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Abstract: This paper presents several types of Johnson–Tzitzeica theorems. Graph diagrams are used
in this analysis. A symmetric scheme is derived, and new results are obtained and open problems
stated. We also present results relating the graphs and the Yang–Baxter equation. This equation has
certain symmetries, which are used in finding solutions for it. All these constructions are related to
integrable systems.
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1. Introduction

There are several purposes of the current work: to present the Johnson–Tzitzeica
theorem and related (open) problems, to relate the Johnson–Tzitzeica theorem to graph
theory, and to point out possible applications of the Johnson–Tzitzeica theorem in integrable
systems and in the Yang–Baxter equation theory. Historical aspects are also considered.

According to [1], a set of Johnson circles refers to three circles of equal radius and a
common point of intersection. In the Johnson–Tzitzeica theorem, “the figure is so simple
(especially as it can be drawn and the theorem verified with a coin or other circular object)
that it seems almost out of the question that the fact can have escaped detection. Even if
geometers have overlooked it, someone must have noticed it in casually drawing circles.
But if this were the case, it seems a theorem of sufficient interest to receive some prominence
in the literature, and therefore ought to be well known” (cf. [2]).

In the next section, we present the Johnson–Tzitzeica theorem. A general symmetric
scheme is derived, some open problems proposed, and a new theorem proven. There exists
a whole field of discrete integrable geometry, where concepts from elementary geometry to
nonlinear continuum or discrete systems of equations are studied. The most similar ideas
can be found in a series of papers by A. Doliwa, where the elementary incidence geometry
is a source of interesting (usually generic) problems in the theory of completely integrable
systems. The paper [3] on circular lattices and then Desargues maps entered into the scene,
leading to several steps to the Yang–Baxter equations through integrable systems and the
famous Hirota–Miwa equations (see, for example, the papers [4–6]).

In Section 1, we associate a graph diagram with the Johnson–Tzitzeica theorem. This
point of view eventually leads to new results both in geometry and in graph theory.
Section 4 is a gentle introduction to the Yang–Baxter equation (see, for example, [7–12]).
This equation has certain symmetries, which are used in finding solutions for it, and it
plays an important role in integrable systems. V. Drinfeld (see [13]) suggested considering
“set-theoretical” solutions to the Yang–Baxter equation (see also [14,15]). We first restrict our
attention to the set-theoretical solutions. We recall that graph diagrams are important in the
proof of a theorem and in visualizing some results. We present the Yang–Baxter equation in
the vectorial space framework, proposing other similar equations. The relationship among
these equations are studied using a graph diagram. Notice that the method presented in
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in the beginning of this section could be applied for finding solutions to them. The last
section presents some historical aspects related to the Tzitzeica–Johnson theorem, several
remarks (on integrable systems), and some research problems.

2. The Tzitzeica–Johnson Theorem and Pictorial Mathematics

In a talk at the 12th International Workshop on Differential Geometry and Its Applica-
tions, UPG Ploiesti 2015, Florin Caragiu explained that there exists a special mathematical
discourse, called “proofs without words”. This discourse uses pictures or diagrams in
order to boost the intuition of the reader (see [16,17]). The pictorial (diagrammatic) style of
mathematical language is much appreciated by both educators and researchers in mathe-
matics. Being very easy to grasp, some pictorial-style problems are similar to some nuts
being small, but for which we need an entire “artillery” in order to crack them.

We now consider the Tzitzeica–Johnson problem (see, for example, [18]).
Let X , Y , and Z be three circles of radius r. Let us suppose that X ∩ Y = {O, A}

X ∩ Z = {O, B}, and Y ∩ Z = {O, C}. Then, there exists a circle of radius r through
A, B, and C (see Figure 1).
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Figure 1. The three coins problem (Tzitzeica 1908; Johnson 1916).

The above theorem can be included in a more general scheme (see Figure 2).
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Figure 2. A mathematical scheme. If X , Y , and Z have certain properties, then there exists a related
T , with the same properties.

One could include in this scheme the inclusion–exclusion principle, for three sets:
|X ∪Y ∪ Z| = |X|+ |Y|+ |Z| − |X ∩Y| − |X ∩ Z| − |Y ∩ Z|+ |X ∩Y ∩ Z|.

Let, for example, the case be as follows: |X| = |Y| = |Z| = 7, |X ∩ Y| = |X ∩ Z| =
|Y ∩ Z| = 1, and |X ∩ Y ∩ Z| = 1. Then, there exists a set T, with |T| = 7 that contains
elements from all possible (sub)sets.

One could better visualize the relationship between the inclusion–exclusion principle
and the mathematical scheme from Figure 2, if we represent the elements of the sets X, Y, Z,
and T as circular lattice points.

Notice that Tzitzeica–Johnson’s theorem has many generalizations [18] and interpreta-
tions related to the above mathematical scheme (from Figure 2).

The dual Desargues theorem can be interpreted in the light of the above scheme by
using arrangements of (three) colored lines.

The hypothesis is as follows:
X = {(d, f , h) such that d ∩ f ∩ h = P}
Y = {(d′, f , h′) such that d′ ∩ f ∩ h′ = Q}
Z = {(d′′, f , h′′) such that d′′ ∩ f ∩ h′′ = R}
X ∩ Y ∩ Z = { f }

Figure 1. The three coins problem (Tzitzeica 1908; Johnson 1916).
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One could include in this scheme the inclusion–exclusion principle, for three sets:
|X ∪Y ∪ Z| = |X|+ |Y|+ |Z| − |X ∩Y| − |X ∩ Z| − |Y ∩ Z|+ |X ∩Y ∩ Z|.

Let, for example, the case be as follows: |X| = |Y| = |Z| = 7, |X ∩ Y| = |X ∩ Z| =
|Y ∩ Z| = 1, and |X ∩ Y ∩ Z| = 1. Then, there exists a set T, with |T| = 7 that contains
elements from all possible (sub)sets.

One could better visualize the relationship between the inclusion–exclusion principle
and the mathematical scheme from Figure 2, if we represent the elements of the sets X, Y, Z,
and T as circular lattice points.

Notice that Tzitzeica–Johnson’s theorem has many generalizations [18] and interpreta-
tions related to the above mathematical scheme (from Figure 2).

The dual Desargues theorem can be interpreted in the light of the above scheme by
using arrangements of (three) colored lines.

The hypothesis is as follows:
X = {(d, f , h) such that d ∩ f ∩ h = P}
Y = {(d′, f , h′) such that d′ ∩ f ∩ h′ = Q}
Z = {(d′′, f , h′′) such that d′′ ∩ f ∩ h′′ = R}
X ∩ Y ∩ Z = { f }
X ∩ Y = {A, A′} ∪ { f }
Y ∩ Z = {B, B′} ∪ { f }
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X ∩Z = {C, C′} ∪ { f }
The conclusion is as follows:
There exists a triple (l, m, n) through A, A′, B, B′, C, and C′.
Tzitzeica–Johnson’s theorem can be interpreted in terms of disks:
– “If three disks of the same radius have a common point of intersection, then they

contain inside of their union a forth disk with the same radius.”;
– “If three disks X , Y and Z of the same radius have a common point, then there

exists a forth disk of the same radius which includes (X ∩ Y) ∪ (X ∩Z) ∪ (Y ∩ Z).”
It is an open problem to prove a similar statement for a domain bounded by an

arbitrary closed convex curve. In other words, we conjecture that if we consider a domain
X bounded by an arbitrary closed convex curve and two copies of X , denoted by Y and Z ,
such that X ∩ Y ∩ Z 6= ∅, then there exists another copy of X , denoted by T , such that
(X ∩ Y) ∪ (X ∩Z) ∪ (Y ∩ Z) ⊂ T ⊂ X ∪ Y ∪ Z .

Even the case when X is a square is very difficult.
We now propose a new construction for a set of Johnson circles (in Figure 3).
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At this moment, we can present a new theorem.
For a set of Johnson circles, let R be the intersection point between the tangent in O to

the third circle and the line BC, Q the intersection point between the tangent in O to the
second circle and the line AC, and P the intersection point between the tangent in O to the
first circle and the line AB.

Then, P, Q, and R are collinear points (see Figure 4 below).
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Proof. The proof of the above theorem is based on the properties of the power of a circle
and on Desargues’ theorem. It is the limit case from Figure 5.
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It is an open problem to find the relationship between the line through P, Q, and R
and the circle through A, B, and C.

3. The Tzitzeica–Johnson Theorem and Graph Diagrams

We would like to transfer the Tzitzeica–Johnson theorem into the graph theory setting.
We first associate a graph diagram with the Johnson–Tzitzeica theorem (recall Figure 1).
If, we denote by X the center of the circle X , by Y the center of the circle Y , and by Z the
center of the circle Z , then we could consider the following graph diagram related to the
Johnson–Tzitzeica theorem (see Figure 6).
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Figure 6. The hypothesis of a Johnson–Tzitzeica theorem for graph diagrams: we consider an
oriented graph with 7 vertices and 9 oriented edges.

The conclusion of this Johnson–Tzitzeica theorem for graph diagrams is that this
graph, from Figure 6, could be embedded in a regular graph. In other words, we would
like the in-degree or the out-degree of each vertex of the new graph to be equal to three.

The proof is given in Figure 7.

Y
���

���
��:

�
�
�
�
�
��

Z�
�

�
�
�	

HH
HHY

X�
�

�
�	

@
@@R

A

C

B

�

�
�
�
�
�
��7

O
?

T
@

@@I

HHHj

�
�
�
��

Figure 7. Proof of a Johnson–Tzitzeica theorem for graph diagrams: there exist a new vertex T and 3
oriented arrows making all the vertices in the graph sinks or sources of degree 3.

We consider an example of how this approach could lead to a geometry theorem.
We now consider a mixed graph related to a set of Johnson circles (see Figure 8).
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Figure 8. A mixed graph.

We embed this mixed graph into a (regular) mixed graph (see Figure 9).
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Going back to geometry, we obtain a new theorem.
For a set of Johnson circles, the circles of radius r with centers A, B, and C meet at one

point (see Figure 10).

Proof. According to the Tzitzeica–Johnson theorem, there exists a circle of radius r through
A, B, and C. Let T be the center of this circle. It follows easily that the circles of radius r
with centers A, B, and C meet at the point T (see Figure 10).
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Figure 10. The circles of radius r with centers A, B, and C meet at the point T.

The question of how to embed an oriented graph in a regular graph (how many
vertices need to be added, etc.) could be a research theme in graph theory (with implications
for geometry).

4. Yang–Baxter Equations, Relations, and Graphs

If X is a set, let S : X× X → X× X be a function, S12 = S× I and S23 = I × S.
Using the above notation, the set-theoretical Yang–Baxter equation reads:

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 (1)

We use the following notation for a relation R on the set X: we denote by Rop the
opposite relation of R; we denote by R̄ the complementary relation of R.

(D. Hobby and F. F. Nichita [19]) Let X be a set and R ⊂ X× X a reflexive relation on

X. We define the function S = SR : X× X → X× X by S(u, v) =

{
(u, v), if (u, v) ∈ R;
(v, u), otherwise.

Then, S satisfies (1) if and only if R ∪ Rop is an equivalence relation and R̄ is a strict
partial order relation on each class of R ∪ Rop.

The proof from [19] relies heavily on graph diagrams. After many cases are in-
vestigated, the theorem is proven. An example using Hasse diagrams and graphs is
then presented.

For each of the relations represented by the graphs from Figures 6 and 7, if we consider
SR̄ (S for the complementary relation), we obtain a solution for (1).
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We continue the section working over a generic field k. The tensor products are defined
over k. Let V be a vector space over k. Let I = IV : V → V be the identity map of the space
V. We denote by τ : V ⊗V → V ⊗B V the twist map defined by τ(v⊗B w) = w⊗B v. For
R : V ⊗B V → V ⊗B V, a k-linear map, let R12 = R⊗B I, R23 = I ⊗B R : V ⊗B V ⊗B V →
V ⊗B V ⊗B V. In a similar manner, we denote by R13 a linear map acting on the first and
third component of V ⊗V ⊗V. It turns out that R13 = (I ⊗B τ)(R⊗B I)(I ⊗B τ).

A Yang–Baxter operator is a k-linear map R : V ⊗B V → V ⊗B V, which satisfies the
braid condition (the Yang–Baxter equation):

R12 ◦ R23 ◦ R12 = R23 ◦ R12 ◦ R23. (2)

Usually, we also require that the map R be invertible.
An important observation is that if R satisfies (2), then both R ◦ τ and τ ◦ R satisfy the

quantum Yang–Baxter equation (QYBE):

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12. (3)

We now consider other (systems of) equations for a k-linear map R : V ⊗B V →
V ⊗B V:

R12 ◦ R23 = R13 ◦ R12 = R23 ◦ R13 (4)

R23 ◦ R12 = R12 ◦ R13 (5)

R12 ◦ R13 ◦ R12 ◦ R23 = R23 ◦ R13 ◦ R23 ◦ R12 (6)

(R12 ◦ R23 ◦ R12 − R23 ◦ R12 ◦ R23) ◦ (R12 ◦ R13 ◦ R23 − R23 ◦ R13 ◦ R12) = 0 (7)

R = XY , R12 ◦ X13 ◦ R23 ◦Y12 = R23 ◦ X13 ◦ R12 ◦Y23 (8)

R ◦ R = I ⊗ I (9)

R12R23R13R23 + R23R12R13R12 = R23R12R23R12R13R23 + R12R23R12R23R13R12 (10)

(i) If a k-map R : V ⊗B V → V ⊗B V verifies (4) and (5), then R is a common solution
for (2) and (3);

(ii) If a k-map R : V ⊗B V → V ⊗B V verifies (2) or (3), then R is a solution for (7);
(iii) If a k-map R : V ⊗B V → V ⊗B V verifies (2) or (3), then it is a solution for (8);
(iv) If a k-map R : V ⊗B V → V ⊗B V verifies (2), (3) and (9), then it is a solution

for (6);
(v) If a k-map R : V ⊗B V → V ⊗B V verifies (7) and (9), then it is a solution for (10).

Proof. (i) We only sketch the proof of the first claim: R23 ◦ R12 ◦ R23 = R23 ◦ R13 ◦ R12 =
R12 ◦ R23 ◦ R12, etc (see [12]).

(ii) The proof is direct;
(iii) For X = R and Y = I ⊗B I, this equation becomes Equation (3). For X = I ⊗B I

and Y = R, this equation becomes Equation (3);
(iv) R23 ◦ R13 ◦ R23 ◦ R12 = R23 ◦ R13 ◦ R12 ◦ R12 ◦ R23 ◦ R12 = R12 ◦ R13 ◦ R23 ◦ R23 ◦

R12 ◦ R23 = R12 ◦ R13 ◦ R12 ◦ R23;
(v) The proof is direct.

We could present the above results using a graph diagram (see Figure 11).
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Figure 11. A graph diagram describing the relations among the above equations.

5. Applications, Historical Aspects, and Final Comments

The Romanian mathematician Gheorghe Tzitzeica is also known for a result on the
geometry of circles and triangles in the plane, referred to as Tzitzeica’s five lei coin problem,
a problem he proposed (and solved) at the “Gazeta Matematica” contest in Galati in 1908.
The problem was posed independently by Roger Arthur Johnson in 1916 [20,21].

There exists a whole field of discrete integrable geometry, where similar concepts, from
elementary geometry to nonlinear continuum or discrete systems of equations, have been
studied for many years. The paper [3] on circular lattices where the Miguel theorem plays
the crucial role and then Desargues maps entered into the scene, leading to several steps to
the Yang–Baxter equations. It can be shown that the Miguel theorem implies the dual of
the Johnson–Tzitzeica theorem (in this case we take into consideration the midpoints of the
edges of the given triangle).

Related to another section of the current paper, one could attempt to find solutions for
Equations (4)–(10) using the function SR (see Theorem 4).
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