial results achieved with this
technique confirmed that the result of VGG16 is superior for Flair, DW, and T1 modali-
ties. Hence, VGG16-based ISL detection was considered for the demonstration; related
information on DL schemes can be found in [25].

2.4.1. Deep Features

This framework was employed to extort the deep features (DF) existing at the final
layer of the encoder section, as presented in Figure 1. These features were then reduced
using the FC layers, with an assigned dropout rate of 50%. This section helped to obtain
the features depicted in Equation (1) as follows:

DFVGG16 (1,1024) = VGG16(1,1), VGG16(1,2), ..., VGGgg16(1,1024) (1)

This feature was initially considered to classify the MRI slices using the chosen binary
classifiers; other related information about the VGG based classification can be accessed
from [26].

2.4.2. Handcrafted Features

The earlier works confirmed that combining deep and handcrafted features helped to
achieve better results on medical images [9,10]. In this work, the necessary handcrafted
features, such as GLCM [26–28], Hu Moments [29], and LBP [22,30], were extracted and
combined with deep features. GLCM features were extensively considered due to their-
greater performance. The complete information about these features can be found in recent
related work. Along with these features, LBP (with weight = 4) was also extracted; the
related information can be found in [30].

Handcrafted features (HF) considered in this research is depicted in Equations (2)–(4),
respectively, and the combined feature is presented in Equation (5).

HF1GLCM (1,25) = GLCM(1,1), GLCM(1,2), ..., GLCM(1,25) (2)

HF2Hu (1,3) = Hu(1,1), Hu(1,2), Hu(1,3) (3)

HF3LBP (1,59) = LBP(1,1), LBP(1,2), ..., LBP(1,59) (4)

HF (1,87) = HF1GLCM (1,25) + HF2Hu (1,3) + HF3LBP (1,59) (5)

2.4.3. Feature Concatenation

A serial feature concatenation was employed to combine DF and HF, and this method
improves the feature vector to a higher dimension. The final feature vector after concatena-
tion can be found in Equation (6).

Concatinated features(1,1111) = DFVGG16 (1,1024) + HF(1,87) (6)

This feature vector was then considered to train, test, and substantiate the classi-
fier performance.
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2.5. Classification

The clinical significance of the automated disease classification system is normally
assessed by considering many classifiers. The choice of the classifier depends on the image
class to be categorized. A binary classification (normal/stroke) was employed to classify
the brain MRI of different modalities in this work. Initially, the classification was performed
using the default classifier called SoftMax. Later, other classifiers, such as decision tree
(DT), K-nearest neighbor (KNN), random forest (RF), support vector machine (SVM) with
linear (SVM-L), and radial basis function (SVM-RBF) kernel were also adopted. In the
literature, many discussions are made on the classifiers that were considered in this study,
and these classifiers were widely adopted in ML- and DL-based classification tasks. Every
classifier performance was individually verified on the chosen modality with fivefold
cross-validation, and the best-attained result was considered to confirm the performance.

2.6. Computation of Quality Measures and Validation

The overall performance of the image-supported disease diagnostic scheme depends
on the QM attained during the segmentation and validation. In this work, the necessary
QM was computed based on the attained values of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). From these values, other measures, such as
Jaccard Index (JI) dice coefficient (DC), accuracy (ACC), precision (PRE), sensitivity (SEN),
specificity (SPE), F1 score (F1S), and negative predictive value (NPV) were derived.

The mathematical representations of these values are presented in Equations (7)–(13) [31–33].

J I =
TP

TP + FP + FN
(7)

ACC =
TP + TN

TP + TN + FP + FN
(8)

PRE =
TP

TP + FP
(9)

SEN =
TP

TP + FN
(10)

SPE =
TN

TN + FP
(11)

DC = F1S =
2TP

2TP + FN + FP
(12)

NPV =
TN

TN + FN
(13)

3. Experimental Result and Discussions

This section shows the experimental outcome using the workstation Intel i7 2.9 GHz
processor with 20 GB RAM and 4 GB VRAM equipped with MATLAB®.

This research aimed to develop a DL framework to support both segmentation and
classification with better QM. The proposed work was implemented using 2D MRI slices of
ISLES2015. Initially, the performances of VGG-SegNet were assessed using the considered
brain MRI slices. After the necessary pretraining process using the training images, the RoI
extraction performance of this framework was tested individually with testing images of
Flair, DW, and T1 modalities.

Figure 4 presents the sample test image considered to demonstrate the performance of
VGG Segments. Figure 4a–c presents the 2D slices with various modalities, and Figure 4d,e
depicts the collected ground truths with class low (GTL) and high (GTH).

The VGG-SegNet was executed using the Flair modality images, and the various level
outcomes are presented in Figure 5. For a better visibility, the encoder output is depicted
using the Parula colormap, and this confirms that the encoder section helps to enhance
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the abnormal section in the considered MRI slice. Figure 5a presents the results attained
at the different layers (MaxPool) of the encoder, and Figure 5b–d presents the outcome
attained at the SoftMax layer of the decoder for Flair, DW, and T1 modalities, respectively.
After extracting the RoI, a relative study was separately executed on GTL and GTH, and
the results are depicted in Table 1.

Table 1 presents the individual results attained for GTL and GTH of Flair, DW, and
T1. This result confirms that the QM attuned to T1 is poor, compared with Flair and
DW. However, the average QM shown in Table 1 and Figure 6 confirms that the proposed
scheme exactly mines the ISL section. A similar procedure was employed for the considered
test images, and from the extracted RoI, the essential GLCM features were extracted.LPB
features were also extracted from these test images for a chosen LBP weight of 4, and the
sample LBP pattern is depicted in Figure 7. Figure 7a–c shows the LBP of Flair, DW, and T1,
respectively. After performing this task, the considered test images were then separately
classified using pretrained DL schemes.
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Table 1. Quality measures computed by comparing RoI with GT.

Modality JI DC ACC PRE SEN SPE

GTL
Flair

90.80 95.18 99.51 91.90 98.70 99.55
GTH 85.82 92.37 99.19 92.20 92.55 99.56

GTL
DW

90.99 95.28 99.54 96.94 93.68 99.85
GTH 83.44 90.97 99.09 95.85 86.57 99.79

GTL
T1

89.95 94.71 99.49 96.71 92.79 99.84
GTH 84.50 91.60 99.16 96.88 86.87 99.84

Average 87.58 93.35 99.33 95.08 91.86 99.74
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The result achieved with the VGG16 scheme is depicted in Figures 8–11. Figure 8
presents the results of each convolutional layer for a chosen test image. Figure 8a shows
the chosen test image, and Figure 8b–f presents the corresponding outcome of the chosen
layers. For a better visibility, a hot colormap was chosen for these intermediate layer results.
The training and testing convergence, and the necessary details, such as iteration value,
epoch size, and simulation time, are presented in Figure 9. Figure 10 presents the sample
confusion matrix attained with VGG16 for the Flair MRI, and the corresponding AUC is
depicted in Figure 11. A similar procedure was repeated with other pretrained models,
and the attained QM for every MRI modality is presented in Table 2. All these results were
obtained with only DF using the SoftMax classifier, and from the table, it can be confirmed
that the result obtained for the T1 modality is poor, compared with Flair and DW.

Figure 12 presents the graphical evaluation for the results shown in Table 2, in which
Figure 12a presents the comparison of classification accuracies, Figure 12b presents the
corresponding error values, and Figure 12c shows the overall QM in the form of a glyphplot.
From these figures, it can be noted that the individual accuracy and the overall QM attained
with VGG16 is better, compared with other DL systems. The performance of the VGG16
was further tested by replacing the SoftMax with DT, KNN, RF, SVM-L, and SVM-RBF;
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the corresponding outcome is presented in Table 3, and its graphical comparison is shown
in Figure 13. Figure 13a shows the accuracy of various classifiers for the Flair modality
case, and Figure 13b presents the accuracy of Flair, DW, and T1 as a glyphplot. These
images confirm that the classification results achieved by VGG16 with KNN are better,
compared with other binary classifiers. All these results were achieved only by considering
the DF and further; the experimental investigation was implemented with the concatenated
(HF + DF) features presented in Equation (6).
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Table 2. Initial validation results attained with the pretrained deep learning system.

Network Modality TP FN TN FP ACC PRE SEN SPE F1S NPV

AlexNet
Flair 171 29 366 34 89.50 83.41 85.50 91.50 84.44 92.66
DW 175 25 364 36 89.83 82.94 87.50 91.00 85.16 93.57
T1 141 59 319 81 76.67 63.51 70.50 79.75 66.82 84.39

VGG16
Flair 162 38 380 20 90.33 89.01 81.00 95.00 84.82 90.91
DW 157 43 384 16 90.17 90.75 78.50 96.00 84.18 89.93
T1 157 43 324 76 80.17 67.38 78.50 81.00 72.52 88.28

VGG19
Flair 168 32 371 29 89.83 85.28 84.00 92.75 84.63 92.06
DW 173 27 359 41 88.67 80.84 86.50 89.75 83.57 93.00
T1 138 62 332 68 78.33 66.99 69.00 83.00 67.98 84.26

ResNet18
Flair 169 31 372 28 90.17 85.79 84.50 93.00 85.14 92.31
DW 157 43 375 25 88.67 86.26 78.50 93.75 82.20 89.71
T1 132 68 346 54 79.67 70.97 66.00 86.50 68.39 83.57

ResNet50
Flair 168 32 359 41 87.83 80.38 84.00 89.75 82.15 91.82
DW 163 37 368 32 88.50 83.59 81.50 92.00 82.53 90.86
T1 155 45 324 76 79.83 67.10 77.50 81.00 71.93 87.80
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This work was also performed using fivefold cross-validation, and the result was
recorded. The classification result obtained with the concatenated feature is presented in
Table 4, and it also confirms that the overall QM attained by Flair is better, compared with
DW and T1. This result confirms that the SVM-RBF classifier helps to obtain better results,
compared with other techniques. Additionally, this result is better, compared with the
classification result with the DL in every case.
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Table 3. Performance assessment of the proposed VGG16 with various classifiers.

Classifier Modality TP FN TN FP ACC PRE SEN SPE F1S NPV

DT
Flair 182 18 377 23 93.17 88.78 91.00 94.25 89.88 95.44
DW 188 12 373 27 93.50 87.44 94.00 93.25 90.60 96.88
T1 164 36 347 53 85.17 75.58 82.00 86.75 78.66 90.60

KNN
Flair 189 11 387 13 96.00 93.56 94.50 96.75 94.03 97.24
DW 194 6 389 11 97.17 94.63 97.00 97.25 95.80 98.48
T1 157 43 361 39 86.33 80.10 78.50 90.25 79.29 89.36

RF
Flair 189 11 366 34 92.50 84.75 94.50 91.50 89.36 97.08
DW 186 14 368 32 92.33 85.32 93.00 92.00 88.99 96.34
T1 158 42 356 44 85.67 78.22 79.00 89.00 78.61 89.45

SVM-L
Flair 192 8 371 29 93.83 86.88 96.00 92.75 91.21 97.89
DW 181 19 388 12 94.83 93.78 90.50 97.00 92.11 95.33
T1 143 57 374 26 86.17 84.61 71.50 93.50 77.51 86.77

SVM-RBF
Flair 184 16 390 10 95.67 94.84 92.00 97.50 93.40 96.06
DW 186 14 391 9 96.17 95.38 93.00 97.75 94.18 96.54
T1 162 38 355 45 86.17 78.26 81.00 88.75 79.61 90.33
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In this work, a DL-based joint segmentation and classification were implemented
using the VGG16 scheme. The future scope of this scheme includes (i) the proposed scheme
can be tested and validated with other CNN based segmentation procedures and other DL
schemes existing in the literature, (ii) the ISL detection scheme can be used to examine2D
brain MRI slices having the tumor, and (iii) the clinical significance of this approaches can
be confirmed using the real clinical images collected from hospitals.

The merit of the proposed scheme on Flair/DW/T1 modality MRI slices is shown
in Table 4, which confirms that this scheme presents better values of classification accu-
racy. Recently, Castillo et al. (2021) [34] presented a detailed assessment on combined
segmentation- and classification-based evaluation of MRI slices [35–37]. The ISL detection
procedure discussed in this work was considered to validate the classification perfor-
mance of the proposed scheme. The best result achieved with the proposed work was then
compared with the existing methods, and the outcome is presented in Figure 14.
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Table 4. Classification results of VGG16 with concatenated features.

Classifier Modality TP FN TN FP ACC PRE SEN SPE F1S NPV

DT
Flair 185 15 381 19 94.33 90.69 92.50 95.25 91.58 96.21
DW 193 7 377 23 95.00 89.35 96.50 94.25 92.79 98.18
T1 169 31 351 49 86.67 77.52 84.50 87.75 80.86 91.88

KNN
Flair 191 9 389 11 96.67 94.55 95.50 97.25 95.02 97.74
DW 192 8 384 16 96.00 92.31 96.00 96.00 94.12 97.96
T1 164 36 370 30 89.00 84.54 82.00 92.50 83.25 91.13

RF
Flair 190 10 368 32 93.00 85.59 95.00 92.00 90.05 97.35
DW 188 12 371 29 93.17 86.64 94.00 92.75 90.17 96.87
T1 167 33 366 34 88.83 83.08 83.50 91.50 83.29 91.73

SVM-L
Flair 193 7 374 26 94.50 88.13 96.50 93.50 92.12 98.16
DW 183 17 390 10 95.50 94.82 91.50 97.50 93.13 95.82
T1 155 45 384 16 89.83 90.64 77.50 96.00 83.56 89.51

SVM-RBF
Flair 196 4 393 7 98.17 96.55 98.00 96.55 97.27 98.99
DW 191 9 391 9 97.00 95.50 95.50 97.75 95.50 97.75
T1 181 19 363 37 90.67 83.03 90.50 90.75 86.60 95.03

The earlier works presented in the literature considered only a single MRI modality
for the examination, and hence, the previous results show improved accuracy in [38–40].
However, compared with the works in [35–37], the results achieved with the proposed
technique are better for the Flair and DW modalities. The chief limitation of the proposed
scheme is that its detection accuracy is less when a T1 modality MRI is examined.

In the future, the performance of the proposed technique can be improved by imple-
menting the classification using a heuristic algorithm optimized with deep and handcrafted
features. Further, the performance of the proposed scheme can be verified using the brain
MRI slice with the skull section.
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Figure 14. Comparison of proposed technique with existing methods.

4. Conclusions

In the current era, brain abnormalities are gradually rising in humans due to various
causes. Ischemic Stroke is one of the major brain abnormalities, which causes tempo-
rary/permanent disability in humans and death.

Bioimage-assisted stroke detection is essential for appropriate treatment planning, and
the complexity of stroke detection will increase when the number of patients’ information
to be examined is more. Hence, this work proposed a DL-supported segmentation and
classification scheme to provide the preliminary diagnostic report to the doctor to support
the timely detection of ISL. Based on the report, the doctor performs a visual check on the
patient’s data that need immediate attention.



Symmetry 2021, 13, 2080 15 of 16

The proposed scheme employed the pretrained VGG16 scheme to achieve the task.
This work initially executed the VGG-SegNet-supported ISL mining and achieved better
results on the MRI modalities Flair, DW, and T1.After obtaining the better segmentation
result, the classification task was then executed by considering some well-known DL
schemes, and the result of VGG16 proved to be better than other DL methods considered
in this study.

Finally, the performances of VGG16 were tested and validated with DF and con-
catenated features using DT, KNN, RF, SVM-L, and SVM-RBF, and the attained results
confirmed that the KNN provided a classification accuracy of >97% with DF and SVM-
RBF helped to achieve an accuracy of >98% with concatenated features. In the future, the
proposed framework’s performance can be improved by considering other handcrafted
features existing in the literature.
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