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Abstract: In this paper we study the fourth-order three-dimensional generalized potential Yu-Toda-
Sasa-Fukuyama (gpYTSF) equation by first computing its Lie point symmetries and then performing
symmetry reductions. The resulting ordinary differential equations are then solved using direct
integration, and exact solutions of gpYTSF equation are obtained. The obtained group invariant
solutions include the solution in terms of incomplete elliptic integral. Furthermore, conservation
laws for the gpYTSF equation are derived using both the multiplier and Noether’s methods. The
multiplier method provides eight conservation laws, while the Noether’s theorem supplies seven
conservation laws. These conservation laws include the conservation of energy and mass.

Keywords: three-dimensional generalized potential Yu-Toda-Sasa-Fukuyama equation; Lie symme-
tries; exact solution; conservation laws; Noether’s theorem

1. Introduction

Many natural phenomena of the real world are modelled using nonlinear partial
differential equations (NPDEs). It is therefore important to find their exact solutions
in order to understand the real world better. There have been several studies done on
NPDEs and many researchers have suggested various techniques for finding exact solutions
for such equations, since there is no general theory that can be applied to find exact
solutions. These techniques include the Jacobi elliptic function expansion method [1], the
homogeneous balance method [2], the Kudryashov’s method [3], the ansatz method [4],
the inverse scattering transform method [5], the Backlund transformation [6], the Darboux
transformation [7], the Hirota bilinear method [8], the (G’ /G)—expansion method [9], and
the Lie symmetry method [10-15], just to mention a few.

In the late 19th century, a powerful symmetry-based technique for solving differential
equations (DEs), known today as Lie group analysis, was developed by the Norwegian
mathematician Marius Sophus Lie (1844-1899). This technique is an efficient technique
that can be used to compute exact solutions of DEs. It only became well-known in the early
1960s when the Russian mathematician L. V. Ovsyannikov (1919-2014) demonstrated the
power of these methods for computing explicit solutions of complicated partial differential
equations (PDEs) arising in mathematical physics. Since then, a robust amount of research
based on Lie’s work has been published by various researchers.

The German mathematician Emmy Noether (1882-1935) in 1918 presented a procedure
for deriving conservation laws for systems of DEs that are derived from the variational
principle, and this procedure is referred to as Noether’s theorem [16]. A given DE that
is derived from the variational principle should have a Lagrangian. However, there are
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DEs that are not derived from a variational principle and as a result Noether’s theorem
cannot be invoked to determine conservation laws for such DEs. In such a case, multi-
plier method [12] or Ibragimov’s theorem on conservation laws [17] can be employed to
construct conservation laws. The computation of conservation laws are very important as
they play a vital role in the study of DEs. They describe physical conserved quantities, e.g.,
conservation of mass, energy, momentum, charge, and other constants of motion. They are
also important for the investigation of integrability and uniqueness of solutions. See for
example [16-25]. For the connection between the Lie and Noether symmetries, the reader
is referred to [26,27].

The three-dimensional potential Yu-Toda-Sasa-Fukuyama (3DYTSF) equation given by

Uyxxz — 4y + 3uyy +duytiy; + 22Uzt =0 1)

was introduced in [28] using the strong symmetry, and its travelling solitary wave solutions
were presented. Yan [29] studied Equation (1) and obtained auto-Béacklund transformations.
Using auto-Béacklund transformations, some exact solutions of (1) were found. These
included the non-travelling wave solutions, soliton-like solutions, and rational solutions.
The authors of [30] investigated Equation (1) using homoclinic and extended homoclinic
test techniques, the two-soliton method along with bilinear form method, and obtained
some new exact wave solutions that included periodic kink-wave, periodic soliton, cross
kink wave, and doubly periodic wave solutions. In [31], the exp-function method, with
the aid of symbolic computation, was employed, and new generalized solitary solutions
and periodic solutions with free parameters were obtained. Using a modification of
extended homoclinic test approach, the authors of [32] obtained some analytic solutions
of 3DYTSF Equation (1). In [33], using some 1D subalgebras, group invariant solutions
were constructed for (1) that involve arbitrary functions. Additionally, some particular
solutions were sketched. Exact solutions that included lump solutions and interaction
solutions of (1) were obtained using the generalized Hirota bilinear method [34]. In [35]
analytical solutions and conservation laws for the 2D form of (1) were presented. Also, 2D
and 3D graphical representations of the some solutions were given. N-soliton solutions
were derived for (1) by using bilinear transformation that included period soliton, line
soliton, lump soliton, and their interaction. Moreover, for some solutions their images were
drawn and their dynamic behavior was discussed in [36]. The authors of [37] invoked the
extended homoclininc test and Hirota bilinear method and constructed a class of lump
solutions of (1). Additionally, periodic lump-type solutions were obtained in [37]. In [38],
Equation (1) was reduced to the potential YTSF equation, which is a 2D equation (see also
the ref [35]). General lump solutions of this equation were established and its propagation
path was discovered. By letting u = wy, the authors of [39] increased the order of the (3+1)
YTSEF equation to five and applied Lie symmetry methods and constructed dark, bright,
topological, Peregrine, and multi-soliton.

In this paper, we shall work with the three-dimensional generalized potential Yu-Toda-
Sasa-Fukuyama (3DgYTSF) equation, namely

Uxxxz — 20Uty + By + 20UxUxz + Qlzlyy = 0, )

where «, B, and <y are real constants. We seek to derive its exact solutions by using symmetry
analysis, along with various other methods. Moreover, conserved quantities of Equation (2)
are established using two approaches: multiplier approach and Noether’s approach.

2. Solutions of the 3DgYTSF Equation

In this section, we firstly present Lie point symmetries and symmetry reductions of
3DgYTSF Equation (2). Moreover, we obtain travelling wave solution of (2) by employing
Kudryashov’s method.
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2.1. Lie Point Symmetries

Here, we compute Lie point symmetries for the 3DgYTSF Equation (2). The vector
field for this Equation (2) is written as

SR P i g ®

where Cl, §2, 63, 64, and 7 are functions of the variables f, x, y, z, and u. We recall that (3) is
a Lie point symmetry of (2) if

XHE|g—o =0, (4)
where E = tyyyz — 20ty + Puiyy + 201y Uyz + KUz Uy Here X4 is the fourth prolongation [12]
of (3) that is defined by
0 0 d 0 d 0
X =x + gt + + +
Cz C4 @12 i {2 . {33 ity 024 e
8
+ @2224T @)
XXXz

and the coefficients {'s are given by [12]

71 = Di(n) — wyDy(&") — uxDy(&%) — uyDy(&%) — uDy(&*),

{2 = Dx(17) —utDy( ) uxDy(& ) - uny(§3) - ”sz(éA)/
(3= Dy(ﬂ) ”tDy( 1) _”ny( ) yDy( 3) ”sz( )

Ca = D:(n) —uD:z(¢ )_ uxD: (& ) uyD-(& 3) uzD-(& ),

012 = Dz({1) — unDx (&) — upx Dy (E%) — Mtny(§3) — u Dy (8%),
022 = Dx(02) — uxDx (8 ) — Uxx Dy (& ) - “xny(Cs) — Uy Dy (64)
033 = Dy(@B) “tyD (¢ ) - “xyDy( ) - ”nyy(§3> - ”ysz((;A)
o1 = D2(02) — utx D2 (&) — 1y D2 (E%) — 1ty D2 (82) — uxz D1 (EY),

(

52224 = D, €222) - utxxxDz(g ) — Uxxxx Dz (C ) - uxxxyDz(é'B) - uxxxzDz((;A)‘

From Equation (4) we get

0 0 ] 0 0 0
{X+ Cza + @4672 +C12 T + 02 i + (33 Bitgy + 024 e

+02004 EY } (uxxxz — 20y + ,Buyy + 20Uy Uy + l’éuz”xx) @) =0. (6)
Upon expanding the determining Equation (6), we attain
alolxz + algtlxx — 20012 + alootiz + P33 + 2alp41ix + 52224’ =0.

@)

Substituting values of {5, C4, {12, (22, {33, {24, and {204 in the above equation, replacing
Uxxxz by 20ty — Bulyy — 20ty lly; — Uiz Uyxy and splitting on the derivatives of u, we get the
over-determined system of twenty-two linear PDEs

& =08,=0,8=0,8,=0,8} =025 - —& =0, & —al} =0, =0,
§=08=08=08=0¢,=08,=0¢,=08=0 =0,

E 448 38 =0,y + 28 — & =0, e + & =0, 2 + 287 =0,

Bilyy + 208t = 0. @)
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Solving the above equations, we acquire the infinitesimals

=t + Gy,

&= —Cix +2C3x + %yl—"{(t) + F5(t),
> =Gy +Fi(t),

& =3C1z —4C3z + B (1),

2 o

FyzF{’(f) - Byze”(t) — xF3(t) — 2zF3(t) + yFs(t) + Fa(t),
where Cy, ..., C; are arbitrary constants and F]-, j=1,2,...,5 are arbitrary functions of ¢.
By taking F(t) = 1,j = 1,2,...,5, we obtain the following Lie point symmetries of the

n=Cu—2Cu —

3DgYTSF Equation (2):
d d ] d d d
Xl - gl XZ - gl X3 - @/ X4 - &/ X5 - %r X6 - y%;

d d d d d d d d
X7 = tg—x5 +3Z£+M£, Xg = ZXE —f—y@ 4Z£—2M£.

By solving the Lie equations together with initial conditions

dt _ _ dx _

% = 1( /frgrzlﬁ)r t|a:0 =1L E = 52( ,X,y',Z,ﬂ), x|”:O =%
dy _ dz _

L= Pxyz0), o=y, T = EERG20), 2o =2,
di_ (t,%,79,21), i u

dﬂ - T] 7 /]// 7 7 a=0 — U,

we obtain the following group transformations that are generated by the Lie symmetries
Xi(i=12,...,8):

Ty: (§%9,z0) — (t+a,x,y,z,u),

T: (;%9,z0) — (t,x+a,y,zu),

Ts: (8 %,9,20) — (t,x,y+a,zu),

Ty: (8%,9,20) — (t,x,y,z4+a,u),

Ts: (§,%,9,z0) — (t,x,y,z,u+a),

Te: (;%,7,2,0) — (t,x,y,z,ay +u),

Ty: (8 %,7,2,10) — (te", xe” ,y,ze ? ue®),
Ts: (F%,7,20) — (t,xe 2", ye ", ze*, ue®).

Consequently, if u = M (t,x,y,z) is a known solution of 3DgYTSF Equation (2), then
by using the group of transformations T; (i = 1,2,...,8), so are the functions

up =M(t+a,x,y,z2),

uy =M(t,x+a,y,z),

uz =M(t,x,y+a,z),

uy =M(t,x,y,z+a),

us =M(t,x,y,z) +a,

ug = M(t, x,y,z) — ay,

uy = M(te", xe %, y,ze>")e",
ug = M(t, xe_z”,ye_”,ze4“)62”
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2.2. Group Invariant Solutions under X1, ..., Xa

We now consider the linear combination of the four translation symmetries, namely
X = X1 +aXy + bX3 + cX4, where a,b, ¢ are arbitrary constants. Solving the associated
characteristics equations of X, we acquire the invariants

f=x—at, g=y—bt, h=z—ct, u=0(f,gh)

and using these invariants, the 3DgYTSF Equation (2) reduces to the NPDE
fofh + 2w (aeff + beg + Cefh) + Bge + 20‘9f9fh + Dé@heff =0. (8)

The Lie symmetries of (8) are

d d d d d
grrz_%/ré_%/rél_%/ré_g%/

2 be\ 0 d 1 (—4ah — 4cf — 26 2ab?h\ 9
ré—(3f+“g>+g+(( 1 of )+ 20 )ae’

Ty =

36 /df °dg \3 p
Cfabg 1\ 9 . (1(—4ah+2cf +60)p+2ab?h 9
= (53 )ar a5 B )i

Now, utilizing the symmetry I'1 + dI'; + el'3 with d, e being arbitrary constants, we
obtain the three invariants

r=g—df, s=h—ef, 0 =¢(r5s),
which reduces Equation (8) to the NPDE

- dB(Prrrs - 3d2€4)rrss - 3d624)rsss - 33¢ssss + 2“ad2¢rr + 40‘(15134)1'5 + 20‘11624755
— 20bd ¢y, — 2abepys — 2acdprs — 2ucedss + Bprr + 20(d24)74)r5 + 2adedy Pss
+ 4“d3¢s¢rs + 3“324754755 + “dz‘Ps(Prr =0, )

The symmetries of (9) include

0 0 0
Yp= o, X0 = o 232%

and utilizing the symmetry ¥ = ¥ + w2, where w is a constant, we obtain two invariants

§=s—wr, ¢=19(3)

Using these invariants, Equation (9) reduces to the nonlinear ordinary differential
equation (NODE)

<2aad2w2 + 2aae? + 2abew + 2acdw + Bw? — daadew — 2abdw? — Zace) y”
- (6zxdew — Bad?w? — 3zxez) Yy + <3d62w — &+ i - 3d23w2) P =0,
which we rewrite as
Ay" — By'y" +Cy"" =0, (10)

where A = 2aad’w? + 2aae® + 2abew + 2acdw + Bw? — 4aadew — 2abdw? — 2ace,
B = 6adew — 3ad?w? — 3ae?, and C = 3de?w — €% + w3d® — 3d2ew?.



Symmetry 2021, 13, 2058

6 o0f 17

2.3. Solution via the Incomplete Elliptic Integral

We now obtain the solution of 3DgYTSF Equation (2) in terms of the incomplete elliptic
integral. Twice integration of Equation (10) gives

1
Cy'? — §B¢’3 + AP? 42019’ +2¢) =0, (11)

where ¢y, ¢, are integration constants. By letting ¢’(¢) = ¥(¢), Equation (11) transforms to

B A 2c 2c
1{1/2 _ 1};3 _1If2 1.‘}’ 2 — 12
el ter+e¥+— 0, (12)

which has the well-known general solution [40,41]

_ 2] [B(7r1—73) 2 2_ M7
Y(@) =7+ (n—72)em { — e &%) X } X = po—— (13)

where 71 > 792 > 73 are the real roots of the cubic polynomial ¥3 — (3A/B)¥? —
(6c1/B)Y — (6c2)/B = 0, (cn) is the Jacobi cosine function and & is arbitrary constant. In-
tegration of Equation (13) yields the expression for ¢(&), and thus reverting to the variables
t,x,y,z,u, we gain the solution of 3DgYTSF Equation (2) as

EllipticE{sn( W(g — &), Xz) , XZ}

_ w4
+ {72 —(n- 72)%}(5 —Go) + ko, (14)

12C(71 — 72)?

M2 =\ B

where ko, {o are constants, { = (ae — ¢ + bw — awd)t — (e + wd)x — wy + z and EllipticE|g, k|
being the incomplete elliptic integral given as [42,43]

v 1 — m252
EllipticE[v, m] = /0 1_—171525 s.
The wave profile of the periodic solution (14), for parametric values 71 = 102,
Y = 53,793 = —58,C = —07,B = 025,¢c1 = 12,z = 0,e = 05,d = 0.25,
omega = —1.01,a = —4.5,¢c = —0.6 at t = —15 is given in Figure 1. We note that

this solution gives a periodic wave graphics, since this general solution is periodic

10

) =
~
y 5 \\‘ﬂw -10
10

Figure 1. The 3D and 2D solution profile of (14).

2.4. Group Invariant Solution under Xy
Here we consider the Lie symmetry X7, which is given by

0 0 0
X—+3z—+u—

J
X7:t§_ ox 0z ou’
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Solving the associated characteristic equations for X7, we accomplish the invariants

z

f:tx’g:y/h:t3/

o="1
f

The use of these invariants reduces the 3DgYTSF Equation (2) to
q)fffh — 4D(q)f — Zafq)ff + 606]’lq3fh + ‘Bq)gg + 20c<1>fd>fh + a(I)hq)ff =0. (]5)

Equation (15) possesses six Lie symmetries

0 0 0 0 0
@,Tz—gaﬁb,ra—aﬁb,m—g%—%az,
IO d 3 9 6ag”) 0

The symmetry I'y gives three invariants g,h, U = ® — 2fh and consequently, the
group-invariant solution is

I =

0P’

(f,8h) = U(g,h) +2fh,
which reduces Equation (15) to

120

whose solution is given by

U= —6[;"g2h + gM(h) +K(h),

where M and K are functions of h. Thus, the invariant solution of the 3SDYTSF Equation (2)
under the symmetry X7 is

2

_ 2xz bayz z z
u(t,x,y,z) = - - B + tyM(t—a) + tK(t—3). (16)
In Figure 2, we depict the solution (16) with M(z/t}) = cos(z/#),

K(z/t3) = sech(z/t3) and parametric values p =2, a =2,x =0,t =1,z = 15.

In Figure 3, we demonstrate the solution (16) with different choices of arbitrary func-
tions, ie., M(z/t) = sech(z/t), K(z/t3) = cos(z/t?) and the parameters
B=2,a=2x=0,t=1,z=15.
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-5000

-10000

-15000

-20000

Figure 2. The 3D and 2D solution profile of (16) with M = cos(z/#3), K = sech(z/#3).

1.630x10°F

1.625x10°F

1.620x10°F

-15 -10 -5 5 10 15 y

Figure 3. The 3D and 2D solution profile of (16) with M = sech(z/#?), K = cos(z/#3).

2.5. Group Invariant Solution under Xg
For the symmetry Xg, we get the group-invariant solution as

1
ult,%y,2) = (g,
where f, g, h, F are the invariants given by

h=x%z, F = xu.

—t o= L
f=tg ek

17)
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Substituting (17) into the 3DgYTSF Equation (2) gives the NODE

36ghFop, — 128 hFggny + 48gh* Fgun — 8agFrg + 32ahFEyy + g Fegan — 64h° Fyy

— 16aFy + 32ahF, — 16ahF; — 19217 Fyy, + 38 Fogn — 38Fgn — 8PFgg — 481 Fy,

— 8agFFy), — 6agFyFy, — 4ag”FeFyy — 96ah® Fy Fyy — 20g” Fy Feg + 16aghF Fy,

+ 320ghFyFe, = 0 (18)
whose symmetry includes I'1 = d/df. Using the symmetry I';, we get the invariants
j1 =g j» =h, F =Y, which reduces Equation (18) to the NPDE

36gHY gy — 128° WY gonn + 488hY gy + 32aH ¥ ¥y, + §7¥ goon — 640 Yy, — 160F
— 19212 ¥y, + 3% ¥ gon — 38 ¥ gn — 88F g — 481 ¥y, — Bag¥ ¥y, — ag¥ o ¥,
— 40 g® ¥ o ¥ o, — 960h™ ¥ ¥y, — 208° ¥ ¥ gg + 160gh¥ ¢ ¥y + 32agh¥ ¥ = 0

with two independent variables. Thus, we have reduced the number of independent
variables of 3DgYTSF Equation (2) by two.

3. Conservation Laws of (2)

In this section we construct conservation laws of the 3DgYTSF Equation (2) by using
two different approaches, namely, the multiplier method and Noether’s approach.

3.1. Conservation Laws Using the Multiplier Approach

We seek first-order multiplier Q = Q(¢, x,y,z,u, uy, uy, uy) by applying the determin-
ing equation for the multipliers

)
u [Q{uxxxz — 20upy + ,Buyy + 20Uy, + “uzuxx}] =0, 19)

where the Euler-Lagrange operator §/4u in our case is defined as

) 0 0 0 0 0 0 0
— == —Dy=— —Dy=— —D.=— + DD D} D;
Su  ou Lou; *Ouy “ou, + D YOy + s (TP + Y ouyy
0 0
+DyDy—— +D3Dy—— - . 20
* Zauxz * Zauxxxz 20

Expansion of Equation (19) yields

UyxxzQu — 2015 Qy + ,Bunyu + 20Uy, Qu + Ayt Qy — Dy (uxxszut - 2lxuthut
+ ,Bunyut + 2‘Xuxuszut + “uxxuzQu,> — Dy (uxxszux - 2“uthux + ﬁunyux
+ 20yt Qu, + “uxxuzqu) - Dy (uxxszuy - zo‘uthuy + ,Bunyuy + zauxuszuy

+ “UxxuzQuy) — Dy (2a1,;Q) — DDy (—2aQ) — D;(,BQ) — DyD,(20uxQ) — D%(“”ZQ)
— Dz (aurQ) — DiD:(Q) =0,

which, on applying the total derivatives D;, Dy, Dy, D, and splitting over the derivatives
of u, yields the following simplified determining equations:

Qe =0,Qu=0,Qpy =0 Qzz=0, Qu, =0, Qyu, =0, Qyuy =0, Qu =0, Qu, =0,
Qzuy =0, Qutut =0, Qutux =0, Qutuy =0, ZQtux — Qz =0, quux =0, Quyuy —0,
thu}/ - ﬁQyux =0, quuy =0. o
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The solution of the above system of overdetermined equations is

1 1
Q=yzF"(t) + Y F'(t) 4+ Cryuy +yG(t) + H'(t)z + Cous + EuxH(t) + Caiy

u tu
+ %F(t) + Cl% + Cyuty + J (1),

where F(t), G(t), H(t), and J(t) are functions of ¢, whereas Cy, C3, C3, and C4 are arbitrary
constants. The conservation laws are now obtained by using the divergence identity

DiT' + DyT* + DyTY + D2 T* = Q(thxxxz — 20ty + Pty + 20Uylixz + lizlixy),
where T! is the conserved density, and T*, TY, T* are spatial fluxes. Thus, after some
calculations, conservation laws corresponding to the eight multipliers are given below.

Case 1. For the first multiplier Q = yu, + (Btuy)/«, the corresponding conservation
law is given by

1 1 1 1
Tlt = izxyuuxx — Etxyu;‘; + Eﬁtuuxy — E,Btuxuy,
1 1 1 2 2 1
Ty = gtxyuuxuxz — gﬁtuuxuyz — gﬁtuuzuxy + gwyuiuz + E,Btuxuyuz — Etxyuutx
1 1 1 1 1 3
+ E,Btuuty + E,Byuuw — Eocyutux - E,Bi.‘utuy + gyuuxxxz — @,Btuuxxyz
1 5 1 3 1 1
+ Eﬁuuy + gyuxuxxz + E,Btuxuxyz - g]/uxxuxz - 87“,Btuxxuyz + gyuzuxxx
1 3 1
+ STX,Bt”z”xxy + @ﬁtuy”xxz - Q,Btuxyuxm
2 1 1 1 1 1
le = gﬁutuxuxz + gﬁutuzuxx — Btunsy, — Eﬁyuuxy — Eﬂuux + Eﬁyuxuy + Eﬁztui
1
+ ﬂﬁtuuxxxz/
1 1 1 1 1 1
T = — §txyuuxuxx — §ﬁtuuxuxy + gtxyui + gﬁtuiuy — gyuuxxxx — @ﬁtuuxxxy
2

+1uu +1tuu 1u 1tuu+1tuu
4}/ xUxxx 80(‘8 xUxxy Sy xx 804'8 xxUxy 80&'8 yUxxx-

Case 2. For the second multiplier Q = u;, we obtain the corresponding conservation law as

P2 1 1 1 1 1
T, = gzxuuxuxz + gauuzuxx - Eauutx + E[Suuyy + Euuxm — Eautux,

| 1 2 1 1 5, 3 1
T5 = QUUzUy — QUL U + S QU U, + —QUUy — —QUF — —Ulpyyg + Uzl

3 3 3 2 2 8 8
1 3 1 1
+ iuxutxz + gutuxxz - Eutx”xz - gutzuxx;
T! = —lﬁuu +1ﬁuu
2 2 ty 2 thy,
Tzzlocuuz—}ocuu —i—luu —luu +1uu —luu
2 3 thy 3 tx 8 xUtxx 8 txxx 8 thxxx 8 txUxx-

Case 3. For the second multiplier Q3 = uy, we obtain the corresponding conservation law as
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1 1
b
I = E(xuuxy — Etxuxuy,
" 2 ., 1 1 5 1 1
T3 = gzxuuxuxz + gauxuz - szuutx — szutux + guxuxxz + E,Buuyy + guuxxxz
3
+ guzuxxx - g”xx”xz;
1 1
Y _
T, = — Eﬁuuxy + E,Buxuy/
1 1 1 1
T; = gtxui — gtxuuxuxx + 7 xthxx — guuxxxx — g”;zm

Case 4. For the multiplier Q4 = uy, we obtain the corresponding conservation law as

1 1
Ti = szuuxy — Eauxuy,
x 1 1 2 1 1 3
T, = — gtxuuxuyz — gauuzuxy + gauxuyuz + Etxuuty — szutuy — guuxxyz

1
— —UxxUyz + —UzUyyy + —Uylxxz + = UxUyyz — —UxyUyz,
8 xxHyz 8 zWxxy 8 yhxxz 4 xWxyz 4 xyHxz

y 2 1 1 1 5,
Ty = Sautiylly; + S @UUZ Uy — QUUEy + 5 Ulxxyz + Eﬁuy,

3 3 2
1, 1 1 1 1 1
T4 = gﬂéuxuy — gauuxuxy + guxuxxy — guuxxxy + guyuxxx — guxxuxy.

Case 5. For multiplier Qs = (F”(t)z + %F’(t))y + - BF(t)uy, we obtain the corresponding

conservation law as
TE = —aF" (¢ Lar L (b + LpE(H Leru
5= —aF" (t)yzux + i (H)yusixx — i ( )y“x+1.3 (H)unry — 1/3 (H)uxuy,
1 1 1 1
T = EF’(t)ﬁyuuW — gﬁF(t)uuzuxy — E‘BF(t)uuxuyz + gﬁF(t)uxuyuz
3 1 1 1
— @‘BF(t)uuxxyz — @‘BF(t)uxxuyz — % @ﬁp(t)uzuxxy
3 1 1
+ @[SF(t)uyuxxz + @,BF(t)uxuxyz + aF" (t)yzu — ZlocF”(t)yuux — aF" (t)yzuy

BF(t)txytixz +

- 1ud-"’(t)yuutx + 1ocl-"’(t)yu,zcuz - LliaF’(t)yutux - 1F"(if)]/uxx +aF" (t)yzuyu,

4 3 4
1 P 1 P 3 P 1 P
+ g‘" (H)yunxtiyz + 16 (£)ytxxxz — 16 () ytxxtizz + 16 ()yuztixyx
5 1, 1 1 3,
+ EF () yuxtbyyz + Z'BF (t)uuy + Z,BF(t)uuty — EﬁF(t)utuy + EF ()yzuxxz,

1 1 1
TY = BF"(t)yzuy — BF" (t)zu — Z,BF’(t)yuuxy + ZﬁF’(t)yuxuy — EﬁF’(t)uux
1 1 1 1 1
+ gﬁF(t)uuxuxz + gﬁF(t)uuzuxx — E,[%F(t)uutx + @‘BZF(t)uﬁ + ﬂ,@F(t)uuxxxz,
TZ = %aF”(t)yzui + il—””(t)yzuxxx - %al—”’(t)yuuxuxx + %al—”’(t)yui — %F’(t)yuuxxxx

1
BF(t)uttyxxy

1 1 1 1
+ S F'(t)yuxtixyy — Elf’(t)yu2 BF(t)utixity, + gﬁF(t)u,zcuy T

8 wg
1
+ @ﬁF(t)uxuxxy + BF(t)uytixxx —

1
Tea ﬁF(t)uxxuxy.

160
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Case 6. For the multiplier Q¢ = G(t)y, we obtain the corresponding conservation law as
T = — aG(t)yuy,
3
T¢ = aG'(t)yu + aG(t)yusuz — aG(t)yur + ZG(t)yuxxz,
1 1
T, = B(G'(t)zuy — 1B (Duitxy + 2BG(F)uxiy,

3
T? = aG'(t)yu + aG(t)yusu, — aG(t)yu; + 1G (O,

Case 7. For the multiplier Q7 = H'(t)z 4+ 3 H(t)u,, we obtain the corresponding conserva-
tion law as

1 1
T = —azuH'(t) + <4(xuuxx — 41xu,2(>H(t),

1 3 1 1
T = azuH" (t) + <¢xzuxuz — Ay — aziy + 1 FMeez = 4uxx>H’(t) + (3zxu§uz

1 5 1 1 1
FoQUU Uy — —QUUy — QUL + — UxUyxz + E,Buuyy + —Ulxxxz + s Uzlxxx

6 4 4 16 16 16
3
m“xx”xz)H(t)r
y , 1 1
T, = BH (t)zuy + Z,Buxuy - Zﬁuu"y H(t),
1 1 o o 1 1 1
Z = <2azu§ + 4zuxxx>H’(t) + <6u’3‘ — guxuxx + guxuxxx — guuxxxx — 6u§x>H(t).

Case 8. For the last multiplier Qg = J(t), we obtain the corresponding conservation law as
Ts = —aud(t),
Ty = af (t)u+ (auxuz —aup + zuxxz) J (),
TE{ = puyJ(t),

1 1
82 = (zlxui + 4Mxxx) ](t)

3.2. Conservation Laws Using Noether’s Approach

In this subsection, we utilize Noether’s approach to derive consevation laws for the
3DgYTSF Equation (2). This equation is of fourth-order and it has a Lagrangian. It can be
verified that Equation (2) has a second-order Lagrangian £ given by

1
L= 2 (uxxuxz — ﬁui — ocu%uz) + auy

as 6L/éu = 0, on the Equation (2). Here, the Euler-Lagrange operator J/4du is given
as in (20). The determining equation for Noether point symmetries is

X (L) + £[Di(e") + Dx (&) + Dy (&%) + D=(¢*)| - Di(B') — Dx(B?)
—Dy(B%) — D.(B*) =0, (22)

where gauge terms B!, B2, B3, and B* depend on t, x, y, z, and u. Here, X 2] is the second
prolongation of the infinitesimal generator X and is defined by

d 5} 5} d d d
2] — 7 . < i 9 9
X X+ o, + > it + (3 auy + {4 E + (o Fins + (4 i
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Hence expanding Equation (22) with the Lagrangian £ gives

‘WX{’W + Uy — ”t‘:} - ’4%‘;11 - ”x(ftz - ”t”xgi - ”yﬁ - ”t”ygﬁ - ”z‘:;1 - ”t”zgﬁ}

+ ’X”f{ﬂx + Uxtfu — ”fg}c - ”t”xéi - uxga% - ”32(5124 - uyé?c - ”x“ygi - uzéﬁ - uxuzgﬁ}

- “uxuz{ﬂx + Uxty — utéylc - ”t”xgi - uxgyzc - ”%éﬁ - ”yéi - ux”yéﬁ - uzéﬁ - uxuzéﬁ}
— uty {1y + sy — el — ey Ch — a8y — wxany 8 — & — BT — gy — wyai |

= 502 (s s = ] = sl — 02 — s — 82 — e — s — ulgh
gt (o + 2+ 0} — 1280 — 2l — 228, — Butsies — 3, — 2uial
_”t‘:alcx - Z”t”xg}cu - ut“xx‘ﬁt - Zuxutx‘:i - “t”a%g}m - “xyé?c - ux”xygfz - ”ngi
*quxz(:ﬁ} + %uxx{ﬂxz + Uz Wy + Uxlzy + UxUzyy — ut':plcz - Mtuzgylcu - ut”xé(;u
—utuxuzéiu - ngazcz - ”x”zggu - ”?cé‘%u - ”i”zglzm - ”yéiz - ”y”zgiu - ”xuyggu
7”X”y”252u — Uz, — URER, — UxlzCay — UxUECmy + Uzt — UpzCy — Utz — Utz
*ungi - zuxungﬁ - uyzéi - quyzé'ﬁ - uyuxzéﬁ - uzzgi - uz”ngﬁ - uxuzzgﬁ}

— B} —utB,, — B} — uyBj — B) — uyB;, — B} —u.B;; = 0.

Splitting the above equation on derivatives of u yields the following system of overde-

termined PDEs:

G=0,=08 =08 =028 =0Bi=01u=017:=0¢=0,
8=08=08=081=08=08=028=07u=08=01u=0

New =0, 308y — 283 =0, By — 21 = 0, nx + & = 0, By, — 217 = 0, 112 + 287 = 0,

B} +3any = 0,20, + &)+ & =0, Bl + By + By + B2 = 0,3, + & — &+ & =0,

2+ 8 +25 4+ =0, 2+ G+ -5+ =0 (23)

Solving the above overdetermined system of PDEs, we obtain the Noether symmetries

and their gauge functions as follows:

X :3, B! =0,B*=0,BY =0, B* =0,
LT

XZZ%/ Bt:O,BXZO/ByZOIBZ:O/
st%f B' =0, B¥ =0, BY =0, B* =,
Xi= 2 B =0 B =0B =05 =0
X5:%r BtZO,BXZO/By:OrBZZO'
Xézy%/ BtZO,BXZO/ByZOIBZZO/

., 0 0 0 d e] P x v _ z
X7—7tat+3xax+5yay+zaz Suau,B =0,B"=0,B"=0,B*=0.
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We now construct the conservation laws corresponding to each Noether point symme-

try using [44]
oL
t_ pal OL  nt
T"=L{ + Ky E B,
=+ i 25 (2N y k25 L 2E
alzlx auxx a xx auxz
ar (24)
TV = L& + Kyj=— — BY,
duy

oL oL
Z 4 _ _ B*
T> =L +Kl{auz Dx(&um)} B?,

where K1 =7 — utgl - uxéz - uygg’ - u2§4/ Ky =0 — uxté1 - uxxg2 - uxy§3 - uxz§4 and
Kz = 04 — up@' — up, % — uyz§3 — uy,¢*. Hence, using Formulae (24), we obtain the
conserved vectors whose components are

3
t 2 2
I = Euxxuxz — szuy — ULz,

3 1 1
X 2
Tl =2UplxUy + —Ullyyz — —UxxUy — Upxlyz — zut/

4 4 2
le :3autuy,
1 1

T1Z = ut”% + Zutuxxx — Zuxxutx?
Th = —2u2,

x_ .2 3 o
Ty =uju; — Zu,c,cuxz + Z”xum — Eauy,
Tg =3aixily,

1 1
T2Z = M?( + Z”xxxux - Zuix}

T3t = — 2uxuy,

T3 = — 2utty + 2uytiyli; — 5 taythaz = g lhxxllyz + 3 Mythxxz,
Tay =2uUiUy — u%uz + %uxxuxz + %aui,

T3 = u%uy — %uxxuxy + %uxxxuy

Ti = — 22Uyl

T = —2usuy +2uxu§ + Zuzuxxz — %uiz — iuxxuzz,

Tz = 3auyuz,

1 1 3
Tf =2upuy + 1”xxuxz + Zuxxxuz - Efxui
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T5t =2uy,

3
TSX =2u; — Uyl — ZMXXZ/

T5y = —3!X1/ly,
T: = — u% — Zuxxx
T6t =2yuy,

3
Tg =2yu; — 2yuyu; — Zyuxxz,

T! = — 3ayuy,
1

Tg = _yuﬁ% - ZLy”xxx;
L= 74 _ 2 h2 — 7nu 6w, — 6xi2 — 10 -2

7=5 Uyyxlyz 704 uy Uy _6Uy XUy Yixily ZUy Uy,

9
T;‘ = — 5””5 + 3xu,2(uz — 6uu; — 14tu% — 10yutuy — 2zupu, + 6uusu, + 14tusuu,
> 3 7 3 5
+ 10yuxuyuz + 2zuyuy; + Euuxxxz + Etutuxxz + ixuxuxxz + Eyuyuxxz

1 7 5 7 3
+ Ezuz”xxz — Buylyz — Et”txuxz - E]/”xy”xz — 2Uxxllz; — it”tzuxx - Exuxxuxz

Sy ]
zuxxu[yz 2zuxxuzz/

5 15
T7y =10yusuy + Eyuxxuxz + ?ocyuf, — Syuiuz + 9auuy + 21aturuy + axuxity,
+ 3azuyuz,

1 3 3
; =2zuUsuy + Ezuxxuxz — szzui + 3uu,zc + 7tutu§ + 3xu;°’( + Syuiuy + Euuxxx

7 3 5 1
=+ Etutuxxx + Exuxuxxx + Eyuyuxxx + Ezuzuxxw

4. Conclusions

In this paper, we studied the fourth-order three-dimensional generalized potential Yu-
Toda-Sasa-Fukuyama (gpYTSF) Equation (2). We first determined its Lie point symmetries
and then presented the corresponding group of transformations. These Lie symmetries were
then used to perform symmetry reductions, and as a result reduced ordinary differential
equations were obtained. The ordinary differential equations were then solved using direct
integration and exact solutions of gpYTSF equation were obtained. The group invariant
solutions obtained included a solution in terms of incomplete elliptic integral. It should be
noted that the solutions obtained in this paper are new and different from the ones presented
in the literature. Moreover, conservation laws for the gpYTSF equation were constructed by
employing two different approaches; the multiplier approach and Noether’s approach. The
multiplier approach provided us with eight conservation law multipliers which resulted
in eight conservation laws, whereas the Noether’s theorem yielded seven conservation
laws. This is the first time that conservation laws have been derived for Equation (2). These
conservation laws included the conservation of mass and energy.
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