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Abstract: The double symmetry model satisfies both the symmetry and point symmetry models
simultaneously. To measure the degree of deviation from the double symmetry model, a two-
dimensional index that can concurrently measure the degree of deviation from symmetry and point
symmetry is considered. This two-dimensional index is constructed by combining two existing
indexes. Although the existing indexes are constructed using power divergence, the existing two-
dimensional index that can concurrently measure both symmetries is constructed using only Kullback-
Leibler information, which is a special case of power divergence. Previous studies note the importance
of using several indexes of divergence to compare the degrees of deviation from a model for several
square contingency tables. This study, therefore, proposes a two-dimensional index based on power
divergence in order to measure deviation from double symmetry for square contingency tables.
Numerical examples show the utility of the proposed two-dimensional index using two datasets.

Keywords: confidence region; measure; point symmetry; power divergence; symmetry

1. Introduction

Consider an r× r square contingency table that has the same row and column classifi-
cations with nominal categories. Let πij denote the probability that an observation will fall
in the ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r).

The symmetry (S) model proposed by Bowker [1] is defined by

πij = πji for i 6= j.

This S model is the most commonly used model for analyzing square contingency
tables [2–4].

The point symmetry (PS) model proposed by Wall and Lienert [5] is defined by

πij = πi∗ j∗ for i, j = 1, . . . , r,

where i∗ = r + 1− i and j∗ = r + 1− j. This PS model assumes the point of symmetry as a
center of the square contingency table.

The double symmetry (DS) model proposed by Tomizawa [6] is defined by

πij = πji = πi∗ j∗ = πj∗i∗ for i, j = 1, . . . , r.

This DS model indicates that both the S and PS model hold.
When a model does not hold, we may be interested in measuring the degree of devia-

tion from the model. For square contingency tables with nominal categories, Tomizawa
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et al. [7] proposed an index Φ(λ)
S that represents the degree of deviation from the S model,

Tomizawa et al. [8] proposed an index Φ(λ)
PS that represents the degree of deviation from

the PS model, and Yamamoto et al. [9] proposed an index Φ(λ)
DS that represents the degree

of deviation from the DS model.
This study focuses on the index that represents the degree of deviation from the

DS model. Although the DS model satisfies both the S and PS models simultaneously,
the above index Φ(λ)

DS cannot concurrently measure the degree of deviation from S and
PS. To address this gap, Ando et al. [10] proposed a two-dimensional index that can
concurrently measure those. This two-dimensional index was constructed by combining
existing indexes Φ(λ)

S and Φ(λ)
PS . Ando et al. [10] points out that it is necessary to construct

as a two-dimensional index rather than a univariate index because existing indexes Φ(λ)
S

and Φ(λ)
PS are not independent. Ando et al. [10] considered three datasets: (1) the degree

of deviation from the S model is large but the degree of deviation from the PS model is
small, (2) the degree of deviation from the S model is small but the degree of deviation
from the PS model is large, and (3) both the degree of deviation from the S model and the
PS model are large. By using these datasets which have a different structure with respect to
the deviation from the DS model, Ando et al. [10] showed that the all values of the index
Φ(λ)

DS applied to these datasets are the same, whereas all the values of the two-dimensional
index are different. Thus, this two-dimensional index gives more detailed results than the
index Φ(λ)

DS .

On the other hand, existing indexes Φ(λ)
S , Φ(λ)

PS and Φ(λ)
DS are constructed using power

divergence, while the two-dimensional index is constructed using only Kullback-Leibler
information, which is a special case of power divergence. Moreover, the power diver-
gence includes several divergences, for example, the power divergence with λ = −0.5 is
equivalent to the Freeman-Tukey type divergence, the power divergence with λ = 1 is
equivalent to the Pearson chi-squared type divergence. For details on power divergence,
see Cressie and Read [11], Read and Cressie [12]. Previous studies (e.g., [7,8]) pointed out
that it is important to use several indexes of divergence to accurately measure the degree of
deviation from a model. This study proposes a two-dimensional index that is constructed
by combining existing indexes Φ(λ)

S and Φ(λ)
PS based on power divergence.

The rest of this paper is organized as follows. In Section 2, we propose a generalized
two-dimensional index for measuring the degree of deviation from DS. In Section 3, we
develop an approximate confidence region for the proposed two-dimensional index. We
then use numerical examples to show the utility of the proposed two-dimensional index
in Section 4. We also present results obtained by applying the proposed two-dimensional
index to real data. We close with concluding remarks in Section 5.

2. Two-Dimensional Index to Measure Deviation from DS

We propose a generalized two-dimensional index for measuring deviation from DS in
square contingency tables. The proposed two-dimensional index can concurrently measure
the degree of deviation from S and PS. The proposed two-dimensional index is based on
power divergence.

Assume that πij + πji > 0 for all i 6= j, and πij + πi∗ j∗ > 0 for all (i, j) ∈ E, where

E =

{
{(i, j)|i, j = 1, . . . , r; (i, j) 6= ((r + 1)/2, (r + 1)/2)} (r is odd),
{(i, j)|i, j = 1, . . . , r} (r is even).

In order to measure the degree of deviation from DS, we consider the following
two-dimensional index:

Ψ(λ) =

(
Φ(λ)

S
Φ(λ)

PS

)
(λ > −1),
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where indexes Φ(λ)
S and Φ(λ)

PS are those considered by Tomizawa et al. [7] and Tomizawa
et al. [8], respectively (see the Appendixes A and B for the details of these indexes). Note
that the λ is a real value and is chosen by the user. We recommend choosing the λ
(e.g., −0.5, 0, 1) corresponding to the famous divergence. When λ = 0, the proposed
two-dimensional index is equivalent to the index by Ando et al. [10]. Thus, Ψ(λ) is a
generalization of the index by Ando et al. [10]. The two-dimensional index Ψ(λ) has
the following characteristics: (i) Ψ(λ) = (0, 0)′ if and only if the DS model holds; (ii)
Ψ(λ) = (1, 1)′ if and only if the degree of deviation from DS is maximum, in the sense
that πij = πj∗i∗ = 0 (then πji > 0 and πi∗ j∗ > 0) or πji = πi∗ j∗ = 0 (then πij > 0 and
πj∗i∗ > 0) for all i 6= j, and either πii = 0 or πi∗i∗ = 0 for i = 1, . . . , r/2 (when r is even)
or i = 1, . . . , (r − 1)/2 (when r is odd); (iii) Ψ(λ) = (1, ∗∗)′ if and only if the degree of
deviation from S is maximum and the degree of deviation from PS is not maximum, in
the sense that πij = 0 (then πji > 0) for all i 6= j; and (iv) Ψ(λ) = (∗∗, 1)′ if and only if
the degree of deviation from PS is maximum and the degree of deviation from S is not
maximum, in the sense that πij = 0 (then πi∗ j∗ > 0) for all (i, j) ∈ E.

3. Approximate Confidence Region for the Proposed Two-Dimensional Index

Let
n = (n11, n12, . . . , n1r, n21, n22, . . . , n2r, . . . , nr1, nr2, . . . , nrr)

′,

π = (π11, π12, . . . , π1r, π21, π22, . . . , π2r, . . . , πr1, πr2, . . . , πrr)
′.

Assume that n has a multinomial distribution with sample size N and probability
vector π. The

√
N(p−π) has an asymptotically Gaussian distribution with mean zero

and covariance matrix D(π)−ππ′, where p = n/N and D(π) is a diagonal matrix with
the elements of π on the main diagonal (see, e.g., Agresti [13]). We estimate Ψ(λ) by
Ψ̂(λ) = (Φ̂(λ)

S , Φ̂(λ)
PS )

′, where Φ̂(λ)
S and Φ̂(λ)

PS are given by Φ(λ)
S and Φ(λ)

PS with πij replaced
by pij, respectively. Using the delta method (see Agresti [13]),

√
N(Ψ̂(λ) − Ψ(λ)) has an

asymptotically bivariate Gaussian distribution with mean zero and covariance matrix

Σ(λ) =

(
∂Ψ(λ)

∂π′

)(
D(π)−ππ′

)(∂Ψ(λ)

∂π′

)′

=

(
σ
(λ)
11 σ

(λ)
12

σ
(λ)
21 σ

(λ)
22

)
,

with σ
(λ)
12 = σ

(λ)
21 . Let

δ = ∑ ∑
i 6=j

πij, ∆ = ∑ ∑
(i,j)∈E

πij.

The elements σ
(λ)
11 , σ

(λ)
12 , and σ

(λ)
22 are expressed as follows:

σ
(λ)
11 =

(
∂Φ(λ)

S
∂π′

)(
D(π)−ππ′

)(∂Φ(λ)
S

∂π′

)′

=
1
δ2

[
∑ ∑

i 6=j
πij

(
Ω(λ)

ij

)2
− δ
(

Φ(λ)
S

)2
]

,

σ
(λ)
12 =

(
∂Φ(λ)

S
∂π′

)(
D(π)−ππ′

)(∂Φ(λ)
PS

∂π′

)′

=
1

δ∆

[
∑ ∑

i 6=j
πij

(
Ω(λ)

ij −Φ(λ)
S

)(
W(λ)

ij −Φ(λ)
PS

)]
,
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σ
(λ)
22 =

(
∂Φ(λ)

PS
∂π′

)(
D(π)−ππ′

)(∂Φ(λ)
PS

∂π′

)′

=
1

∆2

∑ ∑
(i,j)∈E

πij

(
W(λ)

ij

)2
− ∆

(
Φ(λ)

PS

)2
,

where for λ > −1

Ω(λ)
ij =


1

log 2
log
(

2ac
ij

)
(λ = 0),

1
2λ − 1

[
(2ac

ij)
λ − 1 + λac

ji{(2ac
ij)

λ − (2ac
ji)

λ}
]

(λ 6= 0),

W(λ)
ij =


1

log 2
log
(

2cc
ij

)
(λ = 0),

1
2λ − 1

[
(2cc

ij)
λ − 1 + λcc

i∗ j∗{(2cc
ij)

λ − (2cc
i∗ j∗)

λ}
]

(λ 6= 0),

with

ac
ij =

πij

πij + πji
, cc

ij =
πij

πij + πi∗ j∗
.

Note that the asymptotic variances σ
(λ)
11 and σ

(λ)
22 of Φ(λ)

S and Φ(λ)
PS , respectively, have

been given by Tomizawa et al. [7] and Tomizawa et al. [8], however, the asymptotic
covariance σ

(λ)
12 of Φ(λ)

S and Φ(λ)
PS is first derived in this study. An approximate bivariate

100(1− α)% confidence region for the index Ψ(λ) is given by

N(Ψ̂(λ) −Ψ(λ))′Σ̂(λ)
−1

(Ψ̂(λ) −Ψ(λ)) ≤ χ2
(1−α;2),

where χ2
(1−α;2) is the upper 1− α percentile of the central chi-square distribution with two

degrees of freedom and Σ̂(λ) is given by Σ(λ) with πij replaced by pij.

4. Examples
4.1. Utility of the Proposed Two-Dimensional Index

In this section, we demonstrate the usefulness employing several divergences to
compare the degrees of deviation from DS in several datasets. We consider the two artificial
datasets in Table 1. We compare the degrees of deviation from DS for Table 1a,b using
the confidence region for Ψ(λ). Table 2 gives the estimated values of Ψ(λ) and Σ(λ) for
Table 1a,b.

Table 1. Two artificial datasets.

(a) (b)

137 71 948 986 801 247 132 104
291 605 400 997 964 973 56 406

1 450 268 361 85 952 333 393
22 645 639 124 809 697 625 727
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Table 2. Estimated indexes Φ̂(λ)
S and Φ̂(λ)

PS and estimated covariance matrix of Ψ(λ) applied to the
data in Table 1a,b.

(a) For Table 1a

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

0 0.346 0.341 0.471 0.278 0.417
1 0.371 0.370 0.472 0.267 0.416

(b) For Table 1b

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

0 0.287 0.259 0.853 0.488 0.538
1 0.348 0.320 1.006 0.557 0.682

From Figure 1, we see that the confidence regions for Ψ(λ) do not overlap for the data
in Table 1a,b. We can conclude that Table 1a,b has a different structure in the degree of
deviation from DS. That is, Table 1a,b has a different structure with regard to the degree of
deviation from S or PS. From Figure 1, when λ = 0, we can conclude that the degree of
deviation from DS for Table 1a is greater than that for Table 1b, but when λ = 1, we cannot
conclude this. We should, therefore, examine the value of the two-dimensional index using
several λ to compare the degrees of deviation from DS for several datasets.
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(b) λ = 1
Figure 1. Aproximate 95% confidence regions for Ψ(λ) applied to the data in Table 1a,b.

4.2. Example with Real Data

Consider the data in Table 3, which are taken from Anderson [14].
We are interested in the DS model for these data. We define, for example, the proba-

bility that the forecast and actual figures are “No change”and “Higher”, respectively, as
πN,H , and the probability that they are “Lower”and “No change”, respectively, by πL,N .
For Table 3, we are interested in whether the forecast accuracy changes depending on the
category. When the forecast accuracy does not depend on these categories, the following
holds: (1) the probabilities that the categories of the forecast and the actual are the same and
are equal to one another (πH,H = πL,L); (2) the probabilities that the difference between the
categories of the forecast and the actual is one are also equal (πN,H = πH,N = πN,L = πL,N);
and (3) the probabilities that the difference between the categories of the forecast and the
actual is two are also equal (πH,L = πL,H). The above probability structure indicates the DS
model. Moreover, we are interested in whether the degree to which the forecast accuracy
depends on the categories is greater for prices than for production, or vice versa. Table 4
shows the value of Φ̂(λ)

S and Φ̂(λ)
PS . We shall compare the degrees of deviation from DS for
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Table 3a,b using the confidence region for Ψ(λ). The estimates of Σ(λ), applied to the data
in Table 3a,b, are shown in Table 4.

Table 3. The two tables below show the three-year production and price forecasts, given by experts
in July 1956, and the actual production and price figures from May 1959 for a sample of about 4000
Danish factories; from Andersen [14].

(a) For prices

Actual

Forecast Higher No Change Lower Total

Higher 209 169 6 384
No change 190 3073 184 3447

Lower 3 62 81 146
Total 402 3304 271 3977

(b) For production

Actual

Forecast Higher No Change Lower Total

Higher 532 394 69 995
No change 447 1727 334 2508

Lower 39 230 231 500
Total 1018 2351 634 4003

Table 4. Estimated indexes Φ̂(λ)
S and Φ̂(λ)

PS and estimated covariance matrix of Ψ(λ) applied to
Table 3a,b.

(a) For Table 3a

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

−0.5 0.047 0.054 0.535 0.139 0.411
0 0.077 0.089 1.305 0.315 1.029
1 0.102 0.119 2.105 0.478 1.707

(b) For Table 3b

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

−0.5 0.009 0.036 0.040 0.010 0.110
0 0.015 0.060 0.111 0.027 0.290
1 0.020 0.082 0.208 0.048 0.513

Figure 2 shows the confidence regions of Ψ(λ) applied to the data in Table 3a,b. We
see that the confidence regions of Ψ(λ) do not overlap with regard to several values of λ.
Therefore, it may be concluded that Table 3a,b has a different structure with regard to the
degree of deviation from DS, in the sense that Table 3a,b has a different structure with
regard to the degree of deviation from S. However, we cannot conclude whether the degree
of deviation from DS is greater for Table 3a than for Table 3b. This is because, when both
the degrees of deviation from S and PS are greater for Table 3a than for Table 3b, we can
conclude that the degree of deviation from DS is greater for Table 3a than for Table 3b.
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(a) λ = −0.5
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(b) λ = 0
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(c) λ = 1

Figure 2. Approximate 95% confidence regions for Ψ(λ), applied to the data in Table 3a,b, where
λ = −0.5, 0, 1.

Next, consider the data in Table 5, which are taken from Tomizawa et al. [15].

Table 5. The two tables below show the decayed teeth of 349 female 18–39-year-old patients of a
dental clinic in Sapporo City, for the period 2001–2005; from Tomizawa et al. [15].

(a) For female with left and right decayed teeth

Right

Left 0 to 4 5 to 8 9 and above Total

0 to 4 103 45 1 149
5 to 8 35 84 33 152

9 and above 3 17 42 62
Total 141 146 76 363

(b) For female with lower and upper decayed data

Upper

Lower 0 to 4 5 to 8 9 and above Total

0 to 4 97 62 15 174
5 to 8 20 63 75 158

9 and above 2 6 23 31
Total 119 131 113 363

We shall compare the degrees of deviation from DS for Table 5a,b using the confidence
region for Ψ(λ). The estimates of Σ(λ), applied to the data in Table 5a,b, are shown in
Table 6.
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Table 6. Estimated indexes Φ̂(λ)
S and Φ̂(λ)

PS and estimated covariance matrix of Ψ(λ) applied to
Table 5a,b.

(a) For Table 5a

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

−0.5 0.024 0.064 0.113 0.043 0.142
0 0.040 0.105 0.302 0.127 0.361
1 0.055 0.141 0.540 0.231 0.605

(b) For Table 5b

Index Covariate Matrix

λ Φ̂
(λ)
S Φ̂

(λ)
PS σ̂

(λ)
11 σ̂

(λ)
12 σ̂

(λ)
22

−0.5 0.281 0.233 0.962 0.541 0.472
0 0.414 0.356 1.526 0.890 0.884
1 0.501 0.445 1.718 1.067 1.127

Figure 3 shows the confidence regions of Ψ(λ) applied to the data in Table 5a,b. We
see that the confidence regions of Ψ(λ) do not overlap in both horizontal and vertical axes
with regard to several values of λ. Therefore, we can conclude that the degree of deviation
from DS is greater for Table 5b than for Table 5a.
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(a) λ = −0.5
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(b) λ = 0
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(c) λ = 1
Figure 3. Approximate 95% confidence regions for Ψ(λ), applied to the data in Table 5a,b, where
λ = −0.5, 0, 1.

5. Concluding Remarks

This study proposed a generalized two-dimensional index that concurrently measures
the degree of deviation from S and PS. Since the two indexes (Φ(λ)

S and Φ(λ)
PS ) were used

to measure the degree of deviation from S and PS are not independent (σ(λ)
12 6= 0), it
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is necessary to concurrently measure the degree of deviation from S and PS when we
measure the degree of deviation from DS. To compare degrees of deviation from DS in
several datasets using the proposed two-dimensional index, we should use several λ rather
than one specified λ. Therefore, we recommend to choose the several λ (e.g., −0.5, 0, 1)
corresponding to the famous divergence.

The estimator of the proposed two-dimensional index is the unbiased estimator when
the sample size is large. When the sample size is small, however, the estimator of the
proposed two-dimensional index may be the biased estimator. Through simulation study,
Tomizawa et al. [16] investigated the performance of the estimator Φ̂(λ)

S . Tomizawa

et al. [16] showed that (1) when the sample size was less than 300, the estimator Φ̂(λ)
S had a

bias, (2) when the sample size was above 300, it had a slight bias, and (3) when the sample
size was above 1000, it had almost no bias. We believe that the proposed two-dimensional
estimator Ψ̂(λ) may be similar results to the estimator Φ̂(λ)

S , although it is necessary to
verify by simulation study. In future research, the above concern will be investigated.
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Appendix A. Existing Index Φ
(λ)
S

Assuming that πij + πji > 0 for all i 6= j, the index Φ(λ)
S , which represents the degree

of deviation from S, is expressed as follows:

Φ(λ)
S =

λ(λ + 1)
2λ − 1

I(λ)S ,

where

I(λ)S =
1

λ(λ + 1) ∑ ∑
i 6=j

aij

( aij

bij

)λ

− 1

,

with
δ = ∑ ∑

i 6=j
πij, aij =

πij

δ
, bij =

πij + πji

2δ
.

Appendix B. Existing Index Φ
(λ)
PS

Assuming that πij + πi∗ j∗ > 0 for all (i, j) ∈ E, the index Φ(λ)
PS , which represents the

degree of deviation from PS, is expressed as follows:

Φ(λ)
PS =

λ(λ + 1)
2λ − 1

I(λ)PS ,
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where

I(λ)PS =
1

λ(λ + 1) ∑ ∑
(i,j)∈E

cij

( cij

dij

)λ

− 1

,

with
∆ = ∑ ∑

(i,j)∈E
πij, cij =

πij

∆
, dij =

πij + πi∗ j∗

2∆
.

Note that I(λ)S and I(λ)PS are the power divergence between the two conditional distri-
butions, and the value at λ = 0 is taken to be the limit as λ→ 0.
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