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Abstract: An antimagic labeling of a graph G is a bijection f : E(G)→ {1, . . . , |E(G)|} such that the
weights w(x) = ∑y∼x f (y) distinguish all vertices. A well-known conjecture of Hartsfield and Ringel
(1990) is that every connected graph other than K2 admits an antimagic labeling. For a set of distances
D, a D-antimagic labeling of a graph G is a bijection f : V(G)→ {1, . . . , |V(G)|} such that the weight
ω(x) = ∑y∈ND(x) f (y) is distinct for each vertex x, where ND(x) = {y ∈ V(G)|d(x, y) ∈ D} is the
D-neigbourhood set of a vertex x. If ND(x) = r, for every vertex x in G, a graph G is said to be
(D, r)-regular. In this paper, we conjecture that a graph admits a D-antimagic labeling if and only
if it does not contain two vertices having the same D-neighborhood set. We also provide evidence
that the conjecture is true. We present computational results that, for D = {1}, all graphs of order
up to 8 concur with the conjecture. We prove that the set of (D, r)-regular D-antimagic graphs is
closed under union. We provide examples of disjoint union of symmetric (D, r)-regular that are
D-antimagic and examples of disjoint union of non-symmetric non-(D, r)-regular graphs that are
D-antimagic. Furthermore, lastly, we show that it is possible to obtain a D-antimagic graph from a
previously known distance antimagic graph.

Keywords: antimagic labeling; D-antimagic labeling

1. Introduction

Let G = G(V, E) be a finite, simple, and undirected graph with v vertices and e edges.
The notion of antimagic labeling of a graph G was introduced in Hartsfield and Ringel’s
book Pearls in Graph Theory [1] as a bijection f :E(G) → {1, . . . , e} such that the weights
(w(x) = ∑xy∈E(G) f (xy)) distinguish all vertices. Hartsfield and Ringel [1] also conjectured
that every connected graph other than K2 admits antimagic labeling in this seminal work.

As of today, the antimagic conjecture is still open; however, much evidence has been
presented by many authors. By using a probabilistic method, Alon et al. [2] proved
the conjecture for graphs with minimum degree at least C log |V|, for some constant C.
Eccles [3] improved this result, by proving the conjecture for graphs with average degree at
least some constant d0. Hefetz, Saluz, and Tran [4] utilized Combinatorial Nullstellensatz
to prove that if a graph on pk vertices, where p is an odd prime and k is a positive integer,
admits a Cp-factor, then it is antimagic. A series of articles by Cranston, Liang, and Zhu [5],
Bérczi, Bernáth, and Vizer [6], and Chang et al. [7] showed that for k ≥ 2, every k-regular
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graph is antimagic. For trees, Kaplan, Lev, and Roddity [8] proved that a tree with at most
one vertex of degree 2 is antimagic. On the other hand, Liang, Wong, and Zhu [9] proved
that a tree with many vertices of degree 2 is antimagic. The latest result on antimagic trees
is by Lozano, Mora, Seara, and Tey [10] who proved that caterpillars are antimagic.

In 2017, Arumugam et al. [11] and Bensmail et al. [12] independently introduced a
weaker notion of antimagic labeling, called the local antimagic labeling, where only adjacent
vertices must be distinguished. Both sets of authors conjectured that any connected graph
other than K2 admits a local antimagic labeling. This conjecture has been completely settled
by Haslegrave [13] using probabilistic method.

Another type of antimagic labeling was introduced by Kamatchi and Arumugam in
2013 [14]. A bijection f : V(G)→ {1, 2, ..., v} is called a distance antimagic labeling of graph
G if for two distinct vertices x and y, w(x) 6= ω(y), where ω f (x) = ∑y∈N(x) f (y), for N(x)
the open neighborhood of x, i.e., the set of all vertices adjacent to x. A graph admitting a
distance antimagic labeling is called a distance antimagic graph. In the same paper, Kamatchi
and Arumugam conjectured that a graph G is distance antimagic if and only if G does not
have two vertices with the same open neighbourhood.

Some families of graphs have been shown to be distance antimagic, among others,
the path Pn, the cycle Cn (n 6= 4), the wheel Wn (n 6= 4) [14], and the hypercube Qn
(n ≥ 3) [15]. In 2016, Llado and Miller [16] utilized Combinatorial Nullstellensatz to prove
that a tree with l leaves and 2l vertices is distance antimagic.

In 2011, O’Neal and Slater [17] introduced the D-magic labeling as follows.
Let D ⊆ {0, 1, . . . , diam(G)} be a set of distances in G. The graph G is said to be D-
magic if there exists a bijection f : V → {1, 2, . . . , v} and a magic constant k such that for
any vertex x, ω f (x) = ∑y∈ND(x) f (y) = k, where ND(x) = {y|d(x, y) = d, d ∈ D} is the
D-neighborhood set of x.

When we consider the D-neighborhood set of a vertex, the regularity of a graph is
defined as follows. A graph G is said to be (D, r)-regular if |ND(x)| = r for every vertex
x ∈ G. Clearly, an regular graph is ({1}, r)-regular.

Inspired by the notion of D-magic labeling, the idea of distance antimagic labeling
was generalized by considering a set of distances D ⊆ {0, 1, . . . , diam(G)} and the D-
neighborhood set of a vertex.

Definition 1. A D-antimagic labeling of a graph G is a bijection f: V(G)→ {1, . . . , v} such that
the weight ω f (x) = ∑y∈ND(x) f (y) is distinct for each vertex x.

It is clear that if a graph contains two vertices having the same D-neighborhood set,
then the graph does not admit a D-antimagic labeling. Here we boldly conjecture that the
converse of the previous statement is also true, and thus we propose the following.

Conjecture 1. A graph admits a D-antimagic labeling if and only if it does not contain two vertices
having the same D-neighborhood set.

If x and y are two distinct vertices with the same D-neighborhood set, the two vertices
are called D-twins of each other, denoted by x ∼D y. It is clear that ∼D is an equivalence
relation, and thus Conjecture 1 can be rewritten as: “A graph admits a D-antimagic labeling
if and only if its vertex set partition defined by ∼D contains only singletons”.

An automorphism of a graph G is a permutation of V(G) preserving adjacency. A graph
G is said to be vertex-transitive if, for any two vertices x and y, there exists an automorphism
of G that maps x to y and it is said to be edge-transitive if, for any two edges xy and uv,
there is an automorphism of G that maps xy to uv. If G is both vertex-transitive and
edge-transitive, G is symmetric. Recall that a cycle, a complete graph, and a hypercube are
symmetric. A path on at least four vertices and a wheel on at least five vertices are neither
vertex-transitive nor edge-transitive.

In the rest of the paper, we shall provide several pieces of evidence that Conjecture 1
is true. First, in Section 2, we provide computational results where all graphs of order
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up to 8 concur with Conjecture 1, for the case of D = {1}. Second, in Section 3, we show
that the set of (D, r)-regular D-antimagic graphs is closed under union. For particular
D, we provide examples of symmetric (D, r)-regular graphs that are D-antimagic, so the
disjoint union of those graphs is also D-antimagic. Examples of disjoint union of non-(D, r)-
regular graphs that are neither vertex-transitive nor edge-transitive but admit D-antimagic
labelings are also presented in this section. Lastly, in Section 4, we show that it is possible to
obtain a D-antimagic graph from a previously known distance antimagic graph. We realize
that Conjecture 1, if true, will be laborious to prove, and thus in the following sections, we
propose several open problems that hopefully are more feasible to solve.

2. Computational Result

We build an exhaustive algorithm to search for all distance antimagic graphs of order
v. We split the algorithm into three functions: Algorithm 1 checks whether an input
graph G contains {1}-twins by seeking two identical rows in the adjacency matrix of G.
Algorithm 2 decides whether labeling is distance antimagic, and Algorithm 3 searches for
distance antimagic graphs. We implemented this algorithm in C++, and the source code
can be found in [18].

Let V(G) = {x1, x2, . . . , xv}, A be the adjacency matrix of G, and the labeling matrix
L(G) be a v× v matrix whose (i, i) entry is λ(xi), the label of vertex xi.

Algorithm 1 Check If G Contains {1}-Twins

1: function ISTWINS(G)
2: for i← 1 to v do
3: for j← 1 to v do
4: vi = Ai,1...v . vi is the ith row vector of A
5: if i 6= j and vi 6= vj then
6: return false . return false if two identical row vectors are found
7: end if
8: end for
9: end for

10: return true
11: end function

Algorithm 2 Evaluate Distance Anti Magic

1: function EVALDISTANCEANTIMAGIC(L(G))
2: for i← 1 to v do
3: wi = 0 . initialize weight wi
4: for j← 1 to v do . calculate weight wi
5: wi ← wi + λ(xj)(Ai,j)
6: end for
7: end for
8: if ISUNIQUE(w) then . check if wi 6= wj for all i, j
9: return 0

10: else
11: return 1
12: end if
13: end function
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Algorithm 3 Search Distance Anti Magic

1: function SEARCHDISTANCEANTIMAGIC(G, P) . P is the set of permutation on v
elements

2: c← 1
3: i← 1
4: if ISTWINS(G) then
5: while c 6= 0 or λ and i ≤ |P| do
6: λ = Pi
7: L(β) = L(G, λ)
8: c← EVALDISTANCEANTIMAGIC(L(β))
9: i← i + 1

10: end while
11: end if
12: end function

We run the algorithm to search for all distance antimagic (non-isomorphic) graphs of
order up to 8 generated by nauty [19], with results as depicted in Table 1.

Table 1. Distance antimagic graphs of order v, 1 ≤ v ≤ 8.

v # Non-Isomorphic # Graphs Not Containing # {1}-Antimagic
Graphs {1}-Twins Graphs

1 1 1 1
2 2 1 1
3 4 2 2
4 11 5 5
5 34 16 16
6 156 78 78
7 1044 588 588
8 12346 8047 8047

Thus, we obtain the following result, which supports Conjecture 1.

Theorem 1. A graph of order v, 1 ≤ vs. ≤ 8, admits a {1}-antimagic labeling if and only if it
does not contain two vertices having the same {1}-neighborhood set.

3. Closedness of Union of D-Antimagic Graphs

Theorem 2. Let D be an arbitrary set of distances and G, H be two D-antimagic graphs. If H is
(D, r)-regular and |ND(x)| ≤ r, for every x ∈ V(G), then G

⋃
H is also D-antimagic.

Proof. Let g and h be D-antimagic labelings of G and H. Define a new labeling l for G
⋃

H
as l(x) = h(x) + v, when x ∈ H, and l(x) = g(x), when x ∈ G.

We shall show that l is D-antimagic. Let x and y be two distinct vertices in G
⋃

H.
If both x, y ∈ V(G), then wl(x) = wg(x) 6= wg(y) = wl(y). If both x, y ∈ V(H), then

wl(x) = ∑u∈ND(x)(h(u) + v)
= ∑u∈ND(x) h(u) + |ND(x)|v
= wh(x) + rv
6= wh(y) + rv
= wl(y)

The last case is if, without loss of generality, x ∈ V(G) and y ∈ V(H). Since
wl(x) = wg(x) ≤ vs. maxx∈V(G) |ND(x)| and wl(y) ≥ (v+ 1)+ (v+ 2)+ . . .+(v+ r) > vr,
then wl(x) ≤ vs. maxx∈V(G) |ND(x)| ≤ vr < wl(y).
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Let GA (D) be the set of all D- antimagic graphs and G (D, r) be the set of all (D, r)-
regular graphs. A direct consequence of Theorem 2 is

Corollary 1. GA (D)
⋂

G (D, r) is closed under union.

Corollary 1 is a generalization of a result in [15], where it was proved that if G is a
regular distance antimagic graph, then 2G is also distance antimagic.

Direct application of Corollary 1 to known graphs in GA (D)
⋂

G (D, r) results in the
following.

Corollary 2. 1. For ni 6= 4, i = 1, . . . , k, the disjoint union of cycles
⋃k

i=1 Cni is {1}-antimagic.
2. For ni ≥ 3, i = 1, . . . , k, the disjoint union of cycles

⋃k
i=1 Cni is {0, 1}-antimagic.

3. For ni ≥ 1, i = 1, . . . , k, the disjoint union of complete graphs
⋃k

i=1 Kni is {1}-antimagic.
4. For ni ≥ 3, i = 1, . . . , k, the disjoint union of hypercubes

⋃k
i=1 Qni is {1}-antimagic.

5. For ni ≡ 0 mod 4, i = 1, . . . , k, the disjoint union of hypercubes
⋃k

i=1 2Qni is {0, 1}-antimagic.

Proof. Due to facts that:

1. For n 6= 4, the cycle Cn is {1}-antimagic [14].
2. For n ≥ 3, the cycle Cn is {0, 1}-antimagic [20].
3. For n ≥ 1, the complete graph Kn is trivially {1}-antimagic.
4. For n ≥ 3, the hypercube Qn is {1}-antimagic [15].
5. For n ≡ 0 mod 4, the disjoint union of two hypercubes 2Qn is {0, 1}-antimagic [21].

Although closedness under union is still unknown for the set of non-regular graphs,
in the following theorems, we shall provide some families of disjoint union of non-regular
graphs admitting D-antimagic labelings for D = {1}. We start by showing that particular
cases of disjoint union of paths are distance antimagic.

Theorem 3. For any positive integers m, n > 3, the disjoint union of two paths Pm ∪ Pn is
distance antimagic.

Proof. Let V(Pm) = {v(1)i : 1 ≤ i ≤ m} and V(Pn) = {v(2)j : 1 ≤ j ≤ n}. We shall consider
three cases which depend on the parity of m and n.

Case 1. Without loss of generality, when m odd and n even. Define a labeling
g : V(Pm ∪ Pn) → {1, 2, ..., m + n}, where g(v(1)i ) = m + n, for i = 1, g(v(1)i ) = n + i− 1,

for 2 ≤ i ≤ m, and g(v(2)j ) = j, for 1 ≤ j ≤ n.
Under this labeling, the weights are:

ωg(v
(1)
i ) =


n + 1, if i = 1,
m + 2n + 2, if i = 2,
2n + 2i− 2, if 3 ≤ i ≤ m− 1,
n + m− 2, if i = m,

and

ωg(v
(2)
j ) =

{
2j, if 1 ≤ j ≤ n− 1,
n− 1, if j = n,

It is clear that every vertex in Pn has a distinct weight less than any weight in Pm.
On the other hand, in Pm, the only even weights are 2n + 2i− 2, 3 ≤ i ≤ m− 1, all of which
are different. To conclude, for the odd weights in Pm, the following inequalities hold

n− 1 < n + 1 < n + m− 2 < m + 2n + 2.
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Case 2. When both m and n are even. Since the case when m = n is considered in
Theorem 4, we may assume m < n. Define a labeling g1 : V(Pm) → {1, 2, ..., m}, where
g1(v

(1)
i ) = i. Under this labeling, ωg1(v

(1)
i ) < 2m− 1, for 1 ≤ i ≤ m.

We then define three different labelings for Pn, depending on the value of n.

Sub Case 2.1. When m = 4 and n = 6, define a labeling g2 : V(Pn)→ {5, . . . , 10}, where

g2(v
(2)
1 ) = 5, g2(v

(2)
2 ) = 7, g2(v

(2)
3 ) = 6, g2(v

(2)
4 ) = 9, g2(v

(2)
5 ) = 8, g2(v

(2)
6 ) = 10.

Here the weights are:

ωg2(v
(2)
1 ) = 7, ωg2(v

(2)
2 ) = 11, ωg2(v

(2)
3 ) = 16, ωg2(v

(2)
4 ) = 14, ωg2(v

(2)
5 ) = 19, ωg2(v

(2)
6 ) = 8,

all of which are larger the the weights of all vertices in Pm.

Sub Case 2.2. For n = m + 2, m ≥ 6, define a labeling g2 : V(Pn)→ {1, . . . , n}, where

g2(v
(2)
j ) =


m + j, if j = 1, m + 1, m + 2,
2m, if j = 2,
m + j− 1, if 3 ≤ j ≤ m.

This labeling results to the following weights of vertices in Pn.

ωg2(v
(2)
j ) =



2m + 3j− 3, if j = 1, 2,
3m + 3, if j = 3,
2m + 2j− 2, if 4 ≤ j ≤ m− 1,
2m + 2j− 1, if j = m, m + 1,
2m + 1, if j = m + 2.

The even weights are 2m < 2m + 6 < 2m + 8 < ... < 4m− 4 and the odd weights
2m + 1 < 2m + 3 < 3m + 3 < 4m− 1 < 4m + 1, all of which are larger than the weights of
vertices in Pm.

Sub Case 2.3. When n > m + 2, m ≥ 4, define a labeling g2 : V(Pn)→ {1, . . . , n}, where

g2(v
(2)
j ) =



m + j, if j = 1 and n,
2m, if j = 2,
m + j− 1, if 3 ≤ j ≤ m,
m + j + 1, if m + 1 ≤ j ≤ n− 2,
2m + 1, if j = n− 1.

Thus, we obtain the following weights for vertices in Pn.

ωg2(v
(2)
j ) =



2m + 3(j− 1), if j = 1 and 2,
3m + 3, if j = 3,
2m + 2j− 2, if 4 ≤ j ≤ m− 1,
2m + 2j, if j = m and m + 1,
2m + 2j + 2, if m + 2 ≤ j ≤ n− 3,
3m + n− 1, if j = n− 2,
2m + 2n− 1, if j = n− 1,
2m + 1, if j = n.
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Here the odd weights are 2m + 1 < 2m + 3 < 3m + 3 < 3m + n− 1 < 2m + 2n− 1
and the even weights are 2m, 2m + 6, 2m + 8, . . . , 4m− 4, 4m, 4m + 2, 4m + 6, 4m + 8, . . . ,
2m + 2n− 4.

Case 3. When both m and n are odd, define a labeling g : V(Pm ∪ Pn) → {1, . . . , m + n},
where g(v(1)i ) = i + 1, for 1 ≤ i ≤ m, and

g(v(2)j ) =

{
1, if j = 1,
m + j, if 2 ≤ j ≤ n.

Under the labeling g, we obtain the following weights of vertices.

ωg(v
(1)
i ) =


3, if i = 1,
2i + 2, if 2 ≤ i ≤ m− 1,
m, if i = m,

and

ωg(v
(2)
j ) =


m + 2j, if j = 1 and 2,
2m + 2j, if 3 ≤ j ≤ n− 1,
m + n− 1 if j = n.

The odd weights are 3 < m < m + 2 < m + 4 < m + n− 1 and the even weights are
2i + 2, for 2 ≤ i ≤ n, and 2m + 2j, for 3 ≤ j ≤ n− 1. This concludes our proof.

An example of a distance magic labeling for P9 ∪ P12 can be viewed in Figure 1.

Figure 1. A distance antimagic labeling for P9 ∪ P12.

Theorem 4. For n 6= 3, mPn is distance antimagic.

Proof. Let V(mPn) = {vj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, and E(mPn) = {vj

iv
j
i+1 : 1 ≤ i ≤

n− 1, 1 ≤ j ≤ m}. We shall consider three cases:

Case 1. When n ≡ 0, 2(mod 4), define a labeling f of mPn as follows.

f (vj
i) =

{
n(j− 1) + i

2 , if i even,
n(j− 1) + i+n+1

2 , if i odd.

Thus, we obtain the weight of each vertex as follows.

ω f (v
j
i) =


1 + n(j− 1), if i = 1,
(n + i + 1) + 2n(j− 1), if i = 2, 4, . . . , n− 2,
i + 2n(j− 1), if i = 3, 5, . . . , n− 1,
nj, if i = n.

Case 2. When n ≡ 1(mod 4), define a labeling f of mPn as follows.

f (vj
i) =


3− i + n(j− 1), if i = 1, 2,
n− i−3

2 + n(j− 1), if i = 3, 5, . . . , n,
n+5−i

2 + n(j− 1), if i = 4, 6, . . . , n− 1.
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Thus, the weight of each vertex is as follows.

ω f (v
j
i) =



1 + n(j− 1), if i = 1,
n + 2 + 2n(j− 1), if i = 2,
1
2 (n + 3) + 2n(j− 1), if i = 3,
2n− i + 3 + 2n(j− 1), if i = 4, 6, . . . , n− 1,
n + 5− i + 2n(j− 1), if i = 5, 7, . . . , n− 2,
3 + n(j− 1), if i = n.

Case 3. When n ≡ 3(mod 4), define a labeling f of mPn as follows.

f (vj
i) =


i + n(j− 1), if i = 1, 2,
n− i−3

2 + n(j− 1), if i = 3, 5, . . . , n,
n+5−i

2 + n(j− 1), if i = 4, 6, . . . , n− 1.

This leads to the following weights of vertices.

ω f (v
j
i) =



2 + n(j− 1), if i = 1,
n + 1 + 2n(j− 1), if i = 2,
1
2 (n + 5) + 2n(j− 1), if i = 3,
2n− i + 3 + 2n(j− 1), if i = 4, 6, . . . , n− 1,
n + 5− 1 + 2n(j− 1), if i = 5, 7, . . . , n− 2,
3 + n(j− 1), if i = n.

This concludes the proof since, in all three cases, all the vertex-weights are distinct.
An example of a distance antimagic labeling for 4P5 is depicted in Figure 2.

Figure 2. A distance antimagic labeling for 4P5.

In general, we are still not able to prove that the disjoint union of arbitrary paths is
distance antimagic.

Problem 1. Show that ∪k
i=1Pni , where ni 6= 3, 1 ≤ i ≤ k, is distance antimagic.

The next three theorems deal with the distance antimagicness of graphs containing
many triangles, i.e., wheels, fans, and friendship graphs. A wheel Wn is a graph obtained by
joining all vertices of a cycle of order n to another vertex called the center. Let V(Wn) =
{x0, x1, . . . , xn} where x0 is the center and x1, . . . , xn are the vertices of the cycle.

Theorem 5. For m ≥ 1 and n ≥ 3, mWn is distance antimagic.

Proof. Let V(mWn) = {xj
i | i = 0, 1, . . . , n, j = 1, 2, . . . , m}. We define different vertex

labelings f of mWn, depending on the value of n.

Case 1. When n is even.
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Sub Case 1.1. When n ≡ 0(mod 4).

f (xj
i) =



(n + 1)j for i = 0,
(n + 1)(j− 1) + 1 for i = 1,
(n + 1)(j− 1) + (i− 1) for i = 3, 5, . . . , 1

2 n + 1,
(n + 1)(j− 1)(n + 2− i) for i = 1

2 n + 3, 1
2 n + 5, . . . , n− 1,

(n + 1)(j− 1) + 1
2 n− 1 + i for i = 2, 4, . . . , 1

2 n,
(n + 1)(j− 1) + 1

2 3n + 2− i for i = 1
2 n + 2, 1

2 n + 4, . . . , n.

This will lead to the following weights of vertices.

ω f (xj
i) =



1
2 n(n + 1)(2j− 1) for i = 0,
(n + 1)(3j− 2) + n + 3 for i = 1,
(n + 1)(3j− 2) + 3 for i = 2,
(n + 1)(3j− 2) + n− 2 + 2i for i = 3, 5, . . . , 1

2 n− 1,
(n + 1)(3j− 2) + 2n− 1 for i = 1

2 n + 1,
(n + 1)(3j− 2) + 3n + 4− 2i for i = 1

2 n + 3, 1
2 n + 5, . . . , n− 1,

(n + 1)(3j− 2)− 2 + 2i for i = 4, 6, . . . , 1
2 n,

(n + 1)(3j− 2) + n− 1 + 1
2 (1 + i) for i = 1

2 n + 2,
(n + 1)(3j− 2)− 2n + 4− 2i for i = 1

2 n + 4, 1
2 n + 6, . . . , n.

Sub Case 1.2. n ≡ 2(mod 4).

f (xj
i) =


(n + 1)j for i = 0,
(n + 1)(j− 1) + 1

2 (i + 1) for i = 1, 3, . . . , n− 1,
(n + 1)j− 1

2 i for i = 2, 4, . . . , n,

and so we obtain the following vertex-weights.

ω f (xj
i) =



1
2 n(n + 1)(2j− 1) for i = 0,
(n + 1)3j− 1

2 (n + 1 + i) for i = 1,
(n + 1)(3j− 2) + 1 + i for i = 2, 4, · · · , n− 2,
(n + 1)3j− i for i = 3, 5, · · · , n− 1,
(n + 1)(3j− 2) + 1

2 (n + 2) for i = n.

Case 2. When n is odd.

Sub Case 2.1. When n ≡ 1, 5(mod 6).

f (xj
i) =


(n + 1)j for j odd i = 0,
(n + 1)(j− 1) + i for j odd i = 1, 2, . . . , n,
(n + 1)j− n + i for j even i = 0, 1, . . . , n.

The vertex-weights under this labeling are as follows.
For odd j,

ω f (xj
i) =


1
2 n(n + 1)(2j− 1) for i = 0,
(n + 1)(3j− 2) + n + 2 for i = 1,
(n + 1)(3j− 2) + 2i for i = 2, 3, · · · , n− 1,
(n + 1)(3j− 2) + n for i = n,
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and for even j,

ω f (xj
i) =


1
2 n(2j(n + 1)− n + 1) for i = 0,
(n + 1)3j− 2n + 2 for i = 1,
(n + 1)3j− 3n + 2i for i = 2, 3, · · · , n− 1,
(n + 1)3j− 2n for i = n.

Sub Case 2.2. For n ≡ 3(mod 6).

f (xj
i) =

{
(n + 1)j for i = 0,
(n + 1)(j− 1) + i for i = 1, 2, . . . , n.

Thus, we obtain the following vertex-weights.

ω f (xj
i) =


1
2 n(n + 1)(2j− 1) for i = 0,
(n + 1)(3j− 2) + n + 2 for i = 1,
(n + 1)(3j− 2) + 2i for i = 2, 3, · · · , n− 1,
(n + 1)(3j− 2) + n for i = n.

This concludes the proof since, in all the cases, all the vertex-weights are clearly distinct.
An example of a distance antimagic labeling for 4W7 can be seen in Figure 3.

Figure 3. A distance antimagic labeling for 4W7.

A fan Fn is a graph obtained by joining all vertices of a path of order n to a further
vertex called the center. Let V(Fn) = {x0, x1, . . . , xn} where x0 is the center and x1, . . . , xn
are the vertices of the path.

Theorem 6. For m ≥ 1 and n ≥ 1, mFn is distance antimagic.

Proof. V(mFn) = {xj
i | i = 0, 1, . . . , n, j = 1, 2, . . . , m}. We define a vertex labeling f of mFn

as follow:

Case 1. When n is odd,

f (xj
i) = (n + 1)(j− 1) + 1 + i, for i = 0, 1, · · · , n,

and thus we obtain the following vertex-weights.

ω f (xj
i) =


n(n + 1)(j− 1) + 1

2 n(n + 3) for i = 0,
2(n + 1)(j− 1) + 4 for i = 1,
3(n + 1)(j− 1) + 3 + 2i for i = 2, 3, · · · , n− 1,
2(n + 1)(j− 1) + n + 1 for i = n.

Case 2. When n is even.
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Sub case 2.1. When j = 2, 4(mod 6),

f (xj
i) =


(n + 1)(j− 1) + 1

2 (n + 2) for i = 0,
(n + 1)(j− 1) + i for i = 1, 2, . . . , n

2 ,
(n + 1)(j− 1) + 1 + i for i = n

2 + 1, n
2 + 2, . . . , n,

which leads to the following vertex-weights.

ω f (xj
i) =



n(n + 1)(j− 1) + 1
2 n(n + 2) for i = 0,

2(n + 1)(j− 1) + 1
2 n + 3 for i = 1,

3(n + 1)(j− 1) + 1
2 n + 1 + 2i for i = 2, 3, . . . , n

2 − 1
3(n + 1)(j− 1) + 1

2 n + 2 + 2i for i = n
2 , n

2 + 1,
3(n + 1)(j− 1) + 1

2 n + 3 + 2i for i = n
2 + 2, n

2 + 1, . . . , n− 1,
2(n + 1)(j− 1) + 1

2 (3n + 2) for i = n.

Sub Case 2.2. When j = 0(mod 6),

f (xj
i) =

{
(n + 1)j− n

2 + i for i = 0, 1, . . . , n
2 ,

(n + 1)(j− 1)− n
2 + i for i = n

2 + 1, n
2 + 2, . . . , n,

and so we obtain the following vertex-weights.

ω f (xj
i) =



nj(n + 1)− 1
2 n2 for i = 0,

2j(n + 1)− n + 2 for i = 1,
3j(n + 1)− 1

2 3 + 2i for i = 2, 3, . . . , n
2 − 1

3j(n + 1)− 1
2 5n− 1 + 2i for i = n

2 , n
2 + 1,

3j(n + 1)(j− 1)− 1
2 7n− 2 + 2i for i = n

2 + 2, n
2 + 1, . . . , n− 1,

2j(n + 1)− n− 2 for i = n.

In all cases, we can see that all the weights are distinct.
Examples of distance antimagic labelings for for 4F6 and 4F7 are depicted in Figure 4.

Figure 4. Distance antimagic labelings for 4F6 and 4F7.

A friendship graph fn is obtained by identifying a vertex from n copies of cycles of
order 3. Let V(m fn) = {xj

0, xj
1, . . . , xj

2n} where xj
0, xj

2i−1, xj
2i are the vertices in the j-th C3,

for i = 1, . . . , n and j = 1, 2, . . . , m.

Theorem 7. For m ≥ 1 and n ≥ 3, m fn is distance antimagic.

Proof. We define a vertex labeling f of m fn as follow.



Symmetry 2021, 13, 2071 12 of 15

For j = 1, 2, . . . , m,

f (xj
i) =

{
(2n + 1)j, for i = 0,
(2n + 1)(j− 1) + i, for i = 1, 2, · · · , 2n,

and so we obtain the following vertex-weights.

ω f (xj
i) =


n(2n + 1)(2j− 1), for i = 0,
(4n + 2)j− 2n + i, for i = 1, 3, · · · , 2n− 1,
(4n + 2)j− 2(n + 1) + i, for i = 2, 4, · · · , 2n,

where all the weights are distinct.
An example of a distance antimagic labeling for 4 f3 can be viewed in Figure 5.

Figure 5. A distance antimagic labeling for 4 f3.

We conclude this section by considering the disjoint union of unicyclic graphs. A sun
Sn is a cycle on n vertices with a leaf attached to each vertex on the cycle. Let the vertex set
of sun V(Sn) = {x1, . . . , xn, y1, . . . , yn}, where d(xi) = 3 and d(yi) = 1.

Theorem 8. For m ≥ 1 and n ≥ 1, mSn is distance antimagic.

Proof. Let V(mSn) = {xj
i , yj

i | i = 1, . . . , n, j = 1, 2, . . . , m}. We define a vertex labeling f
of mSn as follows.

f (xj
i) = (m + j− 1)n + i, for i = 1, 2, . . . , n,

and
f (yj

i) = (j− 1)n + i, for i = 1, 2, . . . , n.

Under the labeling f , the vertex-weights are

ω f (y
j
i) = f (xj

i) = (m + j− 1)n + i, for i = 1, 2, . . . , n,

and

ω f (xj
i) =


2n(m− 1) + 3 + 3nj, for i = 1,
n(2m− 3) + 3(nj + i), for i = 2, 3, . . . , n− 1,
n(2m− 1) + 3nj, for i = n,

which are all distinct.
An example of a distance antimagic labeling for 3S7 is in Figure 6.

With several examples that we have presented, more general questions are in
the following.

Problem 2. If G is a non-regular graph containing no {1}-twins, show that nG is distance antimagic.

Problem 3. If G1, G2, . . . Gn are non-regular graphs containing no {1}-twins, show that
⋃n

i=1 Gi
is distance antimagic.
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Figure 6. A distance antimagic labeling for 3S7.

4. Distance-D Graph and D-(Anti)magic Labeling

For any connected graph G, we denote by Gk, 1 ≤ k ≤ diam(G), the distance-k graph of
G, as the graph whose vertices are those of G and whose edges are the 2-subsets of vertices
at mutual distance k in G [22]. In particular, G1 = G. On the other hand, the k-th power
graph of a graph G, Gk, is another graph that has the same set of vertices, but in which two
vertices are adjacent when their distance in G is at most k [23]. Clearly, Gdiam(G) = Kv.

We generalize the two aforementioned graphs by defining the distance-D graph of
G, GD, as the graph with the same vertices as G, where two vertices are adjacent when
their distance in G is in D. Clearly, the distance-k graph Gk = G{k} and the kth power
Gk = G{0,1,2,...,k}. (For examples, see Figures 7 and 8.)

Figure 7. (a) A {2}-magic labeling for C8. (b) A distance antimagic labeling for (C8){2}.

Figure 8. (a) A {0, 2}-antimagic labeling for a binary tree T. (b) A {0, 1}-antimagic labeling for T{0,2}.

The next theorem shows that when G is D-(anti)magic, GD is either {1}-(anti)magic
or {0, 1}-(anti)magic.

Theorem 9. Let G be a D-(anti)magic graph.
1. If D does not contain 0 then GD is {1}-(anti)magic.
2. If D contains 0 then GD is {0, 1}-(anti)magic.

Proof. Suppose that f is an (anti)magic labeling of G. From the definition of GD, for any
x, N(x) in GD is the same with ND(x) in G. If D does not contain 0, then ∑y∈N(x) f (x)
in GD is the same with ∑y∈ND(x) f (x) in G. On the other hand, if D contains 0, then
f (x) + ∑y∈N(x) f (x) in GD is the same with ∑y∈ND(x) f (x) in G.
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However, since it is relatively easier to find a distance (anti)magic labeling for a graph,
the converse of Theorem 9 is more interesting for us. Let Gn be the set of graphs of order
n. Define a function FD : Gn → Gn, where FD(G) = GD. It is clear that FD is neither
injective nor surjective. For instance, as depicted in Figure 9, (C4){2} is 2P2, however there
is also another graph, in this case P4, where (P4){2} = 2P2. Notice that both C4 and P4 are
{2}-antimagic with the same vertex labeling.

Figure 9. (a) A {2}-antimagic labeling for C4. (b) A distance antimagic labeling for (C4){2}. (c) A
{2}-antimagic labeling for P4.

Despite the fact that FD is not invertible, we can still state the following.

Theorem 10. Suppose one of the following conditions holds:

1. Let D be a distance set not containing 0 and G be a {1}-(anti)magic graph.
2. Let D be a distance set containing 0 and G be a {0, 1}-(anti)magic graph.

If there exists a graph H such that G = HD, then H is D-(anti)magic.

Theorem 10 hints that if we manage to find a distance (anti)magic graph, we might as
well find D-(anti)magic graphs for suitable sets of Ds.
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